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Abstract: By virtue of their upright locomotion, similar to that of humans, motion analysis of non-
human primates has been widely used in order to better understand musculoskeletal biomechanics
and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical
tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been
applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor
system provides 3-D information on movement without any skin markers. The specific aim of this
study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in
a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage,
including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these
were analyzed by observers’ manual assessment and the newly written automated program. We
confirmed that the measurement results from the observers’ manual assessments and the automated
program with depth image analysis were statistically identical.

Keywords: depth image sensor; behavioral pattern analysis; computer-based analysis; non-human
primate study

1. Introduction

The motion analysis of non-human primates provides vital data of animal behav-
ior for neuroscience studies. [1–5] Non-human primates serve as the important animal
models for behavioral and cognitive studies because of their similarity to humans. They
also serve as crucial models of degenerative brain diseases, such as Alzheimer’s disease,
Parkinson’s disease, and stroke [6–9]. In all of these studies, behavioral data were essential
to support the hypothesis of the studies. Since behavior and neural activity are related, it is
possible to verify what kind of neural activity changes have occurred through behavior
observation [10,11]. Therefore, many studies have measured non-human primate behavior
through video recording or direct observation by researchers [12–15]. These conventional
methods are limited in that it is difficult to reproduce the measurement results due to
human errors and the subjective decisions made by individual researchers, given that the
researchers did not complete all of the measurements of all of the behavioral events.

To address these limitations, behavioral research methods have been gaining traction
and evolving as such. Computer-based methods have been developed to overcome the

Appl. Sci. 2022, 12, 471. https://doi.org/10.3390/app12010471 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010471
https://doi.org/10.3390/app12010471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0269-2429
https://orcid.org/0000-0002-7106-1615
https://doi.org/10.3390/app12010471
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010471?type=check_update&version=1


Appl. Sci. 2022, 12, 471 2 of 12

limitations of conventional methods [16–19]. There is a commercially available marker-
based motion capture system with a very high accuracy; however, it is not applicable to
non-human primates. Flexible skin prevents the tight, correct attachment of markers, and,
even if attached, long and dense fur makes it difficult for the machine to detect markers [20].
Animals can also freely move their hands to remove markers attached to their skin as
a result of their instinctive curiosity. To address these challenges, advanced markerless
research methods have been developed. Markerless measurement methods based on deep
neural networks (DNNs), which are calculation algorithms made by simple units consisting
of one layer and then stacked in series to form deep networks, have been developed [21–25].
The generated skeleton model and multiple cameras were used to measure the movement
of freely moving monkeys without using markers; in a recent study, motion capture was
performed in a separate monkey studio with 62 cameras [9,20]. These methods construct
3D images by overlapping 2D images captured by multiple cameras, and then measure
behaviors by applying this to a pre-made skeleton model. These methods are limited in that
researchers have to intervene during measurements to minimize the free joint movement
of monkeys and to avoid one body part covering another. Research intervention as such
affects reproducibility of the measurement. In addition, multiple cameras are required
for multiple angles, and dissimilar to a home cage, a specific measurement cage is also
required, incurring a high cost.

The aim of this study was to develop an automated behavioral pattern analysis
program for a non-human primate in a home cage based on a single depth image camera.
From the depth images, it is possible to obtain spatial information about the orthogonal
direction of the 2-D object plane, which is a very important factor in measuring the behavior
of monkeys moving in three dimensions. We designed the program to automatically
measure the monkey’s behavior by tracking and calculating the center of the object and
height information obtained from the depth images. There are three types of measurable
behaviors: sitting, standing, and pacing. The duration of each behavior was measured using
the automated program. To verify the reliability of the program, we measured the behaviors
of a total of nine monkeys and compared the results with the manual measurements of two
observers. In this method, a single depth image camera was used, and measurements were
performed in individual home cages in which the monkeys originally resided.

2. Materials and Methods
2.1. Development of an Automated Behavioral Pattern Analysis Program

The automated behavioral pattern analysis program, using a depth-image camera,
was developed as follows. The automated analysis program for classifying behavioral pat-
terns was mainly based on background elimination and object tracking algorithms, which
include the Gaussian mixture model, morphological filtering, centroid, noise reduction,
and classification algorithms. To eliminate unnecessary parts around the cage from the
depth image, a 3-D region of interest was defined inside the volumetric area of the cage
(width × depth × height = 50 cm × 100 cm × 84 cm).

The automated program consisted of the following procedures (Figure 1).

1. Importing real time image frames: a camera (Microsoft Kinect V2 Window) we
used for capturing motions of object has 2 types of camera module, one is a RGB
images sensor for gathering ColorFrame and the other is depth sensor for acquiring
DepthFrame images. Both were utilized as raw images and imported to the analysis
computer in real time;

2. Image mapping: the ColorFrame, obtained from RGB image sensor module, and
Depth Frame from a depth sensor have different image resolutions. The MS Kinect V2
provides 1920 × 1080 resolution by RGB images and 512 × 424 resolution by depth
images. For mapping two different resolution images, we merged ColorFrame with
DepthFrame as Figure 1a. Both merged images and raw images from a depth camera
were utilized in following steps;
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Figure 1. (a) Merged image from ColorFrame + DepthFrame and (b) Image after applying step 3 and 4.

3. Region of interest selection: in order to select the region of interest (ROI) inside a cage
in the z direction, image data between the depth camera and the top of cage denoted
as “Front Barrier” and image data below the bottom of the cage denoted as “Rear
Barrier” were eliminated (Figure 2);
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Figure 2. A three dimensional R.O.I selection inside a cage.

4. In order to select the ROI inside a cage in the z-y plane, image data outside a cage
were eliminated. The removal area is shown as a grey rectangular box in which each
side is denoted as “Top,” “Bottom,” “Left,” and “Right” (Figure 2). Figure 1b depicted
processed images after applying step 3 and step 4 to raw images;

5. Noise reduction: after recording 30 frames of image data, the pixels which underwent
a small change equal to the specified value were removed (Figure 3a). Then, the “blur”
function was used to eliminate minor noise in the image data (Figure 3b). The minor
noise is defined as unnecessary pixels for object identification and disregarded for
enhancing following image processing steps;
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Figure 3. Automated program process for pre-test: (a–d) background reduction and noise elimination,
(e) centroid, centroid area and measuring point identification. RGB and depth images from main test.

6. Background elimination: the “BackgroundSubtractorMOG2” in OpenCV was used for
separating the targeted object from raw images based on Gaussian mixture method to
eliminate background (Figure 3c). We can acquire a clear object image through this
processing step;

7. 2nd noise reduction: any group of pixels smaller than 5-pixel size of processing image
were considered as a noise and replaced by black (0 value) pixels. Then, we applied
a “Morphology method” three times from “dilate” to “erode” for obtaining clear
object image. The “dilate” processing converted the positive pixels into the most
bright value of the image while the “erode” processing changed negative pixels to the
darkest value (Figure 3d);

8. Creating contour and a center spot: the “findCountours” in OpenCV was used to
create the contour of an object. After adopting contouring algorithm to the images,
we were able to get a refined shape of the object. Then, we applied “Centroid Based”
algorithm in Open CV for finding a center spot of the image;

9. Find the representing point of an object: rhe centroid of an object was tracked in real
time and the pixel of the smallest depth value inside the centroid area as the measuring
point of an object was found. “The centroid area” is defined by the rectangular area
which has one side measuring 5~10 pixels, and “the smallest depth value” inside
the centroid area approximately represents the head of an experimental monkey
(Figure 3e).

10. Calculating behavioral patterns: based on the measurement point of an object ob-
tained (9), we classified sitting, standing, and pacing by measuring the duration of
each behavior. The classifying criteria of each pattern were defined based on being
maintained for 1 s. The corresponding logical flow chart is shown in Figure 4.



Appl. Sci. 2022, 12, 471 5 of 12

Figure 4. (a) Flow chart representing object contour creation, (b) Flow chart representing the
behavioral pattern analysis. ** symbols in (a) and (b) indicate the process for the analysis of
behavioral patterns.
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2.2. Behavior Pattern Experiment and Analysis

For the behavioral pattern analysis, nine monkeys (aged approximately nine years)
were used in this study. The subjects were considered “young,” according to the age
classification standards for humans to macaques. All of the procedures were approved by
the K Korea Research Institute of Bioscience and Biotechnology Institutional Animal Care
and Use Committee. Behavioral data of monkeys in a stainless-steel-wire-mesh home cage
were collected for 15 min using a Kinect camera (Figure 5). Three activities were classified:
sitting, standing, and pacing. Each activity pattern is defined as shown in Table 1. All of
the activities were quantified for duration (in seconds). The data were also analyzed by
two trained examiners for verification.

Figure 5. (a) Camera and computer system setting in the experiment: the camera was installed above
the home cage and the number and during of the three behaviors were measured using the automate
program. (b) User interface for the automated behavioral pattern analysis program.

Table 1. Ethogram (definition of behavior).

Definition

Program Observer

Sitting When positioned for more than 1 s below the
specified height without movement

Sitting without pacing and
lasting longer than 1 s

Standing When positioned for more than 1 s above the
specified height without movement

Standing without pacing and
lasting longer than 1 s

Pacing When the measuring point moves more than 1 s Pacing lasting more than 1 s

2.3. Manual Analysis Using Observer XT

To confirm the accuracy of the program, two observers manually rated the behavioral
patterns using “Observer XT” software (Noldus Information Technology, Wageningen, The
Netherlands) for the same measurement section as the automated program, and compared
the durations of each behavioral pattern with those rated by the automated program.
Observer XT is a semi-automated software used for behavioral event coding and data
analysis. The user has to manually decide behavioral patterns while watching a video
clip. It can perform all processes, such as target behavior setting, event coding, and result
analysis (Figure 6).
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Figure 6. Program verification through Observer XT. Manual ratings of behaviors using Observer XT
software and results including behavioral event and time.

3. Results
3.1. Measurement Results of Observer #1 and the Automated Program

The observer #1 and the automated program for analyzing depth images measured
535.89 s and 543.78 s for total sitting time, respectively. There were no significant differ-
ences between the 2 measurements (Table 2. N = 9, t = −1.268, p = 0.240). Observer #1
and the automated program for analyzing depth images measured 68.00 s and 55.67 s
for total standing time, respectively. There were no significant differences between the
2 measurements (Table 2. N = 9, t = 1.933, p = 0.089). Observer #1 and the automated
program for analyzing depth images measured 296.00 s 304.78 s for the total pacing time,
respectively. There were no significant differences between the 2 measurements (Table 2.
N = 9, t = −1.963, p = 0.085). As shown above, there was no statistical difference between
the results of observer #1 and the program measurement in the action time of the monkeys’
behavioral patterns, including sitting, standing, and pacing. These two measurements were
statistically identical.
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Table 2. Comparison of the measurement analysis between the automated program and the observer #1.

Action
Observer #1 Program

t p-Value
Mean ± SE Mean ± SE

Sitting 535.89 ± 99.92 543.78 ± 98.19 −1.268 0.240

Standing 68.00 ± 14.94 55.67 ± 15.93 1.933 0.089

Pacing 296.00 ± 100.10 304.78 ± 100.38 −1.963 0.085
Mean ± SE: mean ± standard error. t: paired t-test.

3.2. Measurement Results of Observer #2 and the Automated Program

Observer #2 and the automated program for analyzing depth images measured
529.67 s and 543.78 s for total sitting time, respectively. There was no significant dif-
ference between the 2 measurements (Table 3, N = 9, t = −1.324, p = 0.222). Observer #2
and the automated program for analyzing depth images measured 62.00 s and 55.67 s
for total standing time, respectively. (Table 3, N = 9, t = 1.115, p = 0.297). Observer #2
and the automated program for analyzing depth images measured 308.33 s and 304.78 s
for total pacing time, respectively. There were no significant differences between the two
measurements (Table 3, N = 9, t = 0.340, p = 0.743). As shown above, there was no statistical
difference between the values of observer #2 and the program measurement in the action
time of the monkeys’ behavioral patterns, including sitting, standing, or pacing. The two
measurements were statistically identical (p > 0.05).

Table 3. Comparison of the measurement analysis between the automated program and the observer #2.

Action
Observer #2 Program

t/z p-Value
Mean ± SE Mean ± SE

Sitting 529.67 ± 103.99 543.78 ± 98.19 −1.324 0.222

Standing 62.00 ± 16.76 55.67 ± 15.94 1.115 0.297

Pacing † 308.33 ± 108.80 304.78 ± 100.38 0.340 0.743
Mean ± SE: mean ± standard error. t: paired t-test. †(z): Wilcoxon signed ranks test.

The measurement results of two observers and the automated program for analyzing
depth images were revealed to be statistically identical (Table 4, Figure 7).

Table 4. Comparison of raw data between measurement analysis from the automated program and
two observers for each subject.

Subject # R1 R2 R3 R4 R5 R6 R7 R8 R9

Sitting
Program 690 102 536 54 751 456 891 719 717

Observer #1 691 88 531 38 766 414 887 732 671
Observer #2 667 46 528 14 801 408 889 734 669

Standing
Program 148 19 38 68 42 32 0 117 37

Observer #1 138 23 41 108 40 66 6 115 74
Observer #2 164 14 34 57 36 62 5 115 72

Pacing
Program 54 780 326 779 116 432 9 64 184

Observer #1 71 789 321 752 95 419 7 53 155
Observer #2 69 844 339 826 61 412 8 52 159
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Figure 7. Comparison of measurement analysis from the automated program against two observers
for each subject.

3.3. Statistical Analysis

The data collected in this study were statistically analyzed using SPSS Win (ver.
25.0) program. Before data analysis, Kolmogorov-Smirnov and Shapiro-Wilk tests were
performed to confirm the normality of measurements. If normality was satisfied, the paired
t-test was tested; if not, the Wilcoxon signed-rank test was used. The significance level for
all of the statistical analyses was p < 0.005.

4. Discussion

We developed an automated analysis program for behavioral patterns of non-human
primates on the basis of depth image video. The program developed in this study was
able to measure selected behavioral patterns of non-human primates in a home cage with
a single low-cost depth image camera. The program measured “sitting” and “standing”
according to the information of the depth image, and measured “pacing” according to the
movement of the center of objects.

Non-human primates are important experimental models for a wide range of sci-
entific fields. Therefore, conducting a quantitative analysis of their behavior is of great
relevance. Since primates move in three-dimensional space, have joints that move freely,
and use hands, motion capture data using conventional methods are consequently very
difficult to analyze. Recently, markerless motion capture systems have been developed
not only for humans, but also for various experimental animals, such as flies, mice, and
rats [9,10,20,21,26,27]. In previous studies, motion capture of non-human primates was
achieved using a Kinect camera and skeleton image [9]. Although researcher intervention
was necessary, the motion capture of primates was effectively accomplished using this
method. However, these studies had the disadvantage of requiring a large number of
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cameras and a specific measurement space. To provide an alternative method, this study
proposed measuring the behavioral patterns of primates in a private cage in which they
were housed with a single depth image camera. In this study, the analysis results of the au-
tomated program were not statistically different from those measured by the two observers.
Therefore, our automated program is highly reliable for measuring and classifying selected
behaviors of non-human primate in their home cages.

Behavioral research is also important in many studies of degenerative brain dis-
eases [28]. In many diseases, symptoms related to behavior, such as hyperactivity, bradyki-
nesia, tremor, and gait disorder, progressively emerge. When developing animal models of
disease, it is crucial to reproduce behavioral symptoms similar to that of humans, and it is
also important to quantitatively evaluate the symptoms. These behavioral symptoms are
generally diagnosed through questionnaires or observer evaluations in humans. However,
since these methods are not applicable to primates, a method of evaluating behaviors
that reflects the emotions and intentions of primates is needed. In many previous studies,
behavioral evaluations were performed to assess the motor and cognitive abilities of animal
models, and, in some cases, behavioral measurement results were used as an indicator
of modeling [4,5,29]. Our automated program correctly classified selected behavior, and
may be used as a powerful evaluation tool in disease models, such as Parkinson’s and
ataxia, characterized by prominent behavioral symptoms. Moreover, since our cost effective
system is a relatively simple and easy to install on each cage, one of applications would be
monitoring multiple cages simultaneously in a large animal facility.

The automated program developed in this study could not measure the small move-
ments of body parts, such as the hands or head. The program categorized and measured the
selected large movements such as sitting, standing, pacing based on the height information
obtained from the depth image and the movement speed of the center of an object. In
addition, it is not able to measure the rotation of an object using the automated program in
this study since the algorithm in the program tracks and only calculates the center of the
object. To classify a rotation in the further study, it is necessary to detect the overall shape
of an object and measure the relative movement of the front with regard to the tail.

In addition, this automated program was limited in that only a single object could be
measured at a time. Social interactions are essential for species that form social groups.
Since primates are animals that form social groups, it is important to identify social interac-
tions; however, our program measured only a single individual. By continuing to address
these problems, it will eventually be possible to simultaneously measure the behaviors of
several primates using the program. Furthermore, only three major behaviors are auto-
matically classified in the proposed program. Pacing can be specified as translation and
circulation. Circulation should also be classified in the further study.

In this study, we proposed an automated behavioral pattern analysis program based on
depth images captured by a single low-cost depth image camera. There was no significant
difference in the measurement results between the automated program and the observers.
The automated program categorized and measured the selected behaviors of primates
such as sitting, standing, and pacing well. Therefore, it is expected that the automated
program will provide an effective analytical measurement tool for the selected behavior of
non-human primate in individual cage for future behavior studies.

Author Contributions: Conceptualization, S.K.H., Y.R., Y.L. and K.J.C.; Data curation, S.K.H., K.K.,
Y.R. and M.H.; Formal analysis, S.K.H., K.K., Y.R. and M.H.; Funding acquisition, S.K.H., Y.L. and
K.J.C.; Investigation, S.K.H., K.K., Y.R., M.H., Y.L., S.-H.P. and W.S.C.; Methodology, S.K.H., K.K., Y.R.,
M.H., S.-H.P. and W.S.C.; Resources, S.-H.P. and W.S.C.; Software, S.K.H., Y.R. and M.H.; Supervision,
S.K.H., Y.L. and D.-S.L.; Validation, K.K.; Visualization, K.K. and Y.R.; Writing—original draft, S.K.H.,
K.K., Y.R., M.H., Y.L., K.J.C. and D.-S.L.; Writing—review & editing, S.K.H., K.K., Y.L. and D.-S.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Korea Medical Device Development Fund grant funded
by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and
Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number:



Appl. Sci. 2022, 12, 471 11 of 12

9991006929, KMDF_PR_20200901_0264), Korea Research Institute of Bioscience and Biotechnology
Research Initiative Program (KGM4562121, NBW6862122) and the Korea Institute of Industrial
Technology (IJ170004).

Institutional Review Board Statement: This study was approved by the Korea Research Institute of
Bioscience and Biotechnology Institutional Animal Care and Use Committee (approval no. KRIBB-
AEC-15031).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to thank to Ho Yong Choi and Seon Su Jang for helping us
evaluate the behavior as observers, and to Sang-Rae Lee at the Ajou University in Korea and Kyu-Tae
Chang, the past president of Korea Research Institute of Bioscience and Biotechnology, for designing
and advising this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rhesus Macaque Genome, S.; Analysis, C.; Gibbs, R.A.; Rogers, J.; Katze, M.G.; Bumgarner, R.; Weinstock, G.M.; Mardis, E.R.;

Remington, K.A.; Strausberg, R.L.; et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007,
316, 222–234. [CrossRef]

2. Bailey, J.; Taylor, K. Non-human primates in neuroscience research: The case against its scientific necessity. Altern. Lab. Anim.
2016, 44, 43–69. [CrossRef] [PubMed]

3. Kessler, M.J.; Berard, J.D.; Rawlins, R.G. Effect of tetanus toxoid inoculation on mortality in the Cayo Santiago macaque population.
Am. J. Primatol. 1988, 15, 93–101. [CrossRef] [PubMed]

4. Watson, K.K.; Platt, M.L. Of mice and monkeys: Using non-human primate models to bridge mouse- and human-based
investigations of autism spectrum disorders. J. Neurodev. Disord. 2012, 4, 21. [CrossRef] [PubMed]

5. Seo, J.; Lee, Y.; Kim, B.S.; Park, J.; Yang, S.; Yoon, H.J.; Yoo, J.; Park, H.S.; Hong, J.J.; Koo, B.S.; et al. A non-human primate model
for stable chronic Parkinson’s disease induced by MPTP administration based on individual behavioral quantification. J. Neurosci.
Methods 2019, 311, 277–287. [CrossRef]

6. Kalin, N.H.; Shelton, S.E. Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Ann. N. Y.
Acad. Sci. 2003, 1008, 189–200. [CrossRef] [PubMed]

7. Capitanio, J.P.; Emborg, M.E. Contributions of non-human primates to neuroscience research. Lancet 2008, 371, 1126–1135.
[CrossRef]

8. Nelson, E.E.; Winslow, J.T. Non-human primates: Model animals for developmental psychopathology. Neuropsychopharmacology
2009, 34, 90–105. [CrossRef]

9. Nakamura, T.; Matsumoto, J.; Nishimaru, H.; Bretas, R.V.; Takamura, Y.; Hori, E.; Ono, T.; Nishijo, H. A Markerless 3D
Computerized Motion Capture System Incorporating a Skeleton Model for Monkeys. PLoS ONE 2016, 11, e0166154. [CrossRef]

10. Dell, A.I.; Bender, J.A.; Branson, K.; Couzin, I.D.; de Polavieja, G.G.; Noldus, L.P.; Perez-Escudero, A.; Perona, P.; Straw, A.D.;
Wikelski, M.; et al. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 2014, 29, 417–428. [CrossRef]

11. Krakauer, J.W.; Ghazanfar, A.A.; Gomez-Marin, A.; MacIver, M.A.; Poeppel, D. Neuroscience Needs Behavior: Correcting a
Reductionist Bias. Neuron 2017, 93, 480–490. [CrossRef]

12. Schwarz, D.A.; Lebedev, M.A.; Hanson, T.L.; Dimitrov, D.F.; Lehew, G.; Meloy, J.; Rajangam, S.; Subramanian, V.; Ifft, P.J.;
Li, Z.; et al. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 2014, 11,
670–676. [CrossRef]

13. Courellis, H.S.; Nummela, S.U.; Metke, M.; Diehl, G.W.; Bussell, R.; Cauwenberghs, G.; Miller, C.T. Spatial encoding in primate
hippocampus during free navigation. PLoS Biol. 2019, 17, e3000546. [CrossRef]

14. Labuguen, R.; Bardeloza, D.; Negrete, S.; Matsumoto, J.; Inoue, K.-I.; Shibata, T. Primate Markerless Pose Estimation and
Movement Analysis Using DeepLabCut. In Proceedings of the 2019 Joint 8th International Conference on Informatics, Electronics
& Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Washington, DC,
USA, 30 May–2 June 2019; pp. 297–300.

15. Liu, S.; Iriate-Diaz, J.; Hatsopoulos, N.G.; Ross, C.F.; Takahashi, K.; Chen, Z. Dynamics of motor cortical activity during naturalistic
feeding behavior. J. Neural. Eng. 2019, 16, 026038. [CrossRef]

16. Crall, J.D.; Gravish, N.; Mountcastle, A.M.; Combes, S.A. BEEtag: A Low-Cost, Image-Based Tracking System for the Study of
Animal Behavior and Locomotion. PLoS ONE 2015, 10, e0136487. [CrossRef]

17. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity
Fields. IEEE Trans. Pattern. Anal. Mach. Intell. 2021, 43, 172–186. [CrossRef]

http://doi.org/10.1126/science.1139247
http://doi.org/10.1177/026119291604400101
http://www.ncbi.nlm.nih.gov/pubmed/27031602
http://doi.org/10.1002/ajp.1350150203
http://www.ncbi.nlm.nih.gov/pubmed/31968902
http://doi.org/10.1186/1866-1955-4-21
http://www.ncbi.nlm.nih.gov/pubmed/22958282
http://doi.org/10.1016/j.jneumeth.2018.10.037
http://doi.org/10.1196/annals.1301.021
http://www.ncbi.nlm.nih.gov/pubmed/14998885
http://doi.org/10.1016/S0140-6736(08)60489-4
http://doi.org/10.1038/npp.2008.150
http://doi.org/10.1371/journal.pone.0166154
http://doi.org/10.1016/j.tree.2014.05.004
http://doi.org/10.1016/j.neuron.2016.12.041
http://doi.org/10.1038/nmeth.2936
http://doi.org/10.1371/journal.pbio.3000546
http://doi.org/10.1088/1741-2552/ab0474
http://doi.org/10.1371/journal.pone.0136487
http://doi.org/10.1109/TPAMI.2019.2929257


Appl. Sci. 2022, 12, 471 12 of 12

18. Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation
of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [CrossRef]

19. Fitzsimmons, N.A.; Lebedev, M.A.; Peikon, I.D.; Nicolelis, M.A. Extracting kinematic parameters for monkey bipedal walking
from cortical neuronal ensemble activity. Front Integr. Neurosci. 2009, 3, 3. [CrossRef]

20. Bala, P.C.; Eisenreich, B.R.; Yoo, S.B.M.; Hayden, B.Y.; Park, H.S.; Zimmermann, J. Automated markerless pose estimation in
freely moving macaques with OpenMonkeyStudio. Nat. Commun. 2020, 11, 4560. [CrossRef]

21. Mathis, M.W.; Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol.
2020, 60, 1–11. [CrossRef]

22. Graving, J.M.; Chae, D.; Naik, H.; Li, L.; Koger, B.; Costelloe, B.R.; Couzin, I.D. DeepPoseKit, a software toolkit for fast and robust
animal pose estimation using deep learning. Elife 2019, 8, e47994. [CrossRef]

23. Gunel, S.; Rhodin, H.; Morales, D.; Campagnolo, J.; Ramdya, P.; Fua, P. DeepFly3D, a deep learning-based approach for 3D limb
and appendage tracking in tethered, adult Drosophila. Elife 2019, 8, e48571. [CrossRef]

24. Libey, T.; Fetz, E.E. Open-Source, Low Cost, Free-Behavior Monitoring, and Reward System for Neuroscience Research in
Non-human Primates. Front Neurosci. 2017, 11, 265. [CrossRef]

25. Wang, Z.; Mirbozorgi, S.A.; Ghovanloo, M. Towards a kinect-based behavior recognition and analysis system for small animals.
In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015;
pp. 1–4. [CrossRef]

26. Foster, J.D.; Nuyujukian, P.; Freifeld, O.; Gao, H.; Walker, R.; Ryu, S.I.; Meng, T.H.; Murmann, B.; Black, M.J.; Shenoy, K.V. A
freely-moving monkey treadmill model. J. Neural. Eng. 2014, 11, 046020. [CrossRef]

27. Sellers, W.I.; Hirasaki, E. Markerless 3D motion capture for animal locomotion studies. Biol. Open 2014, 3, 656–668. [CrossRef]
28. Emborg, M.E. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J. 2017, 58, 190–201. [CrossRef]
29. Kim, K.; Jeon, H.A.; Seo, J.; Park, J.; Won, J.; Yeo, H.G.; Jeon, C.Y.; Huh, J.W.; Kim, Y.H.; Hong, Y.; et al. Evaluation of cognitive

function in adult rhesus monkeys using the finger maze test. Appl. Anim. Behav. Sci. 2020, 224, 104945. [CrossRef]

http://doi.org/10.1038/s41593-018-0209-y
http://doi.org/10.3389/neuro.07.003.2009
http://doi.org/10.1038/s41467-020-18441-5
http://doi.org/10.1016/j.conb.2019.10.008
http://doi.org/10.7554/eLife.47994
http://doi.org/10.7554/eLife.48571
http://doi.org/10.3389/fnins.2017.00265
http://doi.org/10.1109/BioCAS.2015.7348456
http://doi.org/10.1088/1741-2560/11/4/046020
http://doi.org/10.1242/bio.20148086
http://doi.org/10.1093/ilar/ilx021
http://doi.org/10.1016/j.applanim.2020.104945

	Introduction 
	Materials and Methods 
	Development of an Automated Behavioral Pattern Analysis Program 
	Behavior Pattern Experiment and Analysis 
	Manual Analysis Using Observer XT 

	Results 
	Measurement Results of Observer #1 and the Automated Program 
	Measurement Results of Observer #2 and the Automated Program 
	Statistical Analysis 

	Discussion 
	References

