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Abstract: We propose a new rotation invariant correlator using dimensionality reduction. A diffrac-
tive phase element is used to focus image data into a line which serves as input for a conventional
correlator. The diffractive element sums information over each radius of the scene image and projects
the result onto one point of a line located at a certain distance behind the image. The method is
flexible, to a large extent, and might include parallel pattern recognition and classification as well
as further geometrical invariance. Although the new technique is inspired from circular harmonic
decomposition, it does not suffer from energy loss. A theoretical analysis, as well as examples,
are given.

Keywords: rotation invariance; parallel information processing

1. Introduction

Many methods have been used to achieve rotation invariant pattern recognition [1].
Recent methods are based on deep learning techniques [2,3]. The wedge-ring detector
method is one approach that also exhibits scale invariance properties [4,5]. An analysis of
the different techniques for recognizing and detecting objects under extreme scale variations
were presented by [6]. One of the frequently used filters is the circular harmonic filter
(CHF). The correlation using such a filter is invariant under the rotation of the scene image
but suffers from the defects that result from only one circular harmonic component (CHC)
being used. As a result, the correlation peak is not sufficiently sharp.

To relax such a limitation, various methods have been proposed. These attempts
are still the object of active research. However, one should emphasize that the critical
parameters of optical efficiency, the sharpness of correlation peaks, the peak-to-sidelobe
ratios, resistance to noise, and circular harmonic techniques yield as good or better results
than competitive methods. This paper presents a rotation invariant approach based on
the optical lossless implementation of one circular harmonic component by means of a
diffractive optical element. Both the scene image and reference are subjected to a projection
onto one CHC. For clarity, we will use the zero-order CHC, but other CHCs can be used
as well.

The diffractive element sums information over each radius of the scene image and
projects the result onto one point of a line located at a certain distance behind the image.
The method is, to a large extent, flexible and might include parallel pattern recognition
and classification as well as further geometrical invariance. The database of references (of
fingerprints of subscribers in a bank, for example) is compressed.

The contributions of this paper may be summarized as follows.

• Compression is performed in a way that the rotated images give the same com-
pressed data.
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• In contrast to CHC filters, rotation invariance is ensured without any significant
energy loss.

• By maintaining rotation invariance, the image compression technique allows parallel
data processing.

• The proposed method might be used to further add geometrical invariance, such as
scale invariance, given that during the compressing task a scale factor can be easily
included by means of the diffractive compressing element.

The remainder of the paper is organized as follows. Section 2 provides an overview
on related works. Section 3 presents a mathematical analysis of the issue of rotation
invariance. Section 4 proposes a possible optical implementation. An extension of the
proposed architecture is given in Section 5. Results are presented in Section 6. Finally,
Section 7 presents concluding remarks.

2. Related Works

Full rotation invariance can be ensured by using a matched filter built from a CHC of
the reference [7]. In other words, the reference is replaced by one of its CHCs. To improve
the peak sharpness and/or the discrimination ability of the classical CHF, several designs
based on CHCs, such as the CH covariance filter [8], the phase-only CHF [9], and the
phase-derived CHF [9] were proposed. These attempts of improvement, however, were
possible at the cost of a decrease in the signal-to-noise ratio (SNR). It is fair to say that
the oldest design, the classical CHF, yields the highest SNR among the CHF family. In
addition, the classical CHF maximizes the SNR while maintaining the in-plane rotation
invariance [10].

The SNR decreases as the order of the CHC is increased. The zero-order CHF is
the best choice for pattern recognition under noisy conditions [10]. Unfortunately, low-
order CHFs have a tendency to produce broad correlation peaks. This limitation can
be overcome, and we can achieve, on the one hand, an important noise resistance, and
on the other hand, sharp correlation peaks in addition to high optical efficiency. The
technique consists of projecting both the scene image and the reference onto the zero-order
CHC. The discrimination ability remains unchanged. The low discrimination ability of
the CHFs is a direct consequence of image compression. The proposed approach can
be combined with various design techniques to improve this criterion. However, this
is not the objective of this work. The resulting image compression into one dimension
can be extended to include parallel image processing and further geometrical invariance,
as well as by using the second spatial dimension. An optical setup, including a bank of
one-dimensional patterns, is proposed for parallel classification, where a dataset of scene
images is entered simultaneously.

3. Analysis

A circular harmonic filter is one component from the circular harmonic expansion [7]:

f (r, θ) =
+∞

∑
m=−∞

fm(r)exp(imθ) (1)

with

fm(r) =
2π∫
0

f (r, θ)exp(−imθ)dθ (2)

The zero-order CHC is merely the sum of information over each ring with radius r:

f̃ (r) = f0(r) =
2π∫
0

f (r, θ)dθ (3)
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Rotated images have the same zero-order CHC. When we apply the correlation opera-
tor between the zero-order CHCs of the image g and the reference f, a correlation peak is
obtained if the input scene image is a rotated version of the reference, including rotation
with zero degrees. We then produce a new input scene image g and a new reference f̃ ,
which are the zero-order CHCs of g and f. The expected correlation peak must be sharp
because, in contrast to the conventional method, we do not select one component among
an infinite expansion. Apart from the fact that both the input scene image and reference
are substituted by two derived images, conventional correlation is applied which should
give a sharp correlation peak. Moreover, various correlation methods can be applied in
conjunction with this image compression.

What is really performed is the following operation, g̃⊗ f̃ , where g and f is the original
input scene image and reference, and⊗ denotes the correlation operator. The new reference
f̃ is calculated numerically, whereas g̃ is provided optically. The expected correlation peak
arises on the optical axis because both g and f are projected onto the zero-order CHC. In
practice, this peak is likely to be hidden by the zero order of diffraction, a useless bright
spot on the optical axis. This diffraction order generally results from uncertainty in the
fabrication process. To overcome this serious problem, we can laterally shift f̃ by a certain
amount (x0, y0). The correlation peak is therefore laterally shifted by the same distance
(x0, y0), and the detector can be fixed in the same place for all, because its position is known
a priori.

In the most general case, the zero-order CHC of the reference is numerically calculated.
The lateral shift is also integrated in the numerical procedure. The main difficulty lies in
the optical implementation of the projection of the scene image onto its zero-order CHC.

It is worth noting that image data looks squeezed or collapsed into a line that contains
all the information of the image scene. This is different from the conventional concept of
image compression. This is a result of the fact that rotation invariance is combined with
image compression.

4. Optical Implementation

Inspired from Equations (1)–(3), we intend to produce the ring-to-point transformation
illustrated in Figure 1 (do not consider dashed lines). The objective is to optically implement
the integral of Equation (3). All information over each ring of the radius r is summed and
the result is projected onto a point shifted by r from the optical axis in a response plane
located at a distance z behind the object. The result of the transformation is, thus, a line
segment which can be freely oriented in the response plane. For a given radius r, the
rays covering the optical paths s(r,θ) must arrive to the collecting point with the same
phase, that is, the phase corresponding to s(r,0). To satisfy this constraint, we have to
introduce an additional phase distribution p(r,θ) in the plane of the object fulfilling the
following condition:

p(r, θ) +
2π

λ
s(r, θ) = p(r, 0) +

2π

λ
s(r, 0) + 2kπ (4)

where k is an integer and s(r,0) = z.
By choosing, for instance p(r,0) = 0, the required phase distribution is expressed as

follows (see Figure 1):

p(r, θ) =
2π

λ
z− 2π

λ

√
z2 + 4r2sin2

(
θ

2

)
+ 2kπ (5)
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Figure 1. Rotation invariant image compression: Ring-to-point transformation.

In the framework of the paraxial assumption, we can use the following approximation
(
√

1 + x2 ∼= 1 + x
2 if x� 1. This approximation is used in the Fresnel transform [11,12]):√

1 +
4r2

z2 sin2
(

θ

2

)
∼= 1 +

2r2

z2 sin2
(

θ

2

)
and the required transmittance t(r,θ) is obtained (for k = 0):

t(r, θ) = exp(ip(r, θ)) = exp
(
−4iπ

r2

λz
sin2

(
θ

2

))
(6)

We notice that if the implementation of the m-order CHC is required, then we need
only to add the term exp(-i mθ) in the expression (6). For instance, one can use the second-
order CHF (m = 2) which is often a good compromise for both an acceptable SNR and the
peak sharpness of the correlation peak [10]. It is also possible to combine several CHCs.
This goes, however, beyond the scope of this work.

We need a diffractive phase element with the transmittance expressed by relation (6),
which we refer to as the “diffractive compressing element (DCE)”. This Fresnel diffractive
element has a continuous phase profile (kinoform) [13]. Figure 2 shows a quantized version
of such an element, where only four phase levels are used. We projected the phase profile
onto the closest phase level in the set {0,π/2, π, 3π/2}. We see in the neighborhood of
the bottom half of the vertical axis that the profile is similar to that of a one-dimensional
Fresnel lens. Over each ring r of the diffractive element, the phase corresponds to a two-
dimensional off-axis Fresnel lens, where the off-axis translation corresponds to r. In order
to decrease the resolution needed by the Fresnel diffractive element, we can put a spherical
lens beside the diffractive element [14,15]. In fact, the distribution of DCE becomes the
difference between Figure 2 and the distribution of the inserted lens. It is worth noting
that the phase pattern becomes more and more dense in the boundary areas. The smallest
feature should be large compared to the wavelength (let us say, more than five times) so
that we could remain in the scope of scalar diffraction.
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Figure 2. Diffractive compressing element (DCE) with four phase levels.

Figure 3 shows the setup of the correlator providing g̃⊗ f̃ . The implementation of the
projection of the input scene image is provided by a diffractive phase element placed just
behind the input image. The result of the ring-to-point projection is observed at a distance
z in the plane PC. The Fourier plane PF presents, as usual, the filter plane. Using the same
diffractive phase element, the filter can be optically implemented.

Figure 3. Setup of the correlator using a diffractive phase element for image compression.
DCE: diffractive compressing element, g: input image.

The DCE is a Fresnel diffractive phase element. It must have a resolution at least as
high as the resolution of the input image. The smallest feature of the input image must
correspond to at least one phase value of the DCE so that the projection into the line
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segment is correctly performed (Figure 1). To obtain better results, the resolution of the
DCE must be higher than that of the input image.

5. Extensions of the Architecture
5.1. Parallel Pattern Recognition

Scale considerations can be taken into account. For instance, we can sum information
over each ring of radius r and project the result in a point shifted by the distance α r (instead
of r) from the optical axis, yielding:

t(r, θ) = exp
(
−iπ

r2

λz

(
1 + α2 − 2α cos(θ)

))
(7)

Here we used the Law of Cosines, also known as Al-Kashi’s theorem (see dashed lines
in Figure 1). This technique can be used, for instance, to adapt the compressed data to the
features of the spatial light modulator placed in the Fourier plane.

Owing to the image information compression, it is also possible to provide parallel
pattern recognition. For each input scene image gm we add in the response plane of the
diffractive phase element and in the plane of the compressed data PC, a linear phase
distribution with a certain slope exp

(
−i2π xmr

λ fl

)
; fl is the focal length of the lens used for

the correlation. The Fourier transform of the resulting line segment, containing compressed
image data, is laterally shifted by the amount xm in the filter (Fourier) plane PF. The
different slopes can be generated by an array of mini prisms placed in the plane PC. An
alternative consists of integrating the slopes in the diffractive element. Therefore, for each
input image gm, we need a diffractive phase element with the transmittance:

tm(r, θ) = exp
(
−iπ

r
λ

(
r
z

(
1 + α2 − 2α cos(θ)

)
+

2xm

fl

))
(8)

We need a bank of references where each elementary reference fm is compared to one
input image gm (Figure 4a). The two-dimensional input images are arranged in a matrix
form. After compression by means of the diffractive compressing element DCE, we obtain,
in the plane PC, an array of line segments g̃m (m=1, . . . , M). In the Fourier plane, each
one-dimensional structure G̃m, i.e., the Fourier transform of the compressed image g̃m, is
multiplied by the conjugate of the Fourier transform F̃∗m and of the compressed pattern f̃m
of a two-dimensional reference fm. The Fourier transform, as well as the compression of
each reference fm, are performed numerically.

Instead of the output lens L2, we can use the subsystem of Figure 4b, which provides a
one-dimensional Fourier transform, noted by FTy. The focal length of the lens placed in
the middle of the subsystem of Figure 4b is twice as big as the focal length fl of the two
other identical lenses. The incident wavefront is imaged with respect to one dimension
and is Fourier-transformed with respect to the other. We note that the various input scene
images can be illuminated by spatially incoherent monochromatic sources, such as a matrix
of vertical-cavity surface-emitting lasers (VCSELs). The mutual spatial coherence of the
sources is not necessary because the correlation products are performed independently.

Using the same technique of Figure 4, the scale and rotation invariance can be com-
bined. In this case, several replicas of the input image g are entered simultaneously, and for
each replica, we attribute a scale factor αm and a translation factor xm. Therefore, for each
replica, we need a diffractive phase element:

tm(r, θ) = exp
(
−iπ

r
λ

(
r
z

(
1 + α2

m − 2αm cos(θ)
)
+

2xm

fl

))
(9)
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Figure 4. Parallel pattern recognition using a bank of one-dimensional patterns (a) setup, (b) subsys-
tem which provides a one-dimensional Fourier transform according to the y-axis. The focal length
of the lens placed in the middle of the subsystem is twice as big as the focal length of the two other
identical lenses.

The filter bank, which is the rotation invariant, possesses a two-dimensional structure
(Figure 4) where each line segment F̃∗m, a conjugate of the Fourier transform of f̃m, corre-
sponds to a certain scale αm. The position of the correlation peak is determined by the
position of g̃m and that of f̃m.

The shift invariance is added to the system by sampling the intensity of the Fourier
transforms of the input objects gm, for instance, in combination with a liquid crystal light
valve [16]. In other words, what will be calculated is the correlation product of the CHCs
of |Gm(u, v)|2 and |Fm(u, v)|2 instead of the CHCs of gm(x,y) and fm(x,y).
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An alternative for providing scale and rotation invariance consists of entering the input
scene image (which is not replicated) and changing the transmittance of the diffractive
compressing element. This element must possess the sum of all transmittances (9):

t(r, θ) =
1√
M

M

∑
m=1

(
−iπ

r
λ

(
r
z

(
1 + α2

m − 2αm cos(θ)
)
+

2xm

fl

))
(10)

where M is the number of the required scale factors.
In general, the distribution of Equation (10) is not a phase distribution. A projection

onto the phase distribution set must be undertaken and the lateral shifts xm must be
correspondingly optimized.

5.2. Parallel Pattern Classification

According to Figure 4, each input image is correlated with one filter of the bank.
The setup can be modified so as to perform parallel classifications of the input images.
Each input image gm must be compared to all filters fm of the reference bank. For this
purpose, the Fourier transform of each one-dimensional structure g̃m must be replicated
in the filter plane. In Figure 5, this operation is performed by a one-dimensional Fourier
transform noted by FTx. Each one-dimensional distribution G̃m, extended over the y-axis,
is Fourier-transformed with respect to the x-axis. The distribution is then replicated to form
a two-dimensional structure.

Figure 5. Parallel image classification using a bank of one-dimensional patterns, TFx: one-dimensional
Fourier transform with respect to the x-axis.
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After compressing the input images by means of a multi-faceted diffractive com-
pressing element (DCE), a two-dimensional Fourier transform is performed by means of a
spherical lens L1 (Figure 5). Then, the resulting spectra are replicated by a subsystem similar
to that of Figure 4. Each replica of one spectrum is multiplied by one one-dimensional
pattern from the filter bank F̃∗1 to F̃∗N . The correlation product, observed in the focal plane
of the spherical lens L2, contains the Fourier transforms of all the products: G̃1 F̃∗1 , G̃1 F̃∗2 ,
. . . , G̃M F̃∗N .

The setup of Figure 5 allows for the parallel classification of M input images gm, where
a bank of N references, fm, is used.

Rotation invariance is ensured, and scale invariance can be added by enlarging the
reference bank. To add shift invariance, the intensity distribution of the Fourier transforms
of the objects is taken as the input of the classification system.

6. Results

We focus our attention on rotation invariance. The input scene images are presented
in Figure 6A. The reference image is shown in Figure 6A-a. Figure 6A-b,A-c are slightly
laterally shifted and rotated versions of the reference image, whereas Figure 6A-d is a false
image. The energy is normalized for the four images. To test the approach under noisy
conditions, significant noise is voluntarily added to the input image. The noise energy is
four times bigger than the energy of the useful signal. We designed a binary phase-only
filter by projecting the phase profile onto the closest phase level among {0, π}. These kinds
of filters can be implemented by a spatial light modulator if a programmable system for
pattern recognition is required.

Figure 6. (A) Input images (a) reference (b) and (c) rotated version of the correct image (d) false image
(B) Response of the correlator for the four images in (A).

The simulation results on Matlab show that rotation invariance is ensured. Figure 6B
also shows a high optical efficiency and a good correlation peak sharpness. The optical effi-
ciency is defined as the amount of input light that will be detected for the determination of
the correlation function. It is quantitatively measured by the Horner efficiency [17,18]. The
energies of the peaks associated with the rotated images are less than that corresponding to
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the reference. The approach is sensitive to lateral shift and gives drastic results if the lateral
shift is in the range of the image size. Thus, it is necessary, for instance, to use the Fourier
transform of the input image to ensure shift invariance.

The diffractive compressing element was quantized onto four phase levels: {0, π/2,
π, 3π/2}. Quantization has been performed by a simple projection onto the closest phase
level. Because of quantization we noticed a non-negligible energy loss and it is worth using
optimization methods [15].

7. Conclusions

The method described here is based on dimensionality reduction by means of image
compression. This compression is performed in a way that the rotated images give the same
compressed data. In practice, this operation is implemented by a diffractive phase element
referred to as a diffractive compressing element. Diffractive phase elements become more
and more attractive, mainly because of the technological progress which has especially
influenced the fabrication of high resolution diffractive optical elements [19,20]. In our case,
we can use a high resolution DCE to improve the discrimination ability. Indeed, the input
image is divided in rings with smaller widths, and therefore less compression is performed.

In contrast to CHC filters, rotation invariance is ensured without any significant
energy loss. The method makes the optical implementation of the filter possible as well.
By maintaining rotation invariance, the image compression technique allows parallel
data processing. This parallelism might be used for simultaneous pattern classification.
Moreover, it might be used to further add geometrical invariance, such as scale invariance,
given that during the compressing task a scale factor can be easily included by means of
the diffractive compressing element. For technological reasons, this scale factor can be
also used to fit the practical features of the filter, especially when spatial light modulators
are used.

However, because of image compression, we obtain a relatively low discrimination
ability in practice. Different images might have a similar zero-order circular harmonic
component. An alternative might be the extension of the approach into the use of the
Fresnel transform-based correlator [21].
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