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Abstract: The response of steel moment frames is estimated by first considering that the mass matrix
is the concentrated type (ML) and then consistent type (MC). The effect of considering more than one
element per beam is also evaluated. Low-, mid- and high-rise frames, modeled as complex-2D-MDOF
systems, are used in the numerical study. Results indicate that if ML is used, depending upon the
response parameter under consideration, the structural model, the seismic intensity and the struc-
tural location, the response can be significantly overestimated, precisely calculated, or significantly
underestimated. Axial loads at columns, on an average basis, are significantly overestimated (up
to 60%), while lateral drifts and flexural moments at beams are precisely calculated. Inter-story
shears and flexural moments at columns, on average, are underestimated by up to 15% and 35%,
respectively; however, underestimations of up to 60% can be seen for some individual strong motions.
Similarly, if just one element per beam is used in the structural modeling, inter-story shears and
axial loads on columns are overestimated, on average, by up to 21% and 95%, respectively, while the
lateral drifts are precisely calculated. Flexural moments at columns and beams can be considerably
underestimated (on average up to 14% and 35%, respectively), but underestimations larger than
50% can be seen for some individual cases. Hence, there is no error in terms of lateral drifts if ML

or one element per beam is used, but significant errors can be introduced in the design due to the
overestimation and underestimation of the design forces. It is strongly suggested to use MC and at
least two elements per beam in the structural modeling.

Keywords: steel moment frames; concentrated mass matrix; consistent mass matrix;
inelastic seismic behavior; multi-degree of freedom systems

1. Introduction

A considerable number of problems related to building analysis and design proce-
dures have been studied for many years. For steel building structures subjected to strong
earthquakes, modeling the stiffness (K), damping (C), and stiffness (K) matrices has not
been the exception. The appropriate modeling of such matrices is a crucial step toward
an accurate estimation of the seismic response. One of the most widely used structural
systems in steel buildings is that based on moment-resisting frames (MRFs), where the
prismatic framed-type members are represented by beam and beam-column members. It is
essential to properly represent the aforementioned matrices, at both local and global levels,
for this structural system.

The most common and simplest procedure to define the inertial properties of a building
is to consider the mass as a concentrated type at the translational degrees of freedoms
(DOFs) defined in the structure; it will result in a matrix (ML) with non-zero numbers in
the diagonal corresponding to such DOFs. It is possible, however, to derive a kinematically
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equivalent mass matrix called the consistent mass matrix (MC) so inertia forces are also
obtained for the rotational DOFs. It will give a matrix with values out of the diagonal, with
the same band wide as the K matrix. Because of the better representation of the rotational
inertia, it is expected that MC will give more accurate results than ML. It is also important to
mention that in seismic analyses of steel MRFs, the M and K matrices are usually formulated
by considering only one element to represent each structural member [1–3], which may
introduce inaccuracy in the results.

Energy dissipation should also be properly estimated to correctly simulate the struc-
tural behavior. Since it can be generated from many sources, it is more important for
steel structures. Due to its inherent complexity, this parameter is considered in building
codes [4–6] by a linear viscous damper with equivalent damping of 5% of the critical
(ζ = 5%), implying in general that the variation with the type of material or with the type
of source is not explicitly identified. A significant number of investigations exist where
energy dissipation produced by inelastic behavior of the material is represented by using a
linear damper [7–11].

A more reasonable approach adopted in steel structures consists in modeling the
dissipation of energy for small or moderated deformations (occurring within the elastic
limit and termed as viscous energy) by a viscous damper, while that occurring at large
deformations (termed as plastic energy) is considered by the constitutive law of the material.
The traditional approach to consider the viscous energy has been through the Rayleigh
Damping, which consists of expressing the matrix C as a combination of the M and K
matrices. In this regard, two special cases of K need to be identified: the elastic (or initial)
stiffness matrix (Ko) corresponding to small or moderate levels of deformations and the
tangent stiffness matrix (Kt) corresponding to inelastic behavior.

In the analysis of MRFs under the action of large earthquakes, particular aspects as
the second-order effects and the dissipation of energy at plastic hinges need to be captured
in Kt. These issues are broadly discussed in the literature [2,12], particularly for prismatic
members with straight axes, such as those used in the models of this study.

The effect of modeling the three abovementioned fundamental matrices has been
broadly studied; however, as further discussed below, many problems require additional
investigation. The primary objective of this research is to evaluate the responses of steel
MRFs, considering different alternatives for the M matrix, as well as to evaluate the accuracy
of considering one element to represent each beam.

2. Literature Review

A considerable number of research projects has been conducted to evaluate the effect
of modeling of the M and C matrices on the response of structures [13–16]. Among the
first works is that of Archer [17], who studied the effect of a consistent mass matrix for
beams. Rea et al. [18] estimated the damping existing in some prototypes of special
steel frame modes, which consisted of a platform supported by columns. Wilson and
Penzien [19] developed two methods to numerically quantify the C matrix. Crisp [20]
made a comparative analysis for different damping models to quantify their effect on the
inelastic seismic response of reinforced concrete frames. Stavrinidis et al. [21], by using
the Finite Element Method, proposed an improved version of the consistent mass matrix
in terms of computational time for 1D and 2D members. Leger and Dussault [22] studied
the influence of the mathematical representation of viscous damping on the dissipation of
energy for structures modeled as MDOF systems. Hansson and Sandberg [23] presented
a procedure to construct the M matrix, for the diagonal and the non-diagonal cases, by
expressing it through a variable parameter. Gulkan and Alemdar [24] derived shape
functions for segments of beams over a generalized foundation, which can be used to
get exact equations to calculate the elements of the K and M matrices. Michaltsos and
Konstantakopoulos [25], for the special case of a thin-walled tower, considered the effect
of the rotational inertia of the structural members by adding additional concentrated
masses. Kowalsky and Dwairi [26] analyzed the precision of using the equivalent viscous
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damper while used in the direct displacement-based design. Archer and Whalen [27]
presented a procedure to diagonalize the M matrix considering translational and rotational
DOFs. Val and Segal [28] calculated the responses of structures modeled as SDOF systems
with viscous damping and compared them with those of hysteretic damping. Wu [29],
by using linear elements with constant Jacobians, presented an approximation of the
M matrix. Dwairi et al. [30] found considerable errors while applying the equivalent
linearization of a nonlinear system for the case of the direct displacement-based design.
Sarigul and Boyaci [31] studied the lateral displacements of beams with axial moving
beams, having several concentrated masses. Zareian and Medina [32], in order to eliminate
the problems associated to unrealistic large damping forces derived from the Rayleigh
damping model, proposed an approach that consists in modeling the structural elements
by a combination of one elastic element having damping proportional to the K matrix, and
two springs at the ends with damping no proportional to K. Rodrigues et al. [33] proposed
simplified expressions for viscous damping in R/C columns subjected to biaxial bending.
Jehel et al. [34] compared the results of using the Ko stiffness matrix in the C matrix and
compared the results with those of using the Kt. Analytical tools were provided to control
damping ratios throughout inelastic analysis. Zuo et al. [35] identified the errors derived
from the use of the ML matrix and proposed a procedure to obtain ML matrices for beam
members containing both types of DOFs. Chai and Kowalsky [36] found an increment
in the displacements of structures when exponential nonviscous damping was used in
comparison with that of classical viscous damping. Deshpande et al. [37], for frequencies,
estimated the responses of cantilever beams using the ML matrix and compared such results
with those of the MC matrix. Puthanpurayil et al. [38] proposed a procedure to formulate
the C matrix at an individual elemental level; to cases were considered to be applied in
inelastic analysis. Ozel et al. [3] presented a procedure for steel frames, based on the Finite
Element Method, to derive K and M matrices considering (a) the influence of deformations
produced by shear forces, (b) rotational inertia of structural members and (c) the stiffness
and dissipation of energy of semi-rigid connections. Pradhan and Modak [39] investigated
damping matrix identification of structures via finite element model and normal frequency
response functions. They successfully demonstrated their identification techniques using
experimental studies. Carr et al. [40] described many inconveniences of the Rayleigh model
when used in inelastic analyses and recommended a damping model which resembles the
damping that is expected in nonlinear dynamic analysis. Zand and Akbari [41] analyzed
the influence of several viscous damping models on the nonlinear response of concentrically
braced and moment-resisting steel frames. Experimental and numerical studies to evaluate
the natural frequencies of bones for supportive equipment used while walking and running
conditions were conducted by Kshirsagar et al. [42].

The aforementioned investigations represent a big step toward the understanding of
the effects of modeling the M and C matrices on the seismic response of buildings. However,
many related aspects still need to be studied. There are indeed some studies where the
structural responses are obtained by considering the ML matrix and compared with those
obtained by using the MC matrix. However, it has not been done for the case steel buildings
of different heights modeled by MDOF systems, for different local and global response
parameters. The accuracy of calculating the response considering one, two, and three
elements per member has not been investigated either. Some of these problems are studied
in this research.

3. Objectives

In this research, the nonlinear responses of plane steel MRFs subjected to earthquakes,
modeled as complex MDOF systems, are determined to study some problems related to
the idealization of the M matrix. Low-, mid- and high-rise frames are analyzed for a range
of earthquake excitations. The responses are expressed in terms of several parameters,
namely, lateral drifts, inter-story shears, and axial loads and flexural moments at beams
and columns. The particular issues addressed here are:
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(a) Calculate the local and global responses of the used models by assuming that the
mass matrix is concentrated type (ML) and compare the results with those of considering
such a matrix as consistent type (MC).

(b) Study the effect on the response of considering one, two, or three elements per
beam in the structure.

4. Methodology and Procedure

To meet the objectives abovementioned, the responses of three steel buildings are
estimated by modeling them, as stated earlier, by complex 2D MDOF frames. Therefore,
higher mode contributions are explicitly considered. Such models are subjected to the
action of fifteen seismic records corresponding to the seismic hazard of the model location
zone. The nonlinear analyses are performed with the Ruaumoko Software [43] where
the Newmark Average Acceleration Method of Newmark with a time interval (∆t) of
0.005 s. is used. Large displacement effects are also considered in the dynamic analysis.
The results of the ML matrix are compared to those of MC. The Rayleigh damping model
is used, where the Kt matrix and 3% of viscous damping (ζ = 3%) are assumed in the
construction of the damping matrix. This amount of damping is fixed in the first and second
modes for the smaller model; such modes are 1 and 3, and 1 and 6 for the mid and high
models, respectively.

Damping represents a very controversial issue within the seismic analysis of buildings.
There is some available information regarding the evaluation of the damping ratio. From
earthquake-vibration tests of buildings deformed below yield point [44] it was found that
the damping ratio ranged from 2.9% to 7.0% for the first mode while the range of variation
goes from 1.0% to 5.9% for the second mode. In the same reference, taking into account
that other sources of energy dissipation are considered in the CR matrix, conservative
values of 2–3% and 5–7% are suggested for stress levels of half of yield, and yield point,
respectively. In another research [45] it was found that for small amplitudes of vibration
the damping ratio for the fundamental mode of vertical vibrations approximately varies
from 2% to 5% for R/C buildings, and from 0.5% to 2% for the steel buildings. Based on
this information and on the fact that many seismic codes suggest using a damping ratio of
5% for all sources of energy dissipation, including that of inelastic behavior, a value of 3%
seems to be reasonable and conservative for steel buildings. It is worth to mention that in
many research projects, whose results have been published in major journals, a value of 3%
is assumed.

Beam and beam-column elements were used to represent the horizontal and vertical
horizontal members of the models, respectively. One, two and three structural elements are
used to represent the beams. Three DOFs are considered at each node. The panel zones
are assumed to be rigid. Bilinear hysteretic behavior with 3% post-yielding stiffness is
considered. The combined action of axial loads and flexural moments is taken into account
by the mathematical expression suggested by Chen and Atsuta [46].

4.1. Structural Models

Three standard 3-, 9-, and 20-story office buildings were selected for the study. These
buildings were designed as part of the SAC Steel Project [47] and were assumed to be
situated on stiff soil of a high seismic zone. Bi-dimensional (2D) representations of these
buildings, which consist of the perimeter moment resisting frames (PMRF), are specifically
used as the models of the study. The low-, mid- and high-rise models, which are defined
as Models 1, 2 and 3, have fundamental periods of 1.03 s, 2.38 s and 4.07 s, respectively.
Some details of the models can be seen in Figures 1–3. The structural sections of the vertical
and horizontal members can be seen in Tables 1 and 2; except for the exterior columns
of Model 3, all sections consisted of wide-flange shapes (W-sections). The designation of
the structural sections is following the AISC manual [48]. For example, for a W section,
the term “14 × 257” corresponds to a W-shape that is nominally 14 in deep and weighs
257 lb/ft. All dimensions of the box sections of Model 3 are in inches. As stated earlier, each
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building is modeled by a plane MDOF system, where each beam-column is represented
by one element. On the other hand, each beam (girder) is represented initially by one
element, and then by two and three elements, having nodes at the middle and third of the
spans, respectively.
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Table 1. Wide-flange sections (W-shapes) used in Models 1 and 2.

Model Story
Columns

Girders
Exterior Interior

1

1 14 × 257 14 × 311 33 × 118

2 14 × 257 14 × 311 30 × 116

Roof 14 × 257 14 × 311 24 × 68

2

Basement 14 × 370 14 × 500 36 × 160

1 14 × 370 14 × 500 36 × 160

2 14 × 370 14 × 500 36 × 160

3 14 × 370 14 × 455 36 × 135

4 14 × 370 14 × 455 36 × 135

5 14 × 283 14 × 370 36 × 135

6 14 × 283 14 × 370 36 × 135

7 14 × 257 14 × 283 30 × 99

8 14 × 257 14 × 283 27 × 84

Roof 14 × 233 14 × 257 24 × 68

Table 2. Wide-flange and box sections used in Model 3.

Story
Columns

Girders
Exterior Interior

Basement-1 15 × 15 × 2.00 24 × 335 14 × 22

Basement-2 15 × 15 × 2.00 24 × 335 30 × 99

1 15 × 15 × 2.00 24 × 335 30 × 99

2 15 × 15 × 2.00 24 × 335 30 × 99

3 15 × 15 × 1.25 24 × 335 30 × 99

4 15 × 15 × 1.25 24 × 335 30 × 99

5 15 × 15 × 1.25 24 × 335 30 × 108

6 15 × 15 × 1.00 24 × 229 30 × 108

7 15 × 15 × 1.00 24 × 229 30 × 108

8 15 × 15 × 1.00 24 × 229 30 × 108

9 15 × 15 × 1.00 24 × 229 30 × 108

10 15 × 15 × 1.00 24 × 229 30 × 108

11 15 × 15 × 1.00 24 × 229 30 × 99

12 15 × 15 × 1.00 24 × 192 30 × 99

13 15 × 15 × 1.00 24 × 192 30 × 99

14 15 × 15 × 1.00 24 × 192 30 × 99

15 15 × 15 × 0.75 24 × 131 30 × 99

16 15 × 15 × 0.75 24 × 131 30 × 99

17 15 × 15 × 0.75 24 × 131 27 × 84

18 15 × 15 × 0.75 24 × 117 27 × 84

19 15 × 15 × 0.75 24 × 117 24 × 62

20/Roof 15 × 15 × 0.50 24 × 84 21 × 50
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4.2. Earthquake Loading

The seismic records used in this investigation were obtained from the data set of the
National Strong Motion Program of the United States Geological Survey (USGS). Fifteen
records were selected in such a way that their spectral shape, tectonic regime, magnitude,
and fault distance are similar to those controlling the seismic hazard of the area where
the buildings are located. It is worth mentioning that the ASCE 7-16 [49] recommends a
minimum of eleven pairs of ground motions to take into account the inherent record-to-
record variability in the structural response. The main characteristics of such records can
be seen in Table 3. It can also be observed from the table that the predominant periods of
the strong motions records go from 0.13 to 0.72 s. The structural models are subjected to
the simultaneous action of the horizontal seismic component (one at a time) of the records,
the vertical component, and the gravity loads.

Table 3. Strong motion records.

Event Mw R (km)
PGA (g) Period (s) PGV

(in/s)

N-S E-W N-S E-W N-S E-W

Imperial Valley, 1940 6.9 10 0.46 0.68 0.53 0.46 12 10

Imperial Valley, 1979 6.5 4.1 0.39 0.49 0.16 0.34 14 11

Landers, 1992 (g) 7.3 36 0.42 0.43 0.73 0.33 7 10

Kern, 1952 7.3 25 0.52 0.36 0.25 0.23 3 3

Loma Prieta, 1989 7 12.4 0.67 0.97 0.21 0.2 9 15

Northridge, 1994, Newhall 6.7 6.7 0.68 0.66 0.31 0.31 9 22

Northridge, 1994, Rinaldi 6.7 7.5 0.53 0.58 0.39 0.29 58 29

Northridge, 1994, Sylmar 6.7 6.4 0.57 0.82 0.31 0.36 36 35

North Palm Springs, 1986 6 6.7 1.02 0.99 0.17 0.21 8 22

Coyote Lake, 1979 5.7 8.8 0.59 0.33 0.15 0.21 8 5

Morgan Hill, 1984 6.2 15 0.32 0.55 0.18 0.16 7 8

Parkfield, 1966, Cholame 5W 6.1 3.7 0.78 0.63 0.37 0.3 4 4

Parkfield, 1966, Cholame 8W 6.1 8 0.69 0.79 0.17 0.21 3 3

North Palm Springs, 1986 6 9.6 0.52 0.38 0.13 0.21 11 26

Whittier, 1987 6 3.62 0.77 0.48 0.7 0.28 11 11

To obtain different levels of deformation, the ground motions are scaled. This is made
according to the geometric mean of spectral acceleration (Saavg) which is calculated as the
“average” of the pseudo-accelerations (Sa) over a range of periods. The range of periods to
calculate (Saavg) goes from 0.2 T1 to 1.6 T1, with constant increments of 0.01 s, where T1 is
the fundamental period of the model. The values of Saavg range from 0.2 g up to 1.4 g with
uniform increments of 0.2 g for Model 1, while for Model 2 such a range goes from 0.1 g up
to 0.8 g with constant increments of 0.1 g. For the case of Model 3, the range of variation of
Saavg goes from 0.05 g to 0.35 g with constant increments of 0.05 g. It is important to clarify
that the maximum values of Saavg were chosen in such a way that a similar magnitude of the
maximum inelastic deformation, were developed in the three models (drifts of about 3.5%).

4.3. M and C Matrices

In the analysis of a steel building structure, the mass matrix is commonly obtained
by assuming that the mass is concentrated at the nodes. Figure 4 shows the degrees of
freedom associated to translations and rotations of a prismatic member with straight axes
of a plane steel frame, while Equation (1) illustrates the corresponding mass matrix for an
individual element (MLE). In such an equation, m and L represent the mass and the member
length, respectively.



Appl. Sci. 2022, 12, 433 8 of 24

Appl. Sci. 2022, 11, x FOR PEER REVIEW 8 of 25 
 

Parkfield, 1966, Cholame 5W 6.1 3.7 0.78 0.63 0.37 0.3 4 4 
Parkfield, 1966, Cholame 8W 6.1 8 0.69 0.79 0.17 0.21 3 3 

North Palm Springs, 1986 6 9.6 0.52 0.38 0.13 0.21 11 26 
Whittier, 1987 6 3.62 0.77 0.48 0.7 0.28 11 11 

4.3. M and C matrices 
In the analysis of a steel building structure, the mass matrix is commonly obtained 

by assuming that the mass is concentrated at the nodes. Figure 4 shows the degrees of 
freedom associated to translations and rotations of a prismatic member with straight axes 
of a plane steel frame, while Equation (1) illustrates the corresponding mass matrix for an 
individual element (MLE). In such an equation, 𝑚ഥ  and L represent the mass and the mem-
ber length, respectively. 

 

Figure 4. DOFs of a prismatic member with straight axes of a plane frame. 

𝑀௅ா = 𝑚ഥ𝐿2 ⎣⎢⎢
⎢⎢⎡1 0 00 1 00 0 0 0 0 00 0 00 0 00 0 00 0 00 0 0 1 0 00 1 00 0 0⎦⎥⎥

⎥⎥⎤ (1)

It must be noted that the nonzero values are associated to the DOFs 1, 2, 4 and 5 
shown in Figure 4, which correspond to translational DOFs. The subscripts L and E in the 
symbol MLE stand for the terms lumped and element, respectively. 

It is known that the consistent-type mass matrix is more appropriate than the con-
centrated-type one because the rotational effects [50,51] are considered in the former. By 
using the d’Alembert´s principle, the virtual work concept and the appropriate interpola-
tion functions, together with the Finite Element Method, it is shown that the element con-
sistent mass matrix (MCE) is: 

𝑀஼ா = 𝑚𝐿420 ⎣⎢⎢
⎢⎢⎡ 140 0 00 156 22𝐿0 22𝐿 4𝐿ଶ 70 0 00 54 −3𝐿0 13𝐿 −3𝐿ଶ     70 0 0      0 54 13𝐿      0 −13𝐿 −3𝐿ଶ 140 0 00 156 −22𝐿0 −22𝐿 4𝐿ଶ ⎦⎥⎥

⎥⎥⎤ (2)

Rayleigh damping model is expressed by Equation (3). In such an equation a0 and a1 

are proportionality constants that are obtained by fixing modal damping ratios at two 
modes, namely the i (𝜁௜) and j (𝜁௝) modes. The damping ratio for the n mode is defined as 
shown in Figure 5, where ωn is the vibration frequency of that mode. It can be seen (Figure 
5) that very large amounts of damping can result in the higher modes. It is argued 
[44,50,51] that if the i and j modes are adequately selected, the higher mode contribution 
will be effectively removed because of the very large amounts of damping; however, noth-
ing is stated concerning the resulting very large damping forces. Results of using several 

Figure 4. DOFs of a prismatic member with straight axes of a plane frame.

MLE =
mL
2



1 0 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 0

 (1)

It must be noted that the nonzero values are associated to the DOFs 1, 2, 4 and 5 shown
in Figure 4, which correspond to translational DOFs. The subscripts L and E in the symbol
MLE stand for the terms lumped and element, respectively.

It is known that the consistent-type mass matrix is more appropriate than the concentrated-
type one because the rotational effects [50,51] are considered in the former. By using the
d’Alembert´s principle, the virtual work concept and the appropriate interpolation functions,
together with the Finite Element Method, it is shown that the element consistent mass
matrix (MCE) is:

MCE =
mL
420



140 0 0
0 156 22L
0 22L 4L2

70 0 0
0 54 −3L
0 13L −3L2

70 0 0
0 54 13L
0 −13L −3L2

140 0 0
0 156 −22L
0 −22L 4L2

 (2)

Rayleigh damping model is expressed by Equation (3). In such an equation a0 and
a1 are proportionality constants that are obtained by fixing modal damping ratios at two
modes, namely the i (ζi) and j (ζ j) modes. The damping ratio for the n mode is defined as
shown in Figure 5, where ωn is the vibration frequency of that mode. It can be seen (Figure 5)
that very large amounts of damping can result in the higher modes. It is argued [44,50,51]
that if the i and j modes are adequately selected, the higher mode contribution will be
effectively removed because of the very large amounts of damping; however, nothing
is stated concerning the resulting very large damping forces. Results of using several
combinations of the M (ML and/or MC) and K (Ko and/or Kt) matrices in Equation (3) can
be found in the literature [3,34,40,41].

C = a0M + a1K (3)

The Kt matrix is considered in Equation (3) in this paper. Although it may present
some inconveniences, it gives more accurate results than Ko for the following reasons:

(a) if Ko is used, the elements of the C matrix will not change as the structure behaves
inelastically (reducing its stiffness),

(b) The implication of this is that the fractions of critical damping will increase [43].
(c) The use of the Kt matrix has been incorrectly criticized due to the fact that when the

structure behaves inelastically one did not expect a reduction of damping, but an
increment due to the nonlinear behavior. However, such extra damping is considered
by the hysteretic behavior of the material.



Appl. Sci. 2022, 12, 433 9 of 24

Appl. Sci. 2022, 11, x FOR PEER REVIEW 9 of 25 
 

combinations of the M (ML and/or MC) and K (Ko and/or Kt) matrices in Equation (3) can 
be found in the literature [3,34,40,41]. 𝐶 = 𝑎଴𝑀 + 𝑎ଵ𝐾 (3)

The Kt matrix is considered in Equation (3) in this paper. Although it may present 
some inconveniences, it gives more accurate results than Ko for the following reasons: 
(a) if Ko is used, the elements of the C matrix will not change as the structure behaves 

inelastically (reducing its stiffness), 
(b) The implication of this is that the fractions of critical damping will increase [43]. 
(c) The use of the Kt matrix has been incorrectly criticized due to the fact that when the 

structure behaves inelastically one did not expect a reduction of damping, but an 
increment due to the nonlinear behavior. However, such extra damping is considered 
by the hysteretic behavior of the material. 

 
Figure 5. Variation of damping with the modal frequency in Rayleigh Damping Model. 

5. Concentrated vs. Consistent Mass 
5.1. Comparison for Global Parameters 

Global response parameters, i.e., inter-story shears and lateral drifts, are estimated 
for each story, structural model, direction, strong motion, and seismic intensity, by con-
sidering that the mass distribution in the structure is given by the ML matrix and are com-
pared to the corresponding responses obtained for the MC matrix. Before presenting the 
comparison, it is worth mentioning that, considering only the lateral periods of vibrations, 
the first and second periods are quite similar for the MC and ML matrices for the case of 
Model 1. The third period, in contrast, is 28% greater for MC. For Model 2, the first five 
periods are essentially the same for the ML and MC matrices, but for modes 6 to 9, they 
resulted to be larger for the case of MC, with the differences ranging between 5% and 16%. 
Similarly, for Model 3, the periods are quite similar for modes 1 through 11 for both types 
of matrices, but for modes 12 to 20 they are larger for MC; varying the differences between 
6 and 16%. 

Results for inter-story shears are compared first. To get this purpose the RV parameter 
is used which is defined as 

𝑅௏ = 𝑉ெ௅𝑉ெ஼ (4)

Figure 5. Variation of damping with the modal frequency in Rayleigh Damping Model.

5. Concentrated vs. Consistent Mass
5.1. Comparison for Global Parameters

Global response parameters, i.e., inter-story shears and lateral drifts, are estimated for
each story, structural model, direction, strong motion, and seismic intensity, by considering
that the mass distribution in the structure is given by the ML matrix and are compared to
the corresponding responses obtained for the MC matrix. Before presenting the comparison,
it is worth mentioning that, considering only the lateral periods of vibrations, the first
and second periods are quite similar for the MC and ML matrices for the case of Model 1.
The third period, in contrast, is 28% greater for MC. For Model 2, the first five periods are
essentially the same for the ML and MC matrices, but for modes 6 to 9, they resulted to be
larger for the case of MC, with the differences ranging between 5% and 16%. Similarly, for
Model 3, the periods are quite similar for modes 1 through 11 for both types of matrices,
but for modes 12 to 20 they are larger for MC; varying the differences between 6 and 16%.

Results for inter-story shears are compared first. To get this purpose the RV parameter
is used which is defined as

RV =
VML
VMC

(4)

where, for a given inter-story, building and strong motion, VML and VMC are the inter-story
shears corresponding to the lumped and consistent matrices, respectively.

The values of the RV ratio for the NS direction of Model 1 are presented in Figure 6a,c,e
for seismic intensities of 0.2 g, 0.6 g and 0.8 g, which correspond to small deformations
(elastic behavior), moderate yielding, and significant yielding, respectively. The RV values
for the other horizontal (EW) direction are given in Figure 6b,d,f. The term IS abbreviates
the expression inter-story. It can be seen from such figures that, if the structure remains
elastic (Figure 6a,b), the values of RV are very close to unity implying that the inter-story
shears are essentially the same regardless of the mass matrix model. For moderate and
significant yielding, however, values smaller than unity can be seen in many cases implying
that the magnitude of the shears is underestimated when the ML is used. Values of about
0.75 can be seen for some individual seismic records implying underestimations of 25%.
The underestimation of RV seems to increase as one moves up the frame. The values of RV
smaller than unity are due to the fact that the higher- mode contribution, which increases
as one moves up the model, is larger for the case of the MC matrix model.
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Figure 6. Values of RV; Model 1; (a,c,e), Saavg = 0.2, 0.6, 0.8 g, respectively, NS direction;
(b,d,f), Saavg = 0.2, 0.6, 0.8 g, respectively, EW direction.

Despite the strong motions were normalized according to the Saavg intensity measure, a
considerable dispersion is observed, specifically for large seismic intensities and inter-stories
2 and 3, which reflects, as stated in traditional structural dynamics textbooks [44,50,51],
the influence of the inherent variability of seismic records on the response of structures,
in addition to that of higher mode contribution. Plots for the RV parameter, similar to
those shown in Figure 6, were also developed for other seismic intensities for the case of
Model 1. Including those of Figure 6, a total of 10 plots were developed for this model.
In the same manner, sets of plots of RV were developed for Models 2 and 3, but they are
shown either, only the mean values are presented in all cases; they are shown in Figure 7.
Results illustrate that, although for Model 1 underestimations of up to 25% were observed
for inter-story shears for some strong motions when ML is used, on an average basis the
underestimation is negligible (about 4%).
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Figure 7. Mean values of RV; (a,b), NS-EW direction, respectively, Model 1; (c,d), NS-EW direction,
respectively, Model 2; (e,f), NS-EW direction, respectively, Model 3.

For Model 2, average underestimations of up to about 14% can be seen. It is worth
mentioning that (even though it is not shown), underestimations greater than 30% occurred
for some individual seismic records motions. The corresponding values for Model 3 are
about 12% (average) and 26% (individual). It is noted that the results are very similar for
the NS and EW directions. It is also observed from Figure 7 that, for a given model, the
underestimation increases as the story number increases. The explanation for this is that
the contributions of the higher modes for shears at the upper stories are more important
for the case of the consistent mass matrix. This higher-mode effect could be expected to be
larger for Model 3 than for Model 2. However, the relative plasticization of Model 3, as well
as the rotational inertia effects of their beams, are less significant than those of Model 2.

As for inter-story shears, results in terms of drifts were also calculated and compared,
but the results are not presented. However, it is worth mentioning that level of underesti-
mation of drifts is smaller than that of shears; the maximum underestimation for individual
seismic records is about 9% and in terms of mean values it is about 2%.
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5.2. Comparison for Local Parameters

The axial loads and flexural moments acting on the members of the models with the
lumped mass matrix are now compared with the corresponding ones from the consistent
mass matrix. For axial loads, the comparison is made for interior and exterior columns,
whereas for the case of flexural moments, in addition to columns, a comparison is also
made for interior and exterior beams, from the base up to the top. The ratios RA and RB
given by Equations (5) and (6) are used to make the comparison for axial loads and flexural
moments, respectively.

RA =
AML
AMC

(5)

RB =
BML
BMC

(6)

In the earlier equations, the symbols A and B stand for axial and bending, respectively,
so, similar to the RV ratio, AML for example, represents the axial load demands on the
frames when ML is used. Since the results are quite similar for both horizontal directions,
the discussion is mainly centered on those of the NS direction. In addition, only the mean
values are presented.

The axial loads are compared first. The RA mean values for exterior columns can
be seen in Figure 8a,c,e, for Models 1, 2 and 3, respectively, while the corresponding
mean values for the interior ones are given in Figure 8b,d,f. It can be seen that, for
exterior columns, unlike shears and displacements, the RA mean values are in many cases
significantly larger than unity implying that the axial loads on these structural members
can be considerably overestimated if the ML model is used. Values of up to 1.6 can be
seen for inter-story 2 of Model 1 implying, on an average basis overestimations of up to
60%. Even for elastic structural behavior (Saavg = 0.2 g) RA mean values of about 1.3 can be
observed. Overestimation larger than 100% (not shown) occurred for individual seismic
records. Excepting the last inter-story of the 3- and 9-story models, the values increase as
Saavg increases; however, they tend to decrease with the building height, so for the tallest
model the maximum level of overestimation is observed to be about 5%.

There are many considerable differences in the responses for interior columns with
respect to those of exterior columns. The axial loads on interior columns of the 3-story model,
the individual, and average underestimations are up to 44% and 30%, respectively. The
corresponding values for the interior columns of the 9- and 20-story models are about 18%
and 8%. One of the reasons for this is that, for a given floor, the interaction between beams
and exterior columns is expected to be very different from that of the interiors, since the
former are connected to columns only at one end, while the latter are connected at both ends.
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Figure 8. Cont.
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Figure 8. Mean values of RA, NS: (a,c,e), exterior columns of Models 1-2-3, respectively;
(b,d,f), interior columns of Models 1-2-3, respectively.

The mean values of RB for the NS direction, for all columns and models, are shown
in Figure 9. It is observed that for exterior columns (Figure 9a,c,e) the flexural moments
may be considerably underestimated when ML is used. The amounts of underestimation
increase as Saavg and the story number increase; in contrast, they tend to decrease as the
model becomes taller. The maximum values are about 0.65, 0.68 and 0.80, indicating average
underestimations of 35%, 32% and 20%, for Model 1, 2 and 3, respectively. Considering
individual seismic records, the corresponding maximum levels of underestimation are about
66%, 58% and 42%. As for axial loads, the underestimation of flexural moments on interior
columns is less significant than that of the exteriors; for Models 1 and 2 the maximum
individual and average underestimations are around 21% and 11%, respectively; for Model 3,
on the other hand, the flexural moments are essentially the same for ML and MC.

The mean values of RB for exterior and exterior beams were also calculated, but the
results are not presented. It is worth mentioning, however, that the level of underestimation
is much smaller than that of interior columns. The flexural moments of the models with
ML were also compared to those of MC, for the case of exterior and interior beams but, the
results are not presented. It is important to mention, however, that underestimation is less
significant even than that of interior columns.

The earlier results indicate that the effect of the mass matrix model can significantly
vary from one parameter to another. There are many reasons for this; axial loads for
example are directly affected by the vertical modes of vibration, which is not the case for
interstory shears. Another reason is that due to the fact that the numerical values of the
elements of the ML matrix associated to vertical vibration are greater than those of the MC
matrix, the larger inertial vertical effects, and consequently larger axial loads on columns,
are expected for the case of ML. For the case of bending moments the opposite occurs, that
is, the bending moments are larger for the MC matrix because the rotational inertias are
larger in comparison with those of the ML matrix. The overestimation tends to increase as
one moves up the model, since the contribution of the higher-mode response may have
enhanced for the case of the MC matrix.
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Figure 9. Mean values of RB, NS: (a,c,e), exterior columns of Models 1-2-3, respectively;
(b,d,f), interior columns of Models 1-2-3, respectively.

In summary, depending upon the response parameter under consideration, the struc-
tural model, the seismic intensity and the structural location, the responses can be precisely
calculated, considerably overestimated, or considerably underestimated when ML is used.
The inter-story shears, on an average basis, are underestimated by up to about 15%, but
for individual strong motions they are underestimated by up to 30%. It can be said that
the underestimation is negligible for lateral drifts. The axial loads at exterior columns
are significantly overestimated by up to 100% and 60% for individual strong motions and
on an average basis, respectively; the corresponding values for the interiors are 44% and
30%. Flexural moments at exterior columns may be underestimated by up to 60% and 35%,
individually and on average, respectively; the corresponding values for interior columns
are about 21% and 11%. On the other hand, there is no error in the estimation of flexural
moments at beams if ML is used.

Structural members in MRFs are designed as beams or beam-columns. In traditional
seismic design procedures of steel buildings around the world [48], the members are first
designed following the strength concept and then the drifts are revised. It is shown in this
paper that there are no significant errors in drifts if the ML matrix is assumed in the analysis.
For inter-story shears and flexural moments, on the other hand, significant non-conservative
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errors may result in the design. Hence, it is strongly suggested to use the ML model while
numerically modeling the structural system (steel MRFs) considered in the study.

One of the main justifications in the past to avoid the use of the consistent mass
matrix was the greater computation (implying greater cost) time demand. However, these
days this justification is no longer valid; using modern computers together with efficient
modern operating systems, the differences between the computer time requirements of the
concentrated and the consistent mass matrices are tremendously reduced.

6. One vs. More than One Element per Member

It was commented in Section 1 that in typical seismic analysis of steel frames, the
common practice is to use only one element per member (no intermediate nodes), including
for the beams. In this section of the paper, the precision of using this practice is quantified.
The consistent mass matrix is assumed in these analyses. To this aim, the same response
parameters studied in Section 5 are considered, but now discretizing the beams by using
one, or two, intermediate nodes; the responses are compared to those obtained without
considering intermediate nodes. It is important to mention that some periods, associated
to lateral vibration, are significantly modified when intermediate nodes are used in the
beams. For the 3-story frame, by example, the first period is essentially the same for the
model with and without one intermediate node. The periods for modes 2 and 3, on the
other hand, increase 10% and 98%, respectively. For the 9-story model, no increments occur
in the periods of modes 1 through 4, but for modes 5 to 9 increments, which range from
28% to 35%, are observed. For the 20-story model, there are no changes for the first eleven
periods, but significant increments occur for the remaining nine lateral modes, which range
from 11% to 21% if one intermediate node is used.

It is assumed that the greater the number of elements per member, the better the seismic
response since the distribution of mass is more uniform. In the subsequent discussion, the
abbreviations 1E, 2E and 3E will symbolize the structural models obtained from considering
one, two and three elements per beam, respectively.

6.1. Global Response Parameters, Two Elements per Beam (2E)

To make the comparison for inter-story shears, the parameter RV1, defined by Equation (7)
is used. In such an equation, V1 and V2 symbolize the shears for models 1E and 2E, respec-
tively. As in many other discussions, only the results of RV1, averaged over all the seismic
records, are shown.

RV1 =
V1

V2
(7)

Figure 10 illustrates the mean values of RV1 for all the models. It can be seen that,
on an average basis, the values essentially equal unity for the 3-story building, implying
that there are no differences between the shears of Model 1E and those of Model 2E. For
the 9-story model, in contrast, the average RV1 values significantly increase with respect
to those of the 3-story model. The values increase through the height of the model; the
largest observed value is 1.21 implying that the shears can be overestimated by up to 21%
if just one element per beam is used in the structural modeling. For the case of the taller
model (Model 3), the average values of RV1, similar to those of Model 2, in general increase
through the height of the model, but the values, although still significant, are smaller than
those of Model 2, the maximum average value is observed to be 1.10. Even though they are
not shown, overestimations of up to 33% can be seen individually for some seismic records.
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Figure 10. Mean values of RV1; (a,b),NS-EW direction, respectively, Model 1; (c,d),NS-EW direction,
respectively, Model 2; (e,f),NS-EW direction, respectively, Model 3.

The responses for lateral drifts are also calculated and contrasted for the 1E and
2E structural representations. The parameter used to make the comparison is RD1, but
the results are not shown. It is mentioned, however, that the average values of RD1 are
essentially equal to unity for any model and seismic intensity indicating that the lateral
drifts are precisely calculated if one element per beam is considered.

6.2. Local Response Parameters, Two Elements per Beam (2E)

To compare the axial loads on the columns of Models 1E with those of Model 2E, the
RA1 ratio, defined by Equation (8), is used. The numerator and denominator in such an
equation have the same meaning as those of Equation (7), but now axial loads in columns
are analyzed instead.

RA1 =
A1

A2
(8)

The average of the RA1 values for the exterior columns as well as for the interiors are
presented in Figure 11 for all the models. Only the results for the NS direction are presented.
Results from the figure indicate that, unlike the case of shears and drifts, axial loads on
columns may be significantly overestimated when one element per beam is considered.
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For a given model the magnitude of the overestimation increases as the story number and
the seismic intensity increase, but it decreases as the model becomes taller. The average
overestimations can be up to 95%, 55% and 5%, for Models 1, 2 and 3, respectively; the
corresponding maximum overestimations considering individual seismic records can be
up to 140%, 86%, and 13%. Even for the case of elastic behavior, significant overestimations
can be seen for the case of the 3-, and 9-story models.
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Figure 11. Mean values of RA1, NS direction: (a,c,e), exterior columns of Models 1-2-3, respectively;
(b,d,f), interior columns of Models 1-2-3, respectively.

The RB1 ratio given by Equation (9) is used to compare the seismic responses in terms
of flexural moments. Similar to the RV1 and RA1 parameters, B1 and B2 represent the
flexural moments at columns for the 1E and 2E structural representations.

RB1 =
B1

B2
(9)

The RB1 averages for exterior columns as well as for the interiors are shown in
Figure 12. As for the RA1 parameter, the results are similar for the two horizontal di-
rections; consequently, only the values associated to the NS direction are presented. The
mean values of RB1 resemble those of RA1 in the sense that, for the case of significant
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structural deformations, the flexural moments of exterior columns may be significantly
overestimated when no intermediate node is used, with the level of overestimation de-
creasing with the height of the model. The maximum overestimations (on average) are
48%, 32%, 11%, and for Models 1, 2 and 3, respectively; however, considering individual
seismic records, the corresponding maximum overestimations are 68%, 59%, and 19%.
For the lowest structural deformations, on the other hand, the flexural moments can be
underestimated; on an average and individual basis, the maximum overestimations can be
up to 12%, 24%, 29% and 5%, 10%, 14%, respectively. It is observed that the overestimation
is much smaller for the case of interior columns.
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Figure 12. Mean values of RB1, NS: (a,c,e), exterior columns of Models 1, 2 and 3, respectively;
(b,d,f), interior columns of Models 1, 2 and 3, respectively.

The RB1 averages for interior beams, as well as for the interiors, are presented in
Figure 13 for all the models. It is seen that for elastic behavior (smallest values of Saavg),
the flexural moments at both, exterior and interior beams are underestimated; the level
of underestimation increases with the story number; the observed amounts of individ-
ual and average underestimation are about 38%, 60%, 45% and 19%, 35%, 22% for the
Models 1, 2 and 3, respectively. For intermediate or large deformations, on the other hand,
the values are essentially equal to unity in almost all cases, which implies that the bending
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moments in the beams without intermediate nodes are very similar to those resulting from
the consideration of an intermediate node.
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Figure 13. Mean values of RB1, NS: (a,c,e), exterior beams of Models 1-2-3, respectively;
(b,d,f), interior beams of Models 1-2-3, respectively.

6.3. Global and Local Parameters, 2 Intermediate Nodes

The same parameters analyzed earlier, namely lateral drifts, shears, axial loads, and
flexural moments, are now calculated for the representation 3E of the models and contrasted
to those of the representation 1E. Ratios of the responses of representation 1E to those
of representation 3E of the models were developed. However, since no considerable
differences were observed with respect to those of Sections 6.1 and 6.2 (where 1E and 2E
were compared), only a few comparative ratios for the case of local response parameters
are presented.

Equations (10) and (11) are used to make the comparison for axial loads and flexural
moments, respectively. A3 and B3 in these equations represent the axial loads and flexural
moments, respectively, in the members when three elements per beam (representation 3E)
are used in the models. The other terms were defined earlier.

RA2 =
A1

A3
(10)
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RB2 =
B1

B3
(11)

The RA2 averages for exterior columns of Models 1 and 2 are presented in Figure 14a,b,
respectively. Most of the major observations made before for the 1E and 2E comparison
(Figure 11a,c) apply to this case. However, it is observed that, for the 3-story model, the
level of overestimation of axial loads when no intermediate nodes are used resulting from
the comparison 1E-3E is a little greater than that of the comparison 1E-2E (68% vs. 56%).
For Model 2, on the other hand, the level of overestimation is essentially the same (about
40%) for the two comparison cases.

Appl. Sci. 2022, 11, x FOR PEER REVIEW 21 of 25 
 

𝑅஻ଶ = 𝐵ଵ𝐵ଷ (11)

The RA2 averages for exterior columns of Models 1 and 2 are presented in Figures 14a 
and 14b, respectively. Most of the major observations made before for the 1E and 2E com-
parison (Figure 11a,c) apply to this case. However, it is observed that, for the 3-story 
model, the level of overestimation of axial loads when no intermediate nodes are used 
resulting from the comparison 1E-3E is a little greater than that of the comparison 1E-2E 
(68% vs. 56%). For Model 2, on the other hand, the level of overestimation is essentially 
the same (about 40%) for the two comparison cases. 

  

  
  

Figure 14. Mean values of RA2 and RB2, exterior columns, NS: (a,b) RA2 Models 1 and 2, respectively; 
(c,d) RB2 Models 1 and 2, respectively. 

The average values of RB2 for exterior columns can be seen in Figure 14c,d. Results 
indicate that the levels of overestimation, or underestimation, of these flexural moments 
obtained from the comparison of the 1E and 3E structural representations, essentially re-
main the same as those of the 1E and 2E representations. 

The RB2 averages of beams are can be seen in Figure 15. By comparing the results with 
those of Figure 14a through Figure 14d (1E vs. 3E) it is concluded that, as for the case of 
flexural moments at columns, the level of underestimation in flexural moments of beam 
obtained from the comparison 1E-2E is quite similar to that of the comparison 1E-3E. The 
responses of the models with four elements (three intermediate nodes) per beam were 
also calculated for some cases, but the results are not shown. It is worth mentioning, how-
ever, that the results are essentially identical to those of the representation 3E. 

The abovementioned results indicate that there is a certain degree of overestimation 
or underestimation of the seismic response when intermediate nodes are not used in the 
beams. Such underestimations or overestimations turned out to be practically the same 
when the results of not considering intermediate nodes were compared with those of one, 
two, or three intermediate nodes. Hence, there is no necessity of using more than three 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1 2 3

M
EA

N
 O

F 
 R

A2

STORY NUMBER
(a)

Sa avg=0.2g Sa avg=0.4g

Sa avg=0.6g Sa avg=0.8g
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1 2 3 4 5 6 7 8 9
M

EA
N

 O
F 

 R
A2

STORY NUMBER
(b)

Sa avg=0.1g Sa avg=0.2g

Sa avg=0.3g Sa avg=0.4g

Sa avg=0.5g

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1 2 3

M
EA

N
 O

F 
 R

B2

STORY NUMBER
(c)

Sa avg=0.2g Sa avg=0.4g

Sa avg=0.6g Sa avg=0.8g
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 3 4 5 6 7 8 9

M
EA

N
 O

F 
 R

B2

STORY NUMBER
(d)

Sa avg=0.1g Sa avg=0.2g

Sa avg=0.3g Sa avg=0.4g

Sa avg=0.5g

Figure 14. Mean values of RA2 and RB2, exterior columns, NS: (a,b) RA2 Models 1 and 2, respectively;
(c,d) RB2 Models 1 and 2, respectively.

The average values of RB2 for exterior columns can be seen in Figure 14c,d. Results
indicate that the levels of overestimation, or underestimation, of these flexural moments
obtained from the comparison of the 1E and 3E structural representations, essentially
remain the same as those of the 1E and 2E representations.

The RB2 averages of beams are can be seen in Figure 15. By comparing the results with
those of Figure 14a through Figure 14d (1E vs. 3E) it is concluded that, as for the case of
flexural moments at columns, the level of underestimation in flexural moments of beam
obtained from the comparison 1E–2E is quite similar to that of the comparison 1E–3E. The
responses of the models with four elements (three intermediate nodes) per beam were also
calculated for some cases, but the results are not shown. It is worth mentioning, however,
that the results are essentially identical to those of the representation 3E.

The abovementioned results indicate that there is a certain degree of overestimation
or underestimation of the seismic response when intermediate nodes are not used in the
beams. Such underestimations or overestimations turned out to be practically the same
when the results of not considering intermediate nodes were compared with those of one,
two, or three intermediate nodes. Hence, there is no necessity of using more than three
elements to represent the beams since practically convergence is reached for this number of
elements. The accuracy is good even for the two-element case.
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Figure 15. Mean values of RB2 beams, NS: (a,b) exterior and interior, respectively, Model 1;
(c,d) exterior and interior, respectively, Model 2.

From the earlier discussion it is concluded that if just one element per beam is used, the
magnitude of inter-story shears can be overestimated by up to 33% and 21% for individual
strong motions and on an average basis, respectively. The lateral drifts, however, are
essentially the same for the models with none or with intermediate nodes. Considerable
overestimations occur for axial loads in columns, including elastic behavior; the maximum
overestimations are about 145% and 95% (individually and on average). Flexural moments
at exterior columns can also be significantly overestimated for high seismic intensities;
the maximum overestimations are about 68% and 48% (individually and on average).
On the other hand, for the lowest structural deformations (smaller values of Saavg), the
flexural moments at columns are underestimated by up to 29% and 14% (individually
and on average). The flexural moments at exterior and interior beams are underestimated
by up to 60% and 35% individually and on average, respectively. The underestimation
(or overestimation) calculated by comparing the responses of the 1E and 2E structural
representations is quite similar to that of comparing the responses of the 1E and 3E structural
representations, which indicates that convergence is reached in the responses when three
elements per beam are considered.

7. Conclusions

The responses of steel moment-resisting frames (MRFs) considering the mass matrix
as concentrated (ML) are calculated and contrasted with those calculated by considering
that such matrix is consistent (MC). The responses are also calculated by considering just
one element per beam and are compared with those of assuming two and three elements.
Steel frame models, representative of low, medium, and tall steel buildings, modeled as
multi-degree-of freedom systems under the action of 15 seismic records, representative of
the area of the model locations, are used in the numerical study. The comparison is made
in terms of overall parameters (inter-story shear and displacements) as well as in terms
of local parameters (axial loads and flexural moments at exterior and interior beams and
columns). The main findings are:
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1. Depending on the parameter, the structural model, the seismic intensity and the
member location, the responses may be precisely calculated, significantly overestimated
or underestimated, when ML is used. The inter-story shears, on an average basis, are
underestimated by up to about 15%, but underestimations of up to 30% can be seen for
some individual seismic records. The lateral drifts are precisely calculated, but axial loads
at columns can be significantly overestimated (up to 60% and 100% on average and individ-
ually, respectively). Flexural moments at columns, on the other hand, are underestimated;
average and individual underestimations of up to 35% and 60%, respectively, can be seen.
The flexural moments at beams are precisely calculated.

2. Inter-story shears can be overestimated if just one element per beam is used in
the structural modeling; average and individual overestimation of up to 21% and 33%,
respectively, can be seen. The lateral drifts, however, are precisely calculated. For significant
deformations, the corresponding amounts of average and individual overestimation for
axial loads at columns are about 95% and 140%, while those of flexural moments are 48%
and 68%. The flexural moments at columns for the lowest structural deformations, on
the other hand, can be underestimated; the maximum amounts of average and individual
underestimations are about 14% and 29%, respectively. Underestimations by up to 35% and
60% (on average and individually) are observed for flexural moments at beams for small
deformations, but for intermediate and large deformations, they are precisely calculated.
The underestimation or overestimation obtained by comparing the responses of the models
without intermediate node with those of one intermediate node is quite similar to that of
comparing the responses of the models without intermediate nodes with those of two, or
three, intermediate nodes; it indicates that convergence is reached in the responses when
three elements per beam are considered.

3. Structural members in MRFs are normally designed as beams or beam-columns
based on the strength concept to support the member forces; then lateral drifts are revised.
The results of this study indicate that the introduced errors for lateral drifts are neglectable
if ML, or one element per beam is used, but significant errors may be introduced in the
design due to the overestimation and underestimation of the design forces. For those
reasons, it is strongly suggested to use the MC model and at two elements per beam in the
structural modeling.

4. One of the main justifications in the past for not using the consistent mass matrix
was the great computation (implying greater cost) time demand. However, these days, this
justification is no longer valid at least for buildings modeled as 2D systems; using modern
computers together with efficient modern operating systems, the computation time has
been significantly reduced and so the differences between the time requirements for the
concentrated and the consistent mass matrices, as observed while developing this research.
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