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Abstract: In this paper, we study the existence and stability of collinear and noncollinear equilibrium
points within the frame of the perturbed restricted problem of 2 + 2 bodies by a planetesimal
belt. We compare and investigate the corresponding results of the perturbed and unperturbed
models. The impact of the planetesimal belt is observed on collinear and noncollinear equilibrium
points. We demonstrate that all equilibrium points are unstable, and we numerically investigate
the noncollinear equilibrium points. Finally, we emphasize that the proposed problem is a credible
model for describing the capture of small bodies by a planet.
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1. Introduction

In the field of celestial mechanics, the circular restricted three-body problem (CRTBP),
where an infinitesimal body moves under the influence of two primaries without affecting the
motion of the primaries, has been extensive used. For details and investigations, see [1–4].
The dynamics of the combined system of two primaries and two minor bodies, called
the restricted 2 + 2 body problem (R2+2BP), was analyzed in [5,6]. In this model, two
equations of the motion of the CRTBP are coupled with each other by mutual gravitational
interactions. This model, or the dual-satellite-like model, helps with studying the dynamic
behavior of binary asteroids in the presence of two primaries. Whipple studied R2+2BP
and found 14 pairs of equilibrium points [5]. The study of R2+2BP with different disturbing
forces produced more precise and accurate data about the system’s dynamic behavior.

Many researchers incorporated different effects of R2+2BP to analyze the perturbed
dynamics of the system. For example, Kumar et al. studied the generalized R2+2BP by
considering the second primary as a straight segment, and showed that length parameter
has a subsequent effect on the location of all equilibrium points [7]. Kalvouridis and
Mavraganis [8] found R2+2BP dynamics in the presence of the photo gravitational effect,
and Kalvouridis [9] studied the impact of oblate in R2+2BP. The families of a periodic orbit
in R2+2BP were discussed by Spurgin [10], who found that the orbits are stable. The stability
of R2+2BP was evaluated by Milani and Nobili [11], who showed that the integral of the
system, which is similar to RTBP, does not result in hill stability. The restricted 2 + 2 problem
with a homogeneous axis-symmetric ellipsoid was described by El-Shaboury [12], who
also found 16 solutions in the neighborhood of triangular equilibrium points. A ring-
shaped disk-like region formed from dust, comets, asteroids, etc., in the space having
considerable mass exerts some gravitational force and affects the dynamic behavior of
infinitesimal bodies.
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In our solar system, the asteroid belt and kuiper belt are dust-belt-like structures. Dust-
belt-like structures are also present in the Proxima Centauri system. Many researchers have
studied the effect of the asteroid belt in CRTBP [13–16], and found that these perturbations
exhibit significant changes in the equilibrium position. In this paper, we investigate some
new aspects of R2+2BP, along with the disk-like belt effect on the potential function; as
such, we found the change in the equilibrium positions. Moreover, we analyze the variation
in the distance of the equilibrium location of a minor body P1 and P2 for µ1 = µ2 from
its neighboring equilibrium point Li, i = 1, 2, 3, 4, 5) versus mass ratio µ. The effects of
perturbed equilibrium points are compared with those of the unperturbed 2 + 2 body
problem. We discuss the stability of the perturbed system with the help of eigenvalues for
the particle P1.

In general, the restricted 2 + 2 bodies problem is formulated as a credible model to
show the capture of small bodies by a planet. In particular, two primaries are considered
to revolve in a circular mutual orbit and two infinitesimal bodies, where neither of them
affects the primaries’ motion. If the small bodies are temporarily captured in the Hill sphere
of the smaller primary, they may become close enough to each other to exchange energy
so that one of them becomes regularly and permanently captured. The aforementioned
descriptions are considered the major applications of the restricted 2 + 2 bodies problem,
which motivated us to study a more generalized model for this problem.

This paper is organized as follows: In Section 2, we formulate the restricted 2 + 2
body problem in the presence of the planetesimal belt effect. In Section 3, the variation
in equilibrium points against mass ratio µ is described and we compare the perturbed
equilibrium points with unperturbed equilibrium points. Furthermore, a stability analysis is
performed in Section 4, and in Section 5, we discuss the results and provide our conclusions.

2. Formulation of the Model

The restricted 2 + 2 body problem consists of two primaries, M1 and M2, with unit-
less masses 1− µ and µ, respectively. They are assumed to move on circular Keplerian
orbits around their common center of mass under their mutual gravitational force. Two
infinitesimal bodies, P1 and P2, of dimensionless masses µ1 and µ2, respectively, move in the
gravitational field while mutually attracting each other without perturbing the primaries.
The perturbed mean motion n can be considered as in [15–18],

n2 = 1 +
2Mbrc

(r2
c + T2)

3
2

,

where Mb is the total mass of the planetesimal belt, and rc is the dimensionless reference
radius of the planetesimal belt. The gravitational potential of the planetesimal-belt-like
system is expressed as in [19,20],

ϕb(R, z) =
Mb

(R2 + [a +
√

z2 + b2]2)
1
2

,

where R is the minor body’s radial distance, a is the flatness parameter, b is the core
parameter, and z is the coordinate of the planetesimal belt in a direction of Z-axis. The
potential reduces to the system of a point mass with the condition a = b = 0. Restricting
the condition to the XY plane (i.e., Z = 0) and defining T = a + b, we have the unit less
potential written as,

ϕb(R, 0) =
Mb

(R2 + T2)
1
2

.

According to the formulation of the restricted 2 + 2 body problem given by [5,21,22],
R2 + 2BP is characterized by three parameters, µ, µ1 and µ2, which are the mass parameters
of M2, P1, and P2, respectively. We consider a perturbed R2+2BP in the rotating coordinate
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system. Let (µ, 0, 0), (µ− 1, 0, 0), (x1, y1, z1), and (x2, y2, z2) be the coordinates of M1, M2,
P1, and P2, respectively, in a rotating frame, as shown in Figure 1.

PP1PP1(xxx1xx1,yyy1yy1,zz,z1zz1) PP2PP2(xxx2xx2,yyy2yy2,zz,z2zz2)

MM2MM2(µµ(µ(µ-µ-1,0,0) MM1MM1(µ,0,0)µ,0,0)

x

y

O

r

r112
r2221 r222 r11

Figure 1. Restricted 2 + 2 body problem model.

Using dimensionless variables and considering the effect of the planetesimal belt, the
restricted 2 + 2 problem is described by differential equations [5]:

ẍi − 2nẏi =
1
µi

∂U
∂xi

,

ÿi + 2nẋi =
1
µi

∂U
∂yi

, (1)

z̈i =
1
µi

∂U
∂zi

,

U =
2

∑
i=1

µi

1
2

n2
(

x2
i + y2

i

)
+

1− µ

r1i
+

µ

r2i
+

1
2

µ3−i
r

+
Mb(

R2
i + T2

) 1
2

. (2)

where

n2 = 1 +
2Mbrc

(r2
c + T2)

3
2

, µ =
M2

M1 + M2
, µi =

mi
M1 + M2

r2
c = 1− µ + µ2, R2

i = x2
i + y2

i ,

r2
1i = (xi − µ)2 + y2

i + z2
i ,

r2
2i = (xi − µ + 1)2 + y2

i + z2
i ,

r2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2.

3. Equilibrium Points

The equilibrium points are the positions of an infinitesimal body where the motion
of the minor vanishes. Thus, the velocity and acceleration of Pi, i = 1, 2 are zero, i.e.,
ẋi = ẏi = żi = ẍi = ÿi = z̈i = 0. Applying these conditions in Equation (2), we obtain,

Ux1 = µ1

(
n2x1 − (1−µ)(x1−µ)

r3
11

− µ(x1−µ+1)
r3

21
− µ2(x1−x2)

r3

)
− Mbx1

(R2
1+T2)

3
2
= 0,

(3)
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Uy1 = µ1

(
n2y1 −

(1− µ)y1

r3
11

− µy1

r3
21
− µ2(y1 − y2)

r3

)
− Mby1(

R2
1 + T2

) 3
2
= 0, (4)

Uz1 = − (1− µ)z1

r3
11

− µz1

r3
21
− µ2(z1 − z2)

r3 = 0, (5)

Ux2 = µ2

(
n2x2 − (1−µ)(x2−µ)

r3
12

− µ(x2−µ+1)
r3

22
− µ1(x2−x1)

r3

)
− Mbx2

(R2
2+T2)

3
2
= 0,

(6)

Uy2 = µ2

(
n2y2 −

(1− µ)y2

r3
12

− µy2

r3
22
− µ2(y2 − y1)

r3

)
− Mby2

(R2
2 + T2)

3
2
= 0, (7)

Uz2 = − (1− µ)z2

r3
21

− µz2

r3
22
− µ1(z2 − z1)

r3 = 0. (8)

Simplifying Equation (5), we obtain,

z1 = z2
µ2

r3
[
(1−µ)

r3
11

+ µ

r3
21
+ µ2

r3

] . (9)

Using the value of z1 from (9) in (8), we obtain either z2 = 0 or c = 0, where

c =

 (1− µ)

r3
21

+
µ

r3
22

+
µ1

r3 −
µ1µ2

r6
{

(1−µ)

r3
11

+ µ

r3
21
+ µ2

r3

}
.

However, we observe that c is nonzero for all values of µ, µ1, and µ2. Therefore, z2 must be
zero and hence z1 = 0. Consequently, all equilibrium points of the restricted 2 + 2 body
problem lie on the XY plane. Hence, the solutions of the equilibrium points can be obtained
from Equations (3), (4), (6) and (7).

3.1. Collinear Equilibrium Points

The collinear equilibrium points appear on the X-axis. These points can be calculated
using Equations (3) and (6) with conditions y1 = 0 and y2 = 0. Then, we have,

µ1

(
nx1 − (1−µ)(x1−µ)

|x1−µ|3 − µ(x1−µ+1)
|x1−µ+1|3 −

µ2(x1−x2)
|x1−x2|3

)
−Mb

x2
1

(
1− 3

2
T2

x2
1
+ 15

8
T4

x4
1

)
= 0,

(10)

µ1

(
nx1 − (1−µ)(x1−µ)

|x1−µ|3 − µ(x1−µ+1)
|x1−µ+1|3 −

µ2(x1−x2)
|x1−x2|3

)
−Mb

x2
1

(
1− 3

2
T2

x2
1
+ 15

8
T4

x4
1

)
= 0.

(11)

The solution of the present model obtained by the perturbation method was proposed
by [5]. The solutions of Equations (10) and (11) are x1 and x2, expressed in a power series
with small parameters [5,8].

x1 = Lj + a11ε2 + a12ε2
2 + . . . ,

x2 = Lj + a21ε1 + a22ε2
1 + . . . ,
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where εi =
µi

(µ1 + µ2)
2
3

and Lj, j = 1, 2, 3 are the collinear Lagrangian points of CRTBP.

Hence, Equations (10) and (11) can be written as:

a11W0
xxε2 −

µ2(x1 − x2)

|x1 − x2|3
= 0, (12)

a21W0
xxε1 −

µ1(x2 − x1)

|x1 − x2|3
= 0, (13)

where

W =
1
2

n2
(

x2 + y2
)
+

1− µ

r1
+

µ

r2
+

Mb

(R2 + T2)
1
2

. (14)

Using Equations (12) and (13), we have a11 = −a21 and a11 = ± 1

(Wxx)
1
3

. Thus, the

equilibrium points of R2+2BP are:

LP1
j± = Lj ±

µ2

[(µ1 + µ2)2Wxx]
1
3

, (15)

LP2
j± = Lj ±

−µ1

[(µ1 + µ2)2Wxx]
1
3

. (16)

Equations (15) and (16) yield paired equilibrium positions near the collinear equilib-
rium points Lj, j = 1, 2, 3 of R2+2BP. We denote the collinear equilibrium points as LPi

j±,
(i = 1, 2.j = 1, 2, 3). Superscript Pi denotes the equilibrium points for an infinitesimal body;
Pi, i = 1, 2 denotes the equilibrium points near L1, L2, and L3. Subscript j± denotes the
relative position of equilibrium points, where + indicates the right and − indicates the left
position with respect to Lj, j = 1, 2, 3. Figure 2 shows the positions of the equilibrium points
when µ = 0.1, µ1 = 0.01, and µ2 = 0.001 with the planetesimal belt effect Mb = 3× 10−7

and parameter T = 0.11. The positions of the equilibrium points are shown as P1 (green)
and P2 (red). In the presence of the planetesimal belt effect, we can observe that the first
equilibrium position of P1

(
LP1

1−

)
is to the left of L1. The equilibrium position of P2

(
LP2

1+

)
is to the right of L1. Similarly, the second equilibrium position of P1, i.e.,

(
LP1

1+

)
, is to the

right of L1. The equilibrium position of P2, i.e.,
(

LP2
1−

)
, is to the left of L1. As such, we also

found four collinear equilibrium points near L2 and L3.
The positions of the collinear equilibrium points were also calculated numerically,

as shown in Tables 1–3 for µ1 = 10−10, µ2 = 10−12, Mb = 3.7 × 10−7, and T = 0.11
with the variation in µ. Table 1 shows that when µ increases LP1

1±, LP2
1± decreases. In

Tables 2 and 3, LP1
2±, LP2

2±, LP1
3±, and LP2

3± increase with increasing µ. Moreover, we analyzed
the effect of the planetesimal belt on R2+2BP. The equilibrium positions of two minor
bodies are the same if the masses are equal, i.e., µ1 = µ2. Consequently, the distance from
Lj to LPi

j± for i = 1, 2 is equal, i.e., if d(x, y) is the distance between points x and y, then

d(Lj, LP1
j±) = d(Lj, LP2

j±). Therefore, we plot the distance versus µ in Figure 2 by considering

Mb = 3.7× 10−7, T = 0.11 and µ1 = µ2 = 10−2; in Figure 3, d(L1, LPi
1±) increases as µ

increases in 0 < µ < 0.5. Concurrently, d(L2, LPi
2±), and d(L3, LPi

3±) decrease as µ increases
from 0 to 0.5.
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Figure 2. The position of equilibrium points when µ = 0.1, µ1 = 0.01, µ2 = 0.001, Ma = 3× 10−7,
and parameter T = 0.11. The positions of the primaries are M1 and M2, represented by an asterisk
and blue dot, respectively. L1, L2, L3, L4, and L5 with black dots are the Lagrangian points of CRTBP.
The equilibrium points of R2+2BP with the planetesimal belt effect are shown in green and red dots
for P1 and P2, respectively.
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equilibrium points.
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Table 1. Equilibrium solution of R2+2BP near L1.

µ LP1
1+ LP1

1− LP2
1+ LP2

1−

0.0001 −1.03220039257577 −1.03264998998316 −1.03242743926651 −1.03242294329243
0.0010 −1.06968776321577 −1.07014443189694 −1.06991838089976 −1.06991381421295
0.0100 −1.14652917405563 −1.14700090922027 −1.14676740031377 −1.14676268296213
0.1000 −1.25944627441467 −1.25995339005807 −1.25970236781459 −1.25969729665815

Table 2. Equilibrium solution of R2+2BP near L2.

µ LP1
2+ LP1

2− LP2
2+ LP2

2−

0.0001 −0.96784674731841 −0.96828366422587 −0.96806302118760 −0.96806739035667
0.0010 −0.93107229302701 −0.93150165725965 −0.93128482832217 −0.93128912196449
0.0100 −0.84787219955956 −0.84828522573752 −0.84807664751765 −0.84808077777943
0.1000 −0.60884456030787 −0.60922565908104 −0.60903320420059 −0.60903701518832

Table 3. Equilibrium solution of R2+2BP near L3.

µ LP1
3+ LP1

3− LP2
3+ LP2

3−

0.0001 1.00036136204178 0.99972197050552 1.00004486323133 1.00003846931597
0.0010 1.00073630603426 1.00009702640224 1.00041986261641 1.00041346982009
0.0100 1.00448569150204 1.00384753168358 1.00416980239190 1.00416342079372
0.1000 1.04192234926276 1.04129546687074 1.04161204247871 1.04160577365479

In Figure 4, we compare the effect of planetesimal belt perturbation on the collinear
equilibrium points with unperturbed collinear equilibrium points in consideration of a
distance function. In Figure 4a–d, the red line shows the distance d1(Lj, LPi

j±), (j = 1, 2, 3)
and (i = 1, 2) with the planetesimal belt effect, and the green line shows the distance
d2(Lj, LPi

j±) without the planetesimal belt effect. Here, d1 is used to show the effect on
distance with planetesimal belt perturbation, whereas d2 is used for unperturbed collinear
points. Figure 4a,d shows that d1(L1, LPi

1±) > d2(L1, LPi
1±) and d1(L3, LPi

3±) > d2(L3, LPi
3±)

when 0 < µ < 0.5. We used a step length h = 0.001 for the variation in µ. We found that
d1(L2, LPi

2±) < d2(L2, LPi
2±) for µ < 0.153 and d1(L2, LPi

2±) > d2(L2, LPi
2±) for µ > 0.153, as

shown in Figure 4a–c.
Tables 4–6 show the collinear equilibrium points of the system: Sun–Saturn with the

Kuiper belt (µ = 0.000286, Mb = 3.00× 10−7, T = 0.11), Sun–Mars with an asteroid belt
(µ = 0.0000003, Mb = 1.6× 10−9, T = 0.11), and the Proxima Centauri system with a dust
disc (µ = 0.000031, Mb = 2.50× 10−7, T = 0.11), as described by the authors in [16,23,24]
for the restricted 2 + 2 body problem having µ1 = 10−10 and µ2 = 10−12. Table 4 shows
the equilibrium points near L1, Table 5 represents the equilibrium points near L2, and the
equilibrium points near L3 are depicted in Table 6.

Table 4. Equilibrium solution near L1 of different planetary systems.

µ LP1
1+ LP1

1− LP2
1+ LP2

1−

0.0002860 −1.04608393024869 −1.04613298051897 −1.04608402825123 −1.04603497798094
0.0000310 −1.02190711476239 −1.02195566697454 −1.02190721176980 −1.02185865955764
0.0000003 −1.00464841079892 −1.00469660080715 −1.00464850708266 −1.00460031707443

Table 5. Equilibrium solution near L2 of different planetary systems.

µ LP1
2+ LP1

2− LP2
2+ LP2

2−

0.0002860 −0.95473464120842 −0.95478173944278 −0.95473473531078 −0.95468763707642
0.0000310 −0.97834688228738 −0.97839450372324 −0.97834697743511 −0.97829935599925
0.0000003 −0.99536525492820 −0.99541324652773 −0.99536535081551 −0.99531735921598
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Table 6. Equilibrium solution near L3 of different planetary systems.

µ LP1
3+ LP1

3− LP2
3+ LP2

3−

0.0002860 1.00011913765467 1.00004978229365 1.00011899908252 1.00018835444353
0.0000310 1.00001290410545 0.99994354530304 1.00001276552642 1.00008212432883
0.0000003 1.00000019376614 0.99993083453848 1.00000005518627 1.00006941441393
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Figure 4. Comparison of distance versus µ between perturbed (red line) and unperturbed (green line)
collinear equilibrium points in R2+2BP. (a) For L1 equilibrium point. (b) For L2 equilibrium point.
(c) For L2 equilibrium point. (d) For L3 equilibrium point.

3.2. Noncollinear Equilibrium Points

The noncollinear equilibrium points of R2+2BP can be found by solving
Equations (3), (4), (6) and (7) with y1 6= 0 and y2 6= 0. The solution can be obtained
by the power series perturbation method. Let xi and yi, i = 1, 2 be the solutions; then,

xi = xLj + ai1ε3−i + ai2ε2
3−i + . . . ,

yi = yLj + ai1ε3−1 + ai2ε2
3−i + . . . .
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Solving the above, we obtain

xP
i = µ− 1

2
±

αj(−1)iµ3−i

[(µ1 + µ2)2(Wxyαj + Wyy)]
1
3 [1 + α2

j ]
1
2

, (17)

yP
i =

(−1)k+1
√

3
2

± µ3−i

((µ1 + µ2)2(W0
xyαj + W0

yy)
1
3 (1 + α2

j )
1
2

, (18)

xI
i = µ− 1

2
±

αjµ3−i

((µ1 + µ2)2(W0
xx +

W0
xy

αj
))

1
3 (1 + 1

α2
j
)

1
2

, (19)

yI
i =

(−1)k+1
√

3
2

± (−1)i+1µ3−i

[(µ1 + µ2)2(Wxx +
Wxy
αj

)]
1
3 [1 + 1

α2
j
]

1
2

, (20)

where, j = 1, k = 1 at L4 and j = 2, k = 2 at L5

α1,2 =
(−1)k+1 ± (−1)k

√
1− 12(µ− 0.5)

2
√

3(µ− 0.5)
.

Equations (17)–(20) represent the noncollinear equilibrium points in R2+2BP. In this
section, we use different notations to represent equilibrium points near L4 and L5. The
prefixes x and y are used in LPi

j± to denote the X and Y coordinates of equilibrium points,
respectively. The noncollinear equilibrium points can be distinguished as the perpendicular
and inline equilibrium solutions in [9]. Again, the prefixes I and P are used for inline and
perpendicular equilibrium points, i.e., IxLP1

4− is the X-coordinate of the equilibrium point
of the first infinitesimal body toward the origin.

The distance versus µ of the perpendicular and inline equilibrium positions to L4,5
with the planetesimal belt effect Mb = 3.7× 10−7, T = 0.11 and µ1 = µ2 = 10−2 are
shown in Figure 5a,b. In the case of the perpendicular equilibrium position d(L4,5, PLPi

4,5±)
increases as µ increases, as shown in Figure 5a. In Figure 5b, in the case of the inline
equilibrium position, the distance d(L4,5, ILPi

4,5±) increases rapidly when µ approaches
1
2 . Figure 6a shows that d1(L4,5, PLPi

4,5±) > d2(L4,5, PLPi
4,5±), i.e., due to perturbation, the

distance increases with respect to the unperturbed distance in the case of perpendicular
noncollinear equilibrium points. Here, we use d1 and d2 for the perturbed and unperturbed
distances, respectively. Furthermore, when the noncollinear equilibrium points are in the
perpendicular position, d1(L4,5, ILPi

4,5±) > d2(L4,5, ILPi
4,5±), as shown in Figure 6b. Hence,

we concluded that the distance increases due to the perturbation.
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Figure 5. Distance versus µ in the presence of the planetesimal belt effect for noncollinear equilibrium
points. (a) Perpendicular equilibrium points. (b) Inline equilibrium points.
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Figure 6. Comparison of distance versus µ between perturbed (red line) and unperturbed (green
line) noncollinear equilibrium points in R2+2BP. (a) Perpendicular equilibrium points. (b) Inline
equilibrium points.

The positions of the noncollinear equilibrium points were calculated numerically and
are shown in Tables 7–10 for µ1 = 10−10, µ2 = 10−12, Mb = 3.7× 10−7, and T = 0.11.
Table 7 shows the perpendicular equilibrium points, where the coordinates were taken as
(PxLPi

4−, PyLPi
4−) and (PxLPi

4+, PyLPi
4+), i = 1, 2. We observed that the coordinates PxLPi

4+,

PyLPi
4+, and PxLPi

4− increased, and PyLPi
4− decreased as we increased the value of µ. The

inline equilibrium points (IxLPi
4−, IyLPi

4−) and (IxLPi
4+, IyLPi

4+) are shown in Table 8.

Furthermore, we observed that IxLPi
4−, IyLPi

4−, and IxLPi
4+ increased as µ increased,

whereas IyLPi
4+ decreased as µ increased. Table 9 represents the perpendicular equilibrium

points near L5, and (PxLPi
5+ PyLPi

5+) and (PxLPi
5−, PyLPi

5−) are coordinates in which PxLPi
5−,

PyLPi
5−, and PxLPi

5+ increased and PyLPi
5+ decreased as µ increased. Finally, the coordinates

of the inline equilibrium points are shown in Table 10. (IxLPi
5+, IyLPi

5+) and (IxLPi
5−, IyLPi

5−)
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are the coordinates, and we observed that IxLPi
5+, IyLPi

5+) and (IxLPi
5−) increased and IyLPi

5−
decreased as the value of µ increased.

Table 7. Perpendicular equilibrium solution of the restricted 2 + 2 body problem near L4.

µ PxLP1
4− PyLP1

4− PxLP1
4+ PyLP1

4+
PxLP2

4− PyLP2
4− PxLP2

4+ PyLP2
4+

0.0001 −0.49990159842961 0.86602249507265 −0.49989840157039 0.86602803274910
−0.50005984296138 0.86574838008869 −0.49974015703862 0.86630214773306

0.0010 −0.49900159770815 0.86602249376500 −0.49899840229185 0.86602803393550
−0.49915977081539 0.86574825532526 −0.49884022918461 0.86630227237524

0.0100 −0.49000159029866 0.86602248059246 −0.48999840970134 0.86602804590512
−0.49015902986560 0.86574699761614 −0.48984097013440 0.86630352888144

0.1000 −0.40000149309951 0.86602233889207 −0.39999850690049 0.86602817663806
−0.40014930995065 0.86573337046563 −0.39985069004935 0.86631714506449

Table 8. In-ine equilibrium solution of the restricted 2 + 2 body problem near L4.

µ IxLP1
4− IyLP1

4− IxLP1
4+ IyLP1

4+
IxLP2

4− IyLP2
4− IxLP2

4+ IyLP2
4+

0.0001 −0.49978629067686 0.86595962036838 −0.50001370932314 0.86609090745337

−0.48852906768613 0.85946090966168 −0.51127093231387 0.87258961816007

0.0010 −0.49894714879015 0.86599478074186 −0.49905285120985 0.86605574695864

−0.49371487901505 0.86297695301132 −0.50428512098495 0.86907357468918

0.0100 −0.48997516675820 0.86601107095682 −0.49002483324180 0.86603945554077

−0.48751667582044 0.86460603405128 −0.49248332417956 0.86744449244630

0.1000 −0.39998667432169 0.86601844124247 −0.40001332567831 0.86603207428765

−0.39866743216923 0.86534360550600 −0.40133256783077 0.86670691002412

Table 9. Perpendicular equilibrium solution of the restricted 2 + 2 body problem near L5.

µ PxLP1
5+ PyLP1

5+ PxLP1
5− PyLP1

5−
PxLP2

5+ PyLP2
5+ PxLP2

5− PyLP2
5−

0.0001 −0.49989840157039 −0.86602803274910 −0.49990159842961 −0.86602249507265
−0.49974015703862 −0.86630214773306 −0.50005984296138 −0.86574838008869

0.0010 −0.49899840229185 −0.86602803393550 −0.49900159770815 −0.86602249376500
−0.49884022918461 −0.86630227237524 −0.49915977081539 −0.86574825532526

0.0100 −0.48999840970134 −0.86602804590512 −0.49000159029866 −0.86602248059246
−0.48984097013440 −0.86630352888144 −0.49015902986560 −0.86574699761614

0.1000 −0.39999850690049 −0.86602817663806 −0.40000149309951 −0.86602233889207
−0.39985069004935 −0.86631714506449 −0.40014930995065 −0.86573337046563

Table 10. The inline equilibrium solution of the restricted 2 + 2 body problem near L5.

µ IxLP1
5+ IyLP1

5+ IxLP1
5− IyLP1

5−
IxLP2

5+ IyLP2
5+ IxLP2

5− IyLP2
5−

0.0001 −0.50001370932314 −0.86609090745337 −0.49978629067686 −0.86595962036838
−0.51127093231387 −0.87258961816007 −0.48852906768613 −0.85946090966168

0.0010 −0.49905285120985 −0.86605574695864 −0.49894714879015 −0.86599478074186
−0.50428512098495 −0.86907357468918 −0.49371487901505 −0.86297695301132

0.0100 −0.49002483324180 −0.86603945554077 −0.48997516675820 −0.86601107095682
−0.49248332417956 −0.86744449244630 −0.48751667582044 −0.86460603405128

0.1000 −0.40001332567831 −0.86603207428765 −0.39998667432169 −0.86601844124247
−0.40133256783077 −0.86670691002412 −0.39866743216923 −0.86534360550600
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4. Stability of Motion Near Equilibrium Points

We found four paired equilibrium positions around each of L4 and L5. In this section,
we analyze the stability of the infinitesimal body P1. Let (x0, y0) be any equilibrium point
of particle P1, and δ and ζ be small perturbations in the x and y directions, respectively, i.e.,
x1 = x0 + δ and y1 = y0 + ζ,

δ̈− 2nζ̇ =
1

µ1
Ux1(x0 + δ, y0 + ζ) =

1
µ1

(δU0
x1x1

+ ζU0
x1y1

), (21)

ζ̈ + 2nδ̇ =
1

µ1
Uy1(x0 + δ, y0 + ζ) =

1
µ1

(δU0
y1x1

+ ζU0
y1y1

). (22)

The equations can be written in matrix form as Ẋ = AX, i.e.,
δ̇
ζ̇
δ̈
ζ̈

 =


0 0 1 0
0 0 0 1

1
µ1

U0
x1x1

1
µ1

U0
x1y1

0 2n
1

µ1
U0

x1y1
1

µ1
U0

y1y1
−2n 0




δ
ζ
δ̇
ζ̇


The characteristic equation of the matrix may be reduced to

λ4
1 + (4n2 − 1

µ1
U0

x1x1
− 1

µ1
U0

y1y1
)λ2

1 +
1

µ2
1
(U0

x1x1
U0

y1y1
−U0

y1x1

2
) = 0. (23)

Solving Equation (23), we have,

λ1,2 = ±
(

b−
√

b2 − 4c
2

) 1
2

, (24)

λ3,4 = ±
(

b +
√

b2 − 4c
2

) 1
2

, (25)

where, b = 4n2
1 −

1
µ1

U0
x1x1
− 1

µ1
U0

y1y1
and c = 1

µ2
1
(U0

x1x1
U0

y1y1
−U0

y1x1

2
).

We note that Equations (24) and (25) are the eigenvalues of the characteristic
Equation (23). With the help of these eigenvalues, we can find the stability of particle P1.

4.1. Stability at Collinear Points

The stability of the collinear equilibrium point of R2+2BP can be approximated by
Equation (23), with condition y1 = y2 = 0, i.e.,

U0
x1x1

= µ1

(
n +

2(1− µ)

|x1 − µ|3 +
2µ

|x1 − µ + 1|3 +
µ2

|x1 − x2|3

)
+

3Mbx2
1(

T2 + x2
1
) 5

2

− Mb(
T2 + x2

1
) 3

2
, (26)

U0
y1y1

= µ1

(
n− (1− µ)

|x1 − µ|3 −
µ

|x1 − µ + 1|3 −
µ2

|x1 − x2|3

)
− Mb(

T2 + x2
1
) 3

2
, (27)

and

U0
x1y1

= 0, (28)

for i = 1. Consequently, b2 − 4c > 0, and hence, the characteristic equation yields at least
one positive real root. This results in the instability at the collinear points.
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Tables 4–6 provide the collinear equilibrium points for the following systems: Sun–
Saturn with the Kuiper belt, Sun–Mars with an asteroid belt, and the Proxima Centauri
system with a dust disc. With the help of these collinear equilibrium points, we calculated
the stability of these systems using Equations (23)–(28). We found that real nonzero
eigenvalues occur with opposite signs and purely imaginary eigenvalues with opposite
signs. Thus, the collinear equilibrium points have a saddle×center behavior [25], i.e., all
collinear equilibrium points are unstable. Again, as shown in Figure 7, we selected the
Sun–Saturn system with the Kuiper belt with µ1 = 10−7, and plotted the eigenvalues
against µ2 ∈ (10−10, 10−7). Continuous lines indicate the nonzero real parts of eigenvalues,
denoted as α, and the dashed lines represent the nonzero imaginary parts of eigenvalues,
denoted as β. Figure 7a,b presents the stability near L1, Figure 7b,e displays the stability
near L2, and the stability near L3 is shown in Figure 7c,f. We can observe that all figures have
a nonzero positive α, and thus all collinear points are unstable in the considered system.
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Figure 7. Eigenvalues versus µ2 ∈ (10−10, 10−7) of the Sun–Saturn system in the presence of the
Kuiper belt effect for collinear equilibrium points with µ1 = 10−7. Continuous lines indicate the
real parts of the eigenvalues, and dashed lines denote the imaginary parts of the eigenvalues for
collinear points. (a) Eigenvalues versus µ2 of equilibrium point left to L1. (b) Eigenvalues versus µ2 of
equilibrium point right to L1. (c) Eigenvalues versus µ2 of equilibrium point left to L2. (d) Eigenvalues
versus µ2 of equilibrium point right to L2. (e) Eigenvalues versus µ2 of equilibrium point left to L3.
(f) Eigenvalues versus µ2 of equilibrium point right to L3.

4.2. Stability at Noncollinear Points

The stability of the triangular restricted problem of 2 + 2 bodies may be approximated
by Equation (23), which is calculated for i = 1 with the help of the following equations:

U0
x1x1

= µ1

(
n +

3(1− µ)(x1 − µ)2

((x1 − µ)2 + y2
1)

5
2
− 1− µ

((x1 − µ)2 + y2
1)

3
2
+

3µ(x1 − µ + 1)2

((x1 − µ + 1)2 + y2
1)

5
2

− µ

((x1 − µ + 1)2 + y2
1)

3
2

)
+

3µ1µ2(x1 − x2)
2

((x1 − x2)2 + (y1 − y2)2)
5
2

(29)

− µ1µ2

((x1 − x2)2 + (y1 − y2)2)
3
2
+

3Mbx2
1(

T2 + x2
1 + y2

1
) 5

2
− Mb(

T2 + x2
1 + y2

1
) 3

2
,

U0
x1y1

= µ1

(
3(1− µ)(x1 − µ)y1

((x1 − µ)2 + y2
1)

5
2

+
3µ(x1 − µ + 1)y1

((x1 − µ + 1)2 + y2
1)

5
2

)

+
3µ1µ2(x1 − x2)(y1 − y2)

((x1 − x2)2 + (y1 − y2)2)
5
2
− 3Mbx1y1(

T2 + x2
1 + y2

1
) 5

2
, (30)

U0
y1y1

= µ1

(
n +

3(1− µ)y2
1

((x1 − µ)2 + y2
1)

5
2
− 1− µ

((x1 − µ)2 + y2
1)

3
2
+

3µy2
1

((x1 − µ + 1)2 + y2
1)

5
2

− µ

((x1 − µ + 1)2 + y2
1)

3
2

)
+

3µ1µ2(y1 − y2)
2

((x1 − x2)2 + (y1 − y2)2)
5
2

(31)

− µ1µ2

((x1 − x2)2 + (y1 − y2)2)
3
2
+

3Mby2
1(

T2 + x2
1 + y2

1
) 5

2
− Mb(

T2 + x2
1 + y2

1
) 3

2
.
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The characteristic Equation (23) provides the eigenvalues to study the stability of
the noncollinear equilibrium points in the presence of the planetesimal belt effect. The
kinds of roots of Equation (23) depend on the parameters µ, µ1, µ2, Mb, and T. The
noncollinear equilibrium points are shown in Tables 11–14 for different planetary systems.
We analyzed the stability of th noncollinear equilibrium points using Equations (23)–(28),
and we found that the real nonzero eigenvalues occur with opposite signs and purely
imaginary eigenvalues occur with opposite signs. Thus, the noncollinear equilibrium
points have a saddle×center behavior.

In Figures 8 and 9, for the Sun–Saturn system with the Kuiper belt with µ1 = 10−7,
we plot the eigenvalues against µ2 ∈ (10−10, 10−7). Figure 8 describes the stability near
L4. Figure 8a,b presents the eigenvalues of the perpendicular equilibrium points, and
Figure 8c,d depicts the eigenvalues of the inline equilibrium points near L4. It can be
observed in Figure 8a–d that real nonzero positive eigenvalues exist; thus, all noncollinear
equilibrium points near L4 are unstable in the considered system. Similarly, in Figure 9, we
plot the eigenvalues of the equilibrium positions near L5. Figure 9a,b shows the eigenvalues
of the perpendicular equilibrium points, whereas Figure 9c,d depicts the eigenvalues of
the inline equilibrium points. Clearly, it can be observed that at least one nonzero positive
real part α of the eigenvalue exists. Thus, all equilibrium positions are unstable for the
considered system.

Table 11. Perpendicular equilibrium solution near L4 of different planetary systems.

µ PxLP1
4− PyLP1

4− PxLP1
4+ PyLP1

4+
PxLP2

4− PyLP2
4− PxLP2

4+ PyLP2
4+

0.000286 −0.49971403464001 0.86602523034786 −0.49971396535999 0.86602535037870
−0.49974864000649 0.86596527494152 −0.49967935999351 0.86608530578504

0.000031 −0.49996903464443 0.86602524927065 −0.49996896535557 0.86602536928619
−0.50000364442855 0.86596530150765 −0.49993435557145 0.86608531704919

0.000000 −0.49999973464497 0.86602534317275 −0.49999966535503 0.86602546318647
−0.50003434496569 0.86596539632081 −0.49996505503431 0.86608541003841

Table 12. Inline equilibrium solution near L4 of different planetary systems.

µ IxLP1
4− IyLP1

4− IxLP1
4+ IyLP1

4+
IxLP2

4− IyLP2
4− IxLP2

4+ IyLP2
4+

0.000286 −0.49971226314910 0.86602428787884 −0.49971573685090 0.86602629284772
−0.49797714910011 0.86502280592385 −0.50145085089989 0.86702777480271

0.000031 −0.49996535971608 0.86602320762467 −0.49997264028392 0.86602741093216
−0.49632871608103 0.86392365553369 −0.50360928391897 0.86812696302315

0.000000 −0.49998261604195 0.86601553975479 −0.50001678395805 0.86603526660443
−0.48291574195066 0.85616197836003 −0.51708365804934 0.87588882799919

Table 13. Perpendicular equilibrium solution near L5 of different planetary systems.

µ PxLP1
5+ PyLP1

5+ PxLP5
5− PyLP1

5−
PxLP2

5+ PyLP2
5+ PxLP5

5− PyLP2
5−

0.000286 −0.49971396535999 −0.86602535037870 −0.49971403464001 −0.86602523034786
−0.49967935999351 −0.86608530578504 −0.49974864000649 −0.86596527494152

0.000031 −0.49996896535557 −0.86602536928619 −0.49996903464443 −0.86602524927065
−0.49993435557145 −0.86608531704919 −0.50000364442855 −0.86596530150765

0.000000 −0.49999966535503 −0.86602546318647 −0.49999973464497 −0.86602534317275
−0.49996505503431 −0.86608541003841 −0.50003434496569 −0.86596539632081
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Figure 8. Eigenvalues versus µ2 ∈ (10−10, 10−7) of th Sun–Saturn system in the presence of the
Kuiper belt effect near L4 equilibrium point with µ1 = 10−7. Continuous lines denote the real part of
the eigenvalues, and dashed lines denote the imaginary parts of the eigenvalues for collinear points.
(a) Eigenvalues of perpendicular equilibrium point near L4 toward smaller primary. (b) Eigenvalues
of perpendicular equilibrium point near L4 away from smaller primary. (c) Eigenvalues of inline
equilibrium point near L4 away from center. (d) Eigenvalues of inline equilibrium point near L4

toward center.

Table 14. Inline equilibrium solution near L5 of different planetary systems.

µ IxLP1
5+ IyLP1

5+ IxLP1
5− IyLP1

5−
IxLP2

5+ IyLP2
5+ IxLP2

5− IyLP2
5−

0.000286 −0.49971396535999 −0.86602535037870 −0.49971403464001 −0.86602523034786
−0.49967935999351 −0.86608530578504 −0.49974864000649 −0.86596527494152

0.000031 −0.49996896535557 −0.86602536928619 −0.49996903464443 −0.86602524927065
−0.49993435557145 −0.86608531704919 −0.50000364442855 −0.86596530150765

0.000000 −0.49999966535503 −0.86602546318647 −0.49999973464497 −0.86602534317275
−0.49996505503431 −0.86608541003841 −0.50003434496569 −0.86596539632081
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Figure 9. Eigenvalues versus µ2 ∈ (10−10, 10−7) of the Sun–Saturn system in the presence of the
Kuiper belt effect near L5 equilibrium point with µ1 = 10−7. Continuous lines denote the real part of
the eigenvalues, and dashed lines denote the imaginary parts of the eigenvalues for collinear points.
(a) Eigenvalues of perpendicular equilibrium point near L5 toward smaller primary. (b) Eigenvalues
of perpendicular equilibrium point near L5 away from smaller primary. (c) Eigenvalues of inline
equilibrium point near L5 away from center. (d) Eigenvalues of inline equilibrium point near L5

toward center.

5. Conclusions

In this study, we considered the effect of the planetesimal belt on the restricted problem
of 2 + 2 bodies in a rotating coordinate system. In the absence of the planetesimal belt
effect, i.e., Mb = 0, the proposed system coincides with the system obtained by Whipple [5].
Again, if we consider P1 and P2 as the single minor body, the system will convert into the
CRTBP. The problem possesses 14 paired equilibrium positions around the five equilibrium
points of the CRTBP. The main highlights of work can be summarized as:

• Dynamic analysis of the perturbed restricted problem of 2 + 2 bodies;
• Existence and stability analysis of both collinear and noncollinear equilibrium points;
• Description of the effect of the planetesimal belt on the motion in the proximity of

equilibrium points.

The effect of the planetesimal belt on the equilibrium points and the variation in their
distance from Lj, j = 1, 2, 3, 4, 5 were studied for some fixed parameter Mb = 3.7× 10−7

and T = 0.11, which we compared with the unperturbed R2+2BP. For mass parameter
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µ1 = µ2 = 10−2, the distance of collinear equilibrium points d(L1, LPi
1±), i = 1, 2 increases,

and d(L2, LPi
2±) and d(L3, LPi

3±) decrease with the variation in µ. The distance d(L4, ILPi
4±) at

the inline equilibrium points increases monotonically, but the distance d(L4, PLPi
4±) at the

perpendicular equilibrium decreases initially for some µ. After that, it increases when µ
approaches one-half. The distance of equilibrium points in the presence of the planetesimal
belt effect differs from the unperturbed distance. At the collinear point, the perturbed
distance d1 is greater than the unperturbed distance d2 at L1 and L3. Near L2, d1 < d2 for
µ < 0.153, and d1 < d2 for µ > 0.153. In the case of an inline and perpendicular equilibrium
point, d1 > d2 with the variation of µ. Tables 1–3 show that the collinear equilibrium points
LPi

1± decrease and LPi
2±, LPi

3± increases with the variation in µ ∈ (0, 0.5).
From the stability analysis, we found six paired collinear equilibrium points and eight

paired noncollinear equilibrium points. The stability of all collinear equilibrium points
was found to be unstable. The generalization of the stability of noncollinear equilibrium
points is difficult as five different types of parameters µ, µ1, µ2, Mb, and T are present in
the perturbed R2+2BP. The stability of noncollinear equilibrium points can be analyzed
numerically. The different considered planetary systems with suitable µ1 and µ2 were
found to be unstable.

In the framework of the perturbed restricted problem of 2 + 2 bodies by a planetesimal
belt, our obtained results can be outlined as:

• The existence of equilibrium points was examined for both collinear and noncollinear
points;

• The stability of motion around these points was studied;
• We compared the corresponding results of the perturbed and unperturbed models;
• The impact of a planetesimal belt was observed on collinear and noncollinear equilib-

rium points;
• All equilibrium points were found to be unstable, whereas the noncollinear equilib-

rium points were investigated numerically.

Furthermore, the restricted 2 + 2 bodies problem can be used as a credible model
to describe the capture of small bodies by a planet. If the small bodies are temporarily
captured in the Hill sphere of a smaller primary, they may become near enough to each
other to exchange energy so that one of them becomes regularly and permanently captured.
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