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Abstract: Control of assistive devices by voluntary user intention is an underdeveloped topic in the
Brain–Machine Interfaces (BMI) literature. In this work, a preliminary real-time BMI for the speed
control of an exoskeleton is presented. First, an offline analysis for the selection of the intention patterns
based on the optimum features and electrodes is proposed. This is carried out comparing three different
classification models: monotonous walk vs. increasing and decreasing change speed intentions,
monotonous walk vs. only increasing intention, and monotonous walk vs. only decreasing intention.
The results indicate that, among the features tested, the most suitable parameter to represent these
models are the Hjorth statistics in alpha and beta frequency bands. The average offline classification
accuracy for the offline cross-validation of the three models obtained is 68 ± 11%. This selection is also
tested following a pseudo-online analysis, simulating a real-time detection of the subject’s intentions
to change speed. The average results indices of the three models during this pseudoanalysis are of a
42% true positive ratio and a false positive rate per minute of 9. Finally, in order to check the viability
of the approach with an exoskeleton, a case of study is presented. During the experimental session, the
pros and cons of the implementation of a closed-loop control of speed change for the H3 exoskeleton
through EEG analysis are commented.

Keywords: exoskeleton; brain–machine interface; electroencefalographyc; event related (de)syncronization

1. Introduction

Motor disabilities due to stroke impairment or spinal cord injury are an increasing
problem in our modern society [1]. In the rehabilitation field, the current conventional motor
therapies consist of the execution of intensive and repetitive sessions to mobilize the affected
limb. These therapies are used to facilitate the recovery and learning postural movement
allowing to adapt the disability to the daily life. However, these procedures are turning
the focus on increasing cognitive involvement in order to increase the activation of neural
plasticity processes [2].

Cognitive involvement can be achieved in many ways, including through the recording
of brain activity establishing a direct connection between the mental task and the user.
There are many ways to decode user’s intention from brain activity [3]. For the detection of
motor intention, the most common paradigms are: Movement-Related Cortical Potentials
(MRCPs) and Event-Related (De)Synchronization (ERD/ERS), each with different latency
and frequency characteristics regarding the eliciting event. MRCP are associated with
low frequency changes (0.05–3 Hz) occurring as early as 0.5–2 s. ERD/ERS is described
as a change of power in the alpha (8–12 Hz) and beta (13–30 Hz) bands. This event is
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temporally characterized up to 2 s before the self-paced movement [4]. Both are associated
with movement imagination and execution.

Concerning the practically decodification of both potentials, MRCP provides timing
information about movement stages and planning execution, but it is very unstable against
noise and not so useful in single trial analysis [5]. On the other hand, ERD/ERS does
not provide precise timing information about different stages of movement planning,
preparation and execution, but ERD/ERS has been shown to be detectable from single trial
EEG [6] and less variable to noise than MRCP [7].

These qualities of the ERD/ERS potential allow prediction of motor intention and
could be useful for assisting the user’s movement. This connection between this decoding
potential recorded in the scalp and the motor execution is called Brain–Machine Interface
(BMI). The information is registered by noninvasive electroencephalography (EEG) and the
interpretation of the patterns extracted from it can be used to send commands to an assistive
device. This can be used to control devices such as a weelchair or an exoskeleton and help
non-able bodied subjects not only from rehabilitation, but assistance perspectives. Both
approaches have been studied in the literature: the rehabilitation approach is focused in
the BMI neuroplasticity elicitation [8]; and the assistance, more focused on the control loop
decision efficiency [9]. The ERD/ERS intention paradigm can facilitate the device adaptation
in different gait scenarios. Since most of the neural changes appear before the onset of
movement, the assistive movement appears more natural and eliminates undesirable delays
and frustrating waits. The possibility of using BMIs for movement assistance has led to the
study of EEG-encoded movement patterns. There are several studies analyzing different
lower-limb motion controls, for example: start–stop, change direction, stand-up/sit-down
and change speed.

The decoding of start–stop walking is analyzed in Ortiz et al. in offline and pseudo-
online analysis. In the study, the data window was chosen both in an interval of −2 to
2 s after it. The Stockwell transform and the empirical mode decomposition (EMD) [10]
were used to extract time-frequency features. In Sburlea et al. [11], start walking EEG was
collected and analyzed in pseudo-online methology using a window from −1.5 to 0 s before
the movement, performing an unbalancing class training. The temporal MRCP and spectral
ERD/ERS characteristics were tested separately and in combination, with a predominance
of the influence precision of the MRCP features. In Shafiul et al. [6], the temporal analysis
interval was chosen between−2 s to 0 s before the movement onset, as an special subdivided
windows’ feature extraction method. All Hjorth parameters were computed and a pseudo-
online analysis was performed. In [12], a wavelet transform analysis was performed in
the same procedural experiment. Both experiments [6,12] work with the Artifact Subspace
Reconstruction (ASR) filter and a baseline correction for the pseudo-online Linear Support
Vector Machine (SVM) classification. However, the former one has been reported as a huge
gap to bridge in real-time applications. In [13], another gait-stop intention paradigm was
performed with ASR and combining common spatial pattern (CSP) and linear discriminant
analysis classification.

In [14], the change of direction is studied offline using a window prior to the change,
a KNN classifier differentiates a large and varied number of features. In [15], a protocol
for an exoskeleton control based on the decoding of the EEG signal is presented. It tries
to differentiate between four motion classes (walk, turn-right, stop and turn-left). This is
done by a pseudo-online analysis using a MRCP paradigm with ASR filtering and multiple
kernel learning, reporting high accuracy rates. However, the protocol marks when the
user should perform the action, not allowing a free intention of the subject. This makes
the signals susceptible to possible Event Related Potentials (ERP). A similar protocol is
performed at [16], with the same motor states analyzed, but the MRCP patterns are reduced
with local fishers’s discriminant and classified with an unsupervised Gaussian Mixture
Model (GMM).

Finally, the change of speed has also been analyzed. In [17], Lisi et al. study the
correlation between the EEG and increment/decrement speed changes. In the offline
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analysis, the speed change window is chosen between −4 and 4 s after the change, while
the constant speed window is chosen between −12 and −4 s. reported suppression in
mu rhythm ranging from −1 to 3 s, nevertheless the largest magnitude of ERD/ERS is
located in the mu band between 0.5 and 2 s and beta rhythm starting near the onset and
ending at 2 s. The most studied approach of all these is the start and stop one. This action
is very interesting for voluntary gait control. Regarding closed-loop control, the relevant
investigations in the literature are:

The aforementioned research in [13] proposes a protocol to decode start/stop inten-
tions from EEG signals based on ERD/ERS features in a pseudo-online methodology with
an exoskeleton. It reports a TP of 89.0 ± 0.8% and FP/min of 13.6 ± 0.4. closed-loop real-time
detection results report a TP of 92.3% and a FP/min ratio of 28.4 ± 35.2. In addition, in
the work of Kilicarslan et al. [16] the closed-loop only is performed for the walk and stop
patterns. Although the decoding results are close to 100%, reliable metrics are not reported.

However, the modulation of the transition between gait states, such as direction or
speed changes are a less researched topic and there are not many examples in the literature.
Training the model with the exoskeleton is a critical point in these paradigms. In [15,16],
marks on the ground are used to instruct the subject to perform the change at a certain point.
The model must be trained with data acquired with the exoskeleton, so that later it can be
tested in closed-loop control efficiently and with good performance [18]. No closed-loop
studies were found for these paradigms. This indicates that there is a clear gap on this
approach in the literature and that further research is needed for the development of robust
closed-loop models.

This work tries to close this gap developing a closed-loop experiment to detect the
intention of changing speed moments before the subject has executed it. The objective is to
improve the tool to a viable stage for its posterior use in non-able bodied subjects. With
this in mind, several studies are performed. In the first one, a group of features is analyzed
offline in a wide spectrum of frequency bands. This is used to identify the parameters that
maximize the differences between the mental states in three different models: monotonous
walk vs. increasing and decreasing change speed intentions, monotonous walk vs. only
increasing intention, and monotonous walk vs. only decreasing intention. After this, the
combination of the optimized features is analyzed by a pseudo-online approach previous
to its test in real time for the closed-loop control of an H3 exoskeleton.

The paper is organized as follows. Section 2 describes the methods employed for
registering the EEG, offline analysis for design of the BMI, and pseudo-online validation
methodology. In addition, online closed-loop BMI protocol and operation is presented.
Section 3 describes the results for both the offline and pseudo-online analysis that are used
to parameterize the online closed-loop BMI of which results of the experimental study are
also shown. Section 4 summarize the results of the approach and propose improvements
and lines of advance. Finally, Section 5 summarizes the main conclusions of the paper.

2. Materials and Methods

This section provides detailed information about the experimental protocols, equip-
ment and methodology for data acquisition and signal processing.

2.1. Subjects

Five healthy subjects, with an average age of 25.4 ± 3.5 years (1 female and 4 males)
participated in the study. The subjects reported no diseases and they participated volun-
tarily in the study by giving their informed consent according to the Helsinki declaration
approved by the Ethics Committee of the Responsible Research Office of Miguel Hernandez
University of Elche (Spain).

2.2. Equipment

For the EEG data recording, a 32 electrodes system actiCHamp (Brain Products GmbH,
Germany) was used (see Figure 1). Signals were transmitted wirelessly by a Move trans-
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mitter to the actiCHamp. The electrodes registered EEG activity through 27 noninvasive
active electrodes following the international 10-10 system distribution (F3, FZ,FC1, FCZ,
C1, CZ, CP1, CPZ, FC5, FC3, C5, C3, CP5, CP3, P3, PZ, F4, FC2, FC4, FC6, C2, C4, CP2,
CP4, C6, CP6, P4). One of the electrodes was placed on right ear lobe for reference and an
additional electrode acted as ground on the left ear lobe. The other 4 electrodes were placed
to record electrooculography (EOG) activity in bipolar configuration (HR, HL, VU, VD).
A medical rack was placed on the head to mitigate electrode and wire oscillation due to
motion. Signals were registered at 500 Hz. Seven inertial measurement units (IMUs) (Tech
MCS V3, Technaid, Spain) were placed for registering the walking parameters at 50 Hz
sampling (Figure 1). Four of them, placed on shins and foots, were used for processing the
actual speed change moment.

Figure 1. Experimental setup for E1 and E2 experiments. (a) E1: The subjects use the EEG acqui-
sition equipment and IMUs. (b) E2: The subjects use in addition the H3 exoskeleton. During both
experiments, subjects walk during 10–12 s at a reduced constant speed and then, at their own will,
increase or decrease their current speed. After that, they continued walking for 2–3 s before stopping.
This repetition was performed several times. This figure shows the approximate areas (between red
lines) of the different phases of the protocol in both walking directions of the experimental room.
Additionally, in E2 protocol, the exoskeleton was in passive mode for the model training while in the
test phase was controlled in closed-loop.

For the closed-loop experiment, an H3 exoskeleton (Technaid, Spain) was used to
assist the user in the speed change intention.

2.3. Experimental Procedure Training

In this study, two protocols were used. In E1 (Figure 2a), data were recorded from five
users in which EEG was collected in states of monotonous walk and change intention to
subsequently analyze them in offline and pseudo online analysis. A second experiment
E2, see (Figure 2b), was also recorded for the same two states while exoskeleton was
controlled in closed-loop. E1 protocol was also used to obtain the training trials of the EEG
classification model that would be used to control the exoskeleton in closed-loop. During
these training trials the exoskeleton was in passive (non-assistance) mode.
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Figure 2. On the left of the image, the protocol times for training trials of experiments (a) E1 (without
exoskeleton) and (b) E2 (with passive exoskeleton) are shown. Without assistance or any kind
of feedback, the user brain signal is recorded. In test training trials (right side of the image), the
exoskeleton is controlled in closed-loop active mode, changing the speed of the exoskeleton depending
on the real-time decoding of the subject’s intention. This second protocol allows to validate the BMI
obtaining the assessing metrics of its effectiveness executing the mental task in an unplanned way.

In the training phase for both E1 and E2 the users performed the following process
for each trial. First 15 s were used for H∞ convergence [19]. Then, they started walking
at a constant speed during 10–12 s till a voluntarily increase or decrease of speed within a
specified area (as a guideline) was performed, then speed was maintained between 4 and
6 s. The first two training trials were used to set the speed. This helps the subject to learn
how to perform the increment within the delimited (but diffuse) area in a wide interval.
It was emphasized that the subject did not think beforehand to make the change and that
the view was always set forward. This was repeated 8 more times. During all the trials, a
technical assistant followed the subject from behind with the acquisition equipment on a cart
(Figure 1). As a result of the 10 trials, 80 speed changes were registered, with approximately
an statistical distribution of 50% increases and 50% decreases.

2.4. Analysis IMUs

To create a predictive model that could detect the brain patterns associated with the
intention of changing the walking speed, the registered EEG signal must be properly labeled
according to the IMUs information (Figure 1). For the four selected IMUs, the calculation of
the acceleration modulus the three axes were used: X, Y and Z. A moving mean (movmean
in MATLAB) filter was applied to the four signals with a processing size equal to the IMUs
sampling period and a three order Savitzky–Golay filter. The average of each signal was
suppressed and the four signals were averaged. In order to label the speed changes, all
peaks of the processed signal (findpeaks MATLAB function) were detected after the first six
steps to avoid the first slope when the subject starts walking (Figure 3). The difference in
amplitude between each point and the previous point was also computed. The first point
of the maximum difference between peaks (see red points in Figure 3) was selected as the
change instant. This value was resampled to the frequency sample of the EEG.
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Figure 3. Example of the selected processing windows used for offline validation and classification
model creation. The figure shows a 15 seconds segment of the IMUs signal filtered and processed
from Subject 2. Increase (+) shows the signal in a positive acceleration repetition. Decrease (−) shows
the signal in a negative acceleration repetition. The pink dotted line marks the labeled point of
change, the blue window marks the normal walking window class and the red window shows the
class labeled as change of speed. The IMUs information was used to create the BMI prediction model
for E1 and E2 labeling the different class windows.

It was also detected when the first walking step was performed in each repetition,
following a segmentation method [20].

To characterize the acceleration direction, the following rule was applied: If the max-
imum value of the repetition is twice the average of the first two seconds after the first step, it is
labeled as Increase. If not, the repetition is labeled as Decrease.

2.5. Offline BMI

In this section, the methodology used to analyze the brain activity (recorded as the pro-
tocol methodology explained in Section 2.3) and create the model is explained. Previously
to the recording, a high pass filter with a 0.1 Hz cutoff frequency and a notch filter at 50 Hz
(remove power line interference) were applied by actichamp hardware. The preprocessing
steps were applied sample by sample to the entirely signal. An adaptive artifact EOG
removal algorithm H∞ [19] was used, the algorithm parameters were: γ = 1.15, q = 1 ×
e−10, p0 = 0.5. Then, the EEG channel information was improved thanks to a Laplacian
filter. Subsequently, a series of state variables butterworth band-pass filters of order 4 were
applied to analyze different methods for the extraction of characteristics in these bands.

Next, the two different classes were segmented thanks to the IMUs information (check
the procedure explained in Section 2.4). The speed change class consisted of the EEG data
previous to the detected change point by the IMUs (pink line in Figure 3) between −1.45 to
−0.2 s (avoiding taking the right moment in which the change is made). The walking class
was selected between −6 to −4.75 s, where the person walks at a constant speed (Figure 3).

A repetition should be discarded if it did not comply any of the following premises:

• Something goes wrong during the protocol: some strange noise, unexpected event of
the subject or detachment of the IMUs.

• Failure of IMUs algorithm: the algorithm of the IMUs did not correctly detect the
moment of change. This could be easily detected by an algorithm that aligns the
signals with respect to the tagged point.
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• Time failure: there was not enough time between the algorithm detection of the start
of the walk (the third step) and the area of change (>6 s). With this rule it was avoided
that in the walking class there was information close to the first step.

On Table 1, the number of valid repetitions and total repetitions are specified by subject
and each of the models considered: Increase, Decrease and Both.

Table 1. Number of valid repetitions of each subject for the three types of models/total repetitions
performed for each type of model.

Valid Repetitions

Increase Decrease Both

S1 31/43 32/37 63/80
S2 45/48 31/32 76/80
S3 44/45 32/35 76/80
S4 45/46 34/34 79/80
S5 39/41 39/39 78/80

2.5.1. Features

Temporal and frequency single features were extracted for each window class: The
power spectrum density (PSD) (pburg in MATLAB):

Sxx(Ω)
∞

∑
m=−∞

Rxx[m]e−jΩm (1)

where Rxx is the autocorrelation function that can be reconstructed from its power spectrum
Sxx(Ω), the PSD estimates the power distribution in each frequency band.

The Shannon entropy:

ShannonEntropy = −
N

∑
i=1
|Ci|2 loge|Ci|2 (2)

where N is the number of coefficients in the wavelet subband, Ci is the wavelet coefficient
having index i. The Shannon entropy measures the nonlinear properties of the signal, which
indicates signal variation at each frequency scale, that could be related to the ERD/ERS
process [21].

The first Weibull parameter:

y = f (x|a, b) = ba−bXb−1e−
x
a

b
(3)

where b is the scale parameter of the distribution and a is the shape parameter and X is a
continuous random variable. The Weibull distribution has been used as an indicator of a
physiological neural process [22,23].

The three Hjorth parameters, where y is the signal of one channel and t is the time:
Activity which represents the proportion of standard deviation of the power spectrum:

HJA = var(y(t)) (4)

Mobility which represents the mean frequency:

HJM =

√√√√var( dy(t)
dt )

var(y(t))
(5)
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Complexity which represents the changes in frequency:

HJC =
Mobility( dy(t)

dt )

Mobility(y(t))
(6)

Features were selected based on its common use in these type of studies [6,14,24] and
the possibility of being used with only a few samples per class.

Each of the features were computed in the different bands extracted with the state
variables band-pass filters: whole spectrum (8–40 Hz), alpha (8–14 Hz), low beta (15–22 Hz),
high beta (23–30 Hz), low gamma (31–40 Hz) and high gamma (41–60 Hz).

2.5.2. Electrode Selection

Each feature and model type combination was tested in the following electrode config-
urations based on supplementary, premotor and primary motor areas (see, Figure 4): All
(27 electrodes); Union (Fz, FC2, FC1, FC6, FC5, FC5, Cz, C1, C2, C4, C3), Left (Fz, FC1, FC5,
Cz, C1 and C3); Central (FC1, FC2, C3, Cz and C4); and Right (Fz, FC2, FC6, Cz, C2 and
C4). These combinations were chosen based on studies that compared these combinations
under similar conditions [25].

Figure 4. The image shows a map of the electrodes for each configuration analyzed. The positions in
green show the recorded EEG electrodes. The red ones indicate which of them were selected for each
configuration in the processing section.

2.5.3. Cross-Validation and Feature Selection

In this section, the proposed features and electrode configurations were tested in order
to check its capacity to detect the change of speed intention. This was done considering three
conditions: a model with both speed changes as a common class (increase and decrease
repetitions all together) vs. common speed walking state; and splitting the model for
increase vs. common speed walking state and decrease vs. common speed walking state.
The binary linear svm classifier (with a radial basis function kernel) was employed to obtain
the accuracy percentages of a k-fold cross validation. Each of the models (Increase, Decrease
or Both) was created with the repetitions considered as valid (see Table 1) minus those
used for testing, which were always eight. The class walk was labeled as 0 and the class
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change was labeled as 1. Depending on the result of the binary classifier, each repetition
was marked as a true or false event detection. Percentages of the total accuracies for walk
and change speed classes (Equation (7)) were computed. In addition, the balance index
(Equation (8)) related to the accuracy of both classes was assessed.

Acc =
Number of true event detection
Number of total event detection

(7)

balance = abs(
AccClassChange− AccTotal

AccClassChange
) (8)

To evaluate which were the best single features, 540 different configurations were
tested for each of the five subjects: three types of classification models (Both, Increase and
Decrease), six features, five electrode setups and six frequency bands. Only the results
over 10 for both indices, accuracy and balance (Equations (7) and (8)), were considered as
acceptable. The minimum value of accuracy to consider the model was acting over ran-
domness was established according to the paper [26]. The threshold (Equation (9)) depends
on the number of available samples (80 repetitions minus those neglected, Table 1). Results
of each feature in each band that exceed this threshold have been averaged regardless
of model classification, electrode combinations or subject (not all the configurations met
the criteria). Then, a selection of features were done according to two criteria: number of
times the features in the specific band was selected per user greater than the mean; and if
the average percentage result was over the median of values. With these conditions, six
features in different bands were selected.

RandomnessLevel = 0.5 + 1.96×

√
0.52

Numbero f ValidRepetition + 4
(9)

After this selection, to improve the classification performance based on individual
features, all possible combinations with 6 individual features were carried out 2 in 2 to
evaluate if more information by window could improve the results. This produced 15
combinations that were evaluated for the three types of classification models (Both, Increase
and Decrease) and the 5 electrode configurations. In total, 150 combinations were tested for
each user.

2.6. Pseudo-Online BMI

Once detected the best combination of features and electrode configurations for the
three types of classification models, the pseudo-online analysis was performed in order to
check them in a simulated real-time scenario.

No cross-validation was used in the pseudo-online analysis in order to simulate the
real-time conditions. This way, the model was created using the first eight trials with the
explained offline procedure and tested with the last two trials of each session with the
following procedure.

Trials were analyzed epoch by epoch, with a size of 625 samples (1.25 s), shifting
them every 100 samples (0.2 s) producing an effective 1.05 s overlap between epochs. The
preprocessing was done in the same way as in the offline model with the state variable
filters. However, in the pseudo-online analysis, the whole signal was processed, extracting
the features based on the electrode configuration that maximized the results (tested in
Section 2.5.3) and for each of the models (Both, Increments and Decrements). Meanwhile,
the classification of each window was only evaluated in the interval between points marked
as the beginning of walking and the change labeled (see Figure 5). Regarding the command
decision, a TP was computed if five consecutive epochs were identified as a speed change
class and the detection was detected at most one second before the actual IMUs detection
of the change, otherwise it would be considered as a FP. Taking into account the epoch
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size and shifting, the time window in which a TP can be considered valid before the actual
change contains information from [−2.25 s,−1.25 s] to [1.25 s,−0.2 s] previous to the change.

Figure 5. The pseudo-online metrics were evaluated from the start of the labeled start gait in the
IMUs signal (solid blue) until the change speed point (solid green). In red dots the decision of the
classifier based on the established metrics was marked according to the detected brain activity each
0.2 s. According to the metric, once an activation was detected, if it was detected between the blue
line and the pink line, it would be counted as a FP. On the contrary, if it was detected between
the pink line and the green line, it would be counted as a TP. On the left of the image appears a
repetition showing an increment with a FP and a correct activation. On the right of the image appears
a decreasing repetition with a FP and a correct activation

The number of successful changes, i.e., the TP rate of the test, could be defined as:

TP =
Number of true event detections

Number of true events
(10)

If one of the epochs was detected within the change range, a true event was computed
and the signal processing was stopped until the start of the next repetition. As a realistic
way to compute FP, once one was detected, the next one could not be computed until
at least two seconds passed. This helps to simulate that in a real-time scenario, as the
command is sent (to perform a feedback action), it is necessary to wait a while until the
next command can be sent again. As the normal walking time period has a duration of
8–10 s, the FP evaluation can be expressed as:

FPmin =
Number of false activations

walking time windows in minutes
(11)

Moreover, a ratio of TP to FP/min was computed. The higher the value of the ratio,
the better the evaluation. The value of the variable ratio is equivalent to the number of

TP
FP/min .

2.7. Closed-Loop BMI

The subject that achieved the best TP/FP ratio at E1, participated in the pilot closed-
loop experiment of the H3 exoskeleton (E2). The experiment only contemplated the inten-
tion of increasing speed. The H3 exoskeleton was used in two modes of assistance:

• Passive mode: It was used to create the model. The exoskeleton joints followed the
user’s gait pattern with zero torque compensation, so they had to make a significant
physical effort. In this mode, the user must walk at a constant speed and will change
to their own will.

• Active mode: It was used during closed-loop control in which the exoskeleton started
at a slow speed and when the BMI detected the intention of speed changing through
EEG decoding, a command was sent to the exoskeleton to increase its speed.
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To create the model, the register methodology was described in Section 2.3. The subject
started walking in passive mode and at a certain moment the speed was increased voluntary
by them. The IMUs were used to label the processing times in the same way than in E1 (see
Section 2.4). No modifications were applied for the IMUs segmentation algorithm between
the normal walk and the exoskeleton walk.

Signals were filtered and features extracted as in Section 2.5 was mentioned. The
classification model was created with 32 of the 40 repetitions recorded in passive mode, as
eight were discarded following the E1 rules. For the signal evaluation of the closed-loop
test, the process was similar to the one explained in Section 2.6.

The detailed protocol for the closed-loop trials (see Figure 2b)) can be summed up as:

• 15 s of H∞.
• High-pitched sound warns the user 1s before the activation of the exoskeleton.
• The exoskeleton activates at speed 1 (0.8 m/s) and no commands are allowed for 10 s.
• After that, the FP evaluation starts. During 8 s at speed 1 the BMI can send commands

to increase the speed depending on the brain activity.

– If one FP is detected, the BMI sends to the exoskeleton the change of speed
command during 4 s and returns to Wait/Exo stopped. If during this phase there
are no FP, an auditory signal indicates the start of user intention validation. The
subject was told that after the auditory signal they should wait at least 3 s before
attempting the change at their own will. In this period the BMI does not allow
commands to avoid the influence of the evoked potential.

• For the last 5 s, if a change is detected, the exoskeleton receives the command and
increases its speed to 2 (1.1 m/s) for 4 s and then stop the exoskeleton. The protocol
can be seen at Figure 2.

The exoskeleton activation time was extended from the theoretical 2 s considered
at pseudo-online analysis to 4 s, as it was necessary in order for the subject to notice the
difference in change between speed 1 and 2.

3. Results

The results of each of the tests and experiments presented above will be described in
detail below.

3.1. BMI Offline
3.1.1. Feature Selection Methodology

As specified in the previous section, 540 configurations were tested for Both, Increase
and Decrease classifier models. As it was mentioned in Section 2.5.3, those that met the
indicated criteria were used to analyze the most relevant features to differentiate the searched
potential: a feature is chosen if it is present for at least three subjects (value between brackets
in Table 2) and its average accuracy is over the median (63%). Using these criteria, six values
were chosen. The chosen features and bands configurations are highlighted in bold in
Table 2: HJA in band 8–14 Hz and in band 23–30 Hz, HJM in band 8–14 Hz, and HJC in
band 8–14 Hz, 15–22 Hz and 23–30 Hz. Pburg, Shannon and Weibull were the features with
the lower accuracies. Temporal features were much more effective than frequency features.

Averaging the band values in Table 2 for each feature, the band with the highest
percentage and the one that appeared the most was 8–14 Hz with a ratio of 2.16 and a
percentage of 64.24% being the second band 23–30 Hz with 53.31% and a ratio of 1.8.

For all the results that passed the acceptance criteria, a statistical analysis was carried
out to analyze differences between the model types: Both, Increments and Decrements, and
if there were differences between subjects:

• Model type in terms of average accuracy: Since data of each methodology did not
follow a normal distribution, as assessed by Shapiro–Wilk test, Kruskal–Wallis test
was used. It showed that the performance was different based on the methodology
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(p-value < 0.05). Post-hoc analysis revealed statistically relevant differences between
both increments and decrements (p-value < 0.05).

• Subject difference in terms of performance: Shapiro–Wilk test was applied to assess
the normality assumption of ANOVA. Data of every subject did not show a normal
distribution (p < 0.05), so Kruskal–Wallis test was employed . Results from this test
showed no significant differences among subjects (p-value > 0.05).

Table 2. Average of the accuracy of the features that among all the models exceeded the established
thresholds. In parentheses is shown the number of users it appeared. Selected features are in bold. If
they did not pass the inclusion criteria, it was indicated with “-”.

8–40 Hz 8–14 Hz 15–22 Hz 23–30 Hz 31–40 Hz 41–60 Hz

Pburg - 64.6 (1) 58.9 (1) - - -
EShnn 58.3 (1) 64.1 (1) - 61.8 (1) 64.5 (2) -

WP 68.7 (2) 64.5 (2) 61.8 (3) 60.9 (2) 63.2 (2) 63.7 (1)
HJA 61.6 (1) 65.2 (3) 62.7 (2) 63.0 (3) 68.4 (2) 61.1 (1)
HJM 63.9 (1) 64.2 (3) 64.8 (2) 64.6 (1) 61.6 (2) 58.3 (1)
HJC 59.8 (1) 63.0 (3) 63.8 (4) 63.6 (4) 61.8 (2) 61.9 (3)

3.1.2. Cross-Validation Analysis of Electrode Configurations and Combined Features

Among all the configurations tested and specific to E1, the best results for Single
features of the six selected and Combination features are shown in Table 3 for each model
type (Both, Increase and Decrease) and in different electrode configurations, depending on
the feature.

The values for the Combination features are higher than the Single features in general
for each of the subjects and classifier models. For the average of subjects and models, Single
features show an average accuracy of 63.3 ± 11.6%, while the Combination of features
shows a better average value of 67.9 ± 10.9%. The largest difference between Single and
Combination accuracies across subjects is shown in the model that uses only the Increase
class with a difference in accuracy of 5.6%. This difference is in Decrease of 4.4% and in
Both of 3.7%. The Combination configurations increase the results in all conditions, the
average improvement was 4.6%

The highest accuracy (see, Table 3) and the lowest standard deviation comparing
Combination and Single feature classification in user average is shown in the Combination
configuration for the Increase model, 72.9 ± 8.6%. In second place Both 66.1 ± 10.7% and
lastly Decrease 64.8 ± 13.5%.

Regarding the electrode configurations, the ratio of appearance of the computed
configurations in Table 3 is as follows: the All electrode configuration appears 12 times,
the Left appears 7 times, the Union appears 5 times, the Central appears 4 times and the
Right appears 2 times. Based only on the Combination features, the Central electrode
configuration, with an appearance ratio of 2, has an accuracy of 74.5%, while in second
place the All, with an appearance ratio of 5, has an accuracy of 68.5%. The All electrode
configuration is the most repeated in the Both and Increase models among all subjects
and regardless of Single or Combination: it appears in Increase 6 times and in Both 4. In
Decrease the Union electrode configuration is the most popular and appears 3 times.

The band that appears the most in Table 3 is 23–30 Hz with a total of 19 times. The
8–14 Hz is selected 15 times, less than the 23–30 Hz even though 3 features are selected
from the 8–14 band in the feature preselection (see Table 2). The one that appears the least
was 15–22 Hz, a number of 11 times, but only 1 feature (HJC) is selected in this band in the
preselection (see Table 2).

The HJA feature is selected in Table 2 in fewer bands than the HJC. However, going
back to Table 3 and putting together the times, HJA appears in Single 9 and in Comb 12
times for a total of 21 times, slightly more than HJC that appears a total of 20 times. HJC is
the second in appearance, with a high difference between the 16 times it appears in Comb
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and in Single, only 4. HJM is by far the one that appears the least with only 4 times, 2 in
single and 2 in Comb.

Regarding how the bands are distributed in the features (see Table 3): HJA between
Single and Comb has more representation in the 23–30 Hz band than in the 8–14 Hz band.
The HJC setting appears mostly in the 15–22 Hz band.

Regarding how the features are combined in Comb: HJA in combination with HJC are
the ones that appear the most for a total of 9 times, while HJC with HJC appear three times.
Other combinations appear only once, except HJM and HJM that has no appearance.

In summary, the HJA feature is the most representative feature in Single. When it is
combined it appears a lot in combination with the HJC. There is no significant combination
of these on fixed bands, however the HJA setting at 23–30 Hz and HJC at 15–22 Hz appear
repeated 3 times as HJA at 23–30 Hz and HJC at 8–14 Hz which also appear 3 times.

Based on the results, the Combination of features was chosen for the pseudo-online
assessment. The features chosen were those shown in Table 3, 2 features each per band and
in different electrode configurations.

Table 3. Comparative table of best results according to feature selection. The table compares the
best results for total accuracy depending on the paradigm and electrode configuration as Single or
Combined (Comb) for the offline analysis.

Both Increase Decrease

Feat. Chan. Acc.(%) Feat. Chan. Acc.(%) Feat. Chan. Acc.(%)

S1

Single HJA Union 63.4 ± 16.7 HJA All 68.8 ± 10.2 HJA Union 58.3 ± 9.5(8–14) (8–14) (23–30)

Comb

HJA

All 67.0 ± 8.6

HJA

All 70.3 ± 10.7

HJA

Left 66.7 ± 19.1(8–14) (8–14) (23–30)
HJA HJC HJC

(23–30) (8–14) (8–14)

S2

Single HJM Central 59.0 ± 14.4 HJC Central 64.6 ± 7.2 HJM Union 54.9 ± 11.2(8–14) (23–30) (8–14)

Comb

HJA

Union 64.6 ± 12.5

HJC

Central 77.1 ± 3.6

HJA

Union 65.0 ± 9.5(23–30) (15–22) (23–30)
HJC HJC HJC

(15–22) (23–30) (15–22)

S3

Single HJA All 66.7 ± 8.3 HJA All 67.2 ± 11.8 HJA All 62.5 ± 11.7(23–30) (23–30) (23–30)

Comb

HJA

All 68.1 ± 8.5

HJA

All 71.9 ± 13.0

HJA

All 65.0 ± 11.4(23-30) (23-30) (8-14)
HJC HJC HJC

(8–14) (15–22) (15–22)

S4

Single HJC All 58.3 ± 13.6 HJA All 67.2 ± 13.9 HJC Left 58.8 ± 7.1(15–22) (8–14) (15–22)

Comb

HJC

Left 66.0 ± 10.4

HJA

Central 71.9 ± 6.3

HJC

Left 60.0 ± 10.5(15–22) (8–14) (15–22)
HJC HJC HJC

(23–30) (23–30) (23–30)

S5

Single HJA Left 64.6 ± 13.6 HJA Left 68.8 ± 7.2 HJC Right 67.2 ± 17.2(23–30) (23–30) (15–22)

Comb

HJA

Left 64.6 ± 13.6

HJA

All 73.4 ± 9.4

HJM

Right 67.2 ± 17.2(23–30) (23–30) (8–14)
HJM HJC HJC

(8–14) (8–14) (15–22)

3.2. Pseudo-Online Results

The best combined feature configurations computed in offline methodology were
tested in pseudo-online validation, but with a different computation procedure as described
in Section 2.6. In Table 4, the pseudo-online results metrics are shown for each subject.
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Table 4. Pseudo-online results per user showing TP, FP/min and ratio ( TP
FP/min ) for the best Comb

(calculated in the offline analysis) feature and electrodes combination for Both, Increase and Decrease
paradigms.

S1 S2 S3 S4 S5

Bo
th

Features
HJA (8–14) HJA (23–30) HJA (23–30) HJC (15–22) HJA (23–30)

HJA (23–30) HJC (15–22) HJC (8–14) HJC (23–30) HJM (8–14)
All Union All Left Left

TP(%) 40.0 50.0 37.5 18.8 25.0
FP/min 11.1 10.5 5.0 8.2 4.6

ratio 3.6 4.8 7.5 2.3 5.4

In
cr

ea
se

Features
HJA (8–14) HJC (15–22) HJA (23–30) HJA (8–14) HJA (23–30)
HJC (8-14) HJC (23–30) HJC (15–22) HJC (23–30) HJC (8–14)

All Central All Central All
TP(%) 42.9 55.6 33.3 33.3 62.5

FP/min 9.9 17.9 5.6 3.8 9.1
ratio 4.3 3.1 5.9 8.8 6.9

D
ec

re
as

e Features
HJA (23–30) HJA (23–30) HJA (8–14) HJC (15–22) HJM (8–14)
HJC (8–14) HJC (15–22) HJC (15–22) HJC (23–30) HJC (15–22)

Left Union All Left Right
TP(%) 37.5 57.1 71.4 28.6 28.6

FP/min 15.5 12.3 15.5 10.0 7.7
ratio 2.4 4.6 4.6 2.9 3.7

On average, the TP for the three types of models were for Both: 34.4%, Increase: 45.5%
and Decrease: 44.6%. The average FP/min was for Both: 7.9, for Increase: 9.26 and for
Decrease: 12.2. The average TP vs. FP ratio were for Both: 4.3, Increase: 4.9 and for Decrease:
3.6. Although the differences are not very significant, the Both paradigm presents the lowest
FP of the three models and the one that shows the worst performance is Decrease. On
average, the model that achieved the highest value of TP and FP/TP was the one that used
only the Increment model.

Pseudo-online results were not equivalent to those shown in offline. The best con-
figurations per user in offline mode were not analogous to the best configurations in
pseudo-online mode. For instance, user S2 showed an offline accuracy for the Increase
model of 77.1 ± 3.6%, but the same setup tested in pseudo-online obtained the highest
FP/min with 17.9.

3.3. Exoskeleton Closed-Loop

The subject that obtained the best results in the pseudo-online analysis was S4, with
the combination of HJA(8–14)/HJC(23–30) features, the central electrodes configuration
and a ratio of 8.8. This was the reason why it was selected for the pilot test E2.

The E2 concept study was performed two weeks after the first E1 study. In E2, 40 repe-
titions of increment of the speed of the exoskeleton in passive mode were carried out during
the first phase for training the model, five trials of eight repetitions. For the creation of the
model, the first trial was ruled out, since the user was adapting to the use of this mode.
Thus, the model was created with 32 repetitions.

Regarding the testing with the exoskeleton in active mode, only six closed-loop repeti-
tions were performed due the user fatigue and to limit experimental duration. The training
process was long, the subject had to perform a lot of force to move the exoskeleton in
passive mode, being its control complex. This caused the experiment to be longer than
expected and the cause of the closed-loop repetition shortening.

Of the six repetitions performed in a closed loop, in the first 2, a false positive was
detected in the validation stage FP-Test (see Figure 6) 0.2 s and 3.4 s, respectively, after the
Commands-blocked, walk Speed 1 phase (see Table 5), while in the next two there were no FP
in the validation stage and in the waiting for user intention stage, 2.8 s and 3.8 s, respectively,
after the rejected part stage was activated correctly according to the user’s intention. In
repetitions 5 and 6, as in repetitions 1 and 2, 3.2 s and 1.4 s were activated incorrectly after
starting the stage.
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Table 5. Differences in seconds between FP-test task start and false positive activation and between
waiting user intention task start and activation of speed command 2 for the FP and TP cases.

Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5 Repetition 6

FP-test, walk Speed 1 0.2 s 3.4 s - - 3.2 s 1.4 s
Wainting user Intention - - 2.8 s 3.8 s - -

Figure 6. Repetitions 1, 2, 3 and 4 activation schema for the subject 4 at the E2 in the closed-loop
test. Repetitions 5 and 6 were similar to 1 and 2 repetitions. At the top of the image the order of the
tasks in color code as specified in Figure 2b). At the bottom of the image the activation pattern of the
exoskeleton. In blue the speed 1 stage where the BMI cannot send commands. In green the correct
speed phase (TP) and in red if it should not be activated as established (FP).

Counting the time that it was active without false activation and the total of 4 false
activations, the false positives in the 6 repetitions added up to a total of 9.92 FP/min, while
the number of TP was 33%.

4. Discussion

In this section, the peculiarities of previous works have been reviewed, in order to
analyze which are the factors that differentiate our work and what can be interpreted from
our results. The decoding of movement intention through EEG has been analyzed in the
bibliography attending to four criteria:

• The time window of the EEG information used. The intention has been analyzed only
with data signal before the point labeled as beginning of the movement [6,11–15] or
also data signal during and after it [10,17].

• Analysis of the cerebral activity to study the paradigm in asynchronous (offline,
pseudo-online) or synchronous (online) processing [13,15]. Asynchronous processing
studies simulate the control of the rehabilitation/assistive device in open-loop while
synchronous BMIs can control it in open or closed-loop.

• Most EEG-based intent studies show an analysis of brain activity without taking into
account the implementation part of the BMI, which requires a closed-loop analysis
with visual or auditory feedback [27] or sensitive motor feedback provided by an
assistive control devices [13,15].

• Level of planning in which the movement was attempted: some studies establish an
acoustic cue or mark when the subjects should perform the intention [15,16,28], other
determine a planning period based in visual cues in which the users take the decision
to perform the action [11,17], while other perform the action by their own will within
a region limitation, like in this study [14], or with less conditions [10,12,29].
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There are not many studies that analyze the intention in a task that switches from
motion to motion, and those that analyze in the MRCP band can be greatly compromised by
low-frequency artifacts. In this study, it has been reported the feasibility of decoding the
user intention at bands combinations 8–14 Hz, 15–22 Hz and 23–30 Hz in speed changes for
either Increase, Decrease or Both. The closed-loop control is not yet reliable enough to create
an interface capable of assisting or designing rehabilitation therapies focused on patients.
To address this problem, this work has proposed an interface with protocols capable of
operating in real time and producing decision making according to the user’s intention in
some of the cases. Some of the key aspects of this work will be discussed below.

4.1. Offline Cross Validation

In this work, temporal descriptors have been used for feature extraction versus fre-
quency descriptors due to their better performance. Other works [6] have explored these
Hjorth descriptors with different windowing methodologies that in our opinion might not
be suitable for a closed-loop real-time test.

Regarding offline analysis and feature selection, as shown in Table 2, the Hjorth features
are the most relevant, being the bands that contribute the most those in the ranges between
8 and 14, 15–22 and 23–30 Hz. These bands had more configurations that passed the average
level of randomness and therefore, they are significant for the distinction of both classes.

The two most selected features in the table were HJC and HJA. Both describe frequency
behaviors but in the time domain. The first one, as explained in Section 2.5.1 section, offers
a comparison of the signal with a pure sine wave function. While HJA indicates the average
power of the signal. The temporal characteristics impose on the frequencial ones.

Table 3 specifies the best Single and Combination features: the most relevant feature
in the frequency band and in the electrode configuration. According to these results, the
offline analysis shows a better accuracy of the Increase model. In this model, the best single
features are preserved in combination and maximize the value in combination with the
HJC band in some of its bands. The All and Left electrode configurations are the most
relevant for this model.

4.2. Pseudo-Online

The pseudo-online model does not perform as well as expected. TPs are low because
the chosen rule is restrictive, this design rule seeks to reduce FP. In this study, the TPs were
lower than the mean of results found in the literature. However, those studies that carry out
a real-time implementation tend to reduce TP in order to achieve less FP: in Bai et al. [27] a
classifier working point was chosen in which the TPs were below 40% and this is not an
impediment to the operation of the interface.

The FP/min in this study in comparison with the literature for intention ERD/ERS
paradigms are similar. In addition, studies that use only information from before the event
tend to have more FP/min for start 6.8 ± 0.7 and stop 9.4 ± 1.0 [12] that those which use
before and after information, e.g., FP/min for start 3.5 ± 1.8 and for stop 2.1 ± 1.1 [10].
However, as indicated in the introduction, using only information prior to the change
may be more interesting for the assistance process. This is because it does not contain
information associated with the movement, only the intention.

However, in this study, the results of the increment interface were acceptable, which
presents it as a viable tool. Large differences have been found between the results of the
offline and online models, which may indicate that the characteristics belonging to the
intermediate times between these two classes may be similar to those of the change class.
Therefore, further work is needed in order to have a better classifier model.

Nevertheless, the results are not good enough for an interface in the clinical scenario.
However, exploring different metrics and different ways of assessing the walking state
variability could improve the reliability of the model.



Appl. Sci. 2022, 12, 415 17 of 20

4.3. Closed-Loop

Finally, the approach of our online closed-loop study shows the feasibility of creating an
interface for speed gait control. Two of the trials exceeded 8 second intervals without showing
false positives. The subject’s concentration and state may be a key factor, as well as the degree
of experience in the use of a BMI like the one presented. There are few online lower-limb
studies. Referring to upper-limb, in [27], the differences between pseudo-online and online
analysis for open-loop control are shown. The research uses the ERD/ERS paradigm for
the wrist movement. Great variations are observed between the validated model in pseudo-
online, as TP was kept under 0.4 and FP close to 0, an the online experiments, where 60% of
the trials obtained FP and 75% of the predictions were performed correctly, which indicates
that lots of positive detections were obtaiend by the classifier. There are not many comparable
studies for lower-limb in closed-loop methodology that use the ERD/ERS paradigm. In [13],
the start–stop model achives TP of 89% and 8 FP/min in pseudo-Online analysis, while the
closed-loop gets TP of 92% and 28 FP/min.

This difference between types of analysis is also noticeable in our study. Although the
distribution of the FPs allowed the 8-second stage to be exceeded in two of the 6 repetitions,
the number of FP/min was 9.92, higher than expected. However, the number of TPs
remained within the values expected from the pseudo-online model with a 33%. Mental
states of expectation could influence real-time decoding. The source and solution of the
differences between offline analysis with pseudo-online control and online processing with
closed-loop control is a problem to be explored and discussed in future publications.

4.4. Study Limitations

The manuscript presents a novel study for the prediction of the intention to change
speed by EEG analysis. The final objective is to assess the viability of a real control of
assistive mobility devices. Nevertheless, it is important to remark that this is a preliminary
study with some limitations.

The database is formed by five subjects, which, although it may be short, it is kept
within the ranges of other studies. Even though, the results of the offline model are ac-
ceptable, the results of the pseudo-online methodology are not equivalent and completely
consistent. New window segmentation methods could be better suited to characterize the
classification model used in the pseudo-online test.

• Try a moving window, to better represent the Walk class.
• Subdivide in smaller windows, to have a window that better represents the classes,

at the cost of introducing more variance in the analysis window, since the ERD/ERS
pattern could vary throughout the subdivided windows.

• Test a representation of the unbalanced walk class.
• Test another continuous decoding classifiers, such as GMM or a decomposition of

components with some threshold limits. Decomposition methods like EMD could not
be valid for real-time processing, but eigendecomposition [30] or cwt decomposition
components could.

An important point in the development of a real-time experiment is that once the
training is done, the model must be created in an acceptable time. This becomes even more
important when this is validated on patients. The creation of a pre-selection of features could
speed up the process. These pre-selected features can be optimized and their combinations
customized. In this preliminary study, a pre-selected group of features were chosen.

Regarding the BMI efficacy, the number of false positives in this study is close to
other studies in similar conditions. The exoskeleton closed-loop control experiment shown
presents a concept study. From the experience of this pilot test, several consequences can
be extracted. First, the reduced number of test repetitions was due to the fact that using the
exoskeleton training methodology in passive mode results in a tiring process. Decreasing
the number of trials may be an option. Three protocol alternatives could be used to train
the model:



Appl. Sci. 2022, 12, 415 18 of 20

• In the first one, the model would be trained with the exoskeleton running in two
speeds that would be changed when the exoskeleton gauges register a change. This
needs, further research to be carried out.

• In the second one, the model would be trained with the exoskeleton running at two
speeds and the user would be the one who would indicate the change by means of a
button when they wants to change the speed. This could condition the EEG potential,
due to the different states of consciousness.

• In the third, the model would be created without an exoskeleton and later the closed-
loop would be made with an exoskeleton. This could reduce the subject’s fatigue, but
could generate training vectors too differenct with respecto to the testing ones.

As the ultimate goal is to improve assistance, reducing FPs is a priority issue. To this
end, more realistic models that represent better the data must be addressed. All of the above
is important for this. In addition, new feature extractions should be explored, optimizing
the filters that could improve the signal to noise ratio. There is not much exploration on the
usefulness and differences between noise filters as H∞ or ASR depending on what kind of
potentials are decoded.

5. Conclusions

A brain–machine interface for the classification of EEG signals related to intention
process and speed changes in real time has been proposed. The model for the class intention
has been trained with only information from the moments before the change. First, data
were analyzed in offline cross-validation and in a simulated real time analysis (pseudo-
online). The best features were selected in a generic way to describe the intention paradigm.
Second, a real-time proof of concept with the exoskeleton was designed. It allowed to
control the increase of speed of an exoskeleton in real time, and to validate the feasibility of
the previous study in a realistic way.

The study has concluded that the Hjorth parameters are viable for decoding the
intention of speed changes. Among the different mental tasks (increase, decrease or both),
the intention of increase speed offered the best results in offline and pseudo-online analysis.

The design of training protocols that allow the creation of a robust general model with
sufficient repetitions and not generate excessive fatigue is a pending challenge. Further-
more, noise filtering is another important aspect for real-time applications. Our approach
has applied filters, such as H∞ and Laplacian filters to improve the signal to noise ratio
and mitigate artifacts. Our state variable filter methodology allows us to analyze the signal
in real time without distortion and border effects. In addition, these methods must be fast,
in order to be suitable for real-time analysis.

As was commented in the study limitations Section 4.4, future works will explore
different methodologies to obtain a more robust classifier model that can be better adapted
to real-time conditions. In addition, the closed-loop protocol will be improved, especially
in the training steps to avoid the fatigue of the subject and limit the protocol times.
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5. Savić, A.; Lontis, R.; Jiang, N.; Popović, M.; Farina, D.; Dremstrup, K.; Mrachacz-Kersting, N. Movement related cortical potentials

and sensory motor rhythms during self initiated and cued movements. Biosyst. Biorobot. 2014, 7, 701–707. [CrossRef]
6. Shafiul Hasan, S.M.; Siddiquee, M.R.; Atri, R.; Ramon, R.; Marquez, J.S.; Bai, O. Prediction of gait intention from pre-movement

EEG signals: A feasibility study. J. Neuroeng. Rehabil. 2020, 17, 50. [CrossRef] [PubMed]
7. Seeland, A.; Manca, L.; Kirchner, F.; Kirchner, E.A. Spatio-temporal comparison between ERD/ERS and MRCP-based movement

prediction. In BIOSIGNALS 2015-8th International Conference on Bio-Inspired Systems and Signal Processing, Part of 8th International
Joint Conference on Biomedical Engineering Systems and Technologies; SciTePress: Lisbon, Portugal, 2015; pp. 219–226. [CrossRef]

8. Rodríguez-Ugarte, M.; Iáñez, E.; Ortiz, M.; Azorín, J.M. Improving Real-Time Lower Limb Motor Imagery Detection Using tDCS
and an Exoskeleton. Front. Neurosci. 2018, 12, 757. [CrossRef] [PubMed]

9. Lee, K.; Liu, D.; Perroud, L.; Chavarriaga, R.; Millán, J.d.R. A brain-controlled exoskeleton with cascaded event-related desynchro-
nization classifiers. Robot. Auton. Syst. 2017, 90, 15–23. [CrossRef]

10. Ortiz, M.; Rodríguez-Ugarte, M.; Iáñez, E.; Azorín, J.M. Application of the stockwell transform to electroencephalographic signal
analysis during gait cycle. Front. Neurosci. 2017, 11, 660. [CrossRef]

11. Sburlea, A.I.; Montesano, L.; Minguez, J. Continuous detection of the self-initiated walking pre-movement state from EEG
correlates without session-to-session recalibration. J. Neural Eng. 2015, 12, 036007. [CrossRef]

12. Shafiul Hasan, S.M.; Siddiquee, M.R.; Bai, O. Asynchronous Prediction of Human Gait Intention in a Pseudo Online Paradigm
Using Wavelet Transform. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1623–1635. [CrossRef] [PubMed]

13. Choi, J.; Kim, H. Real-Time Decoding of EEG Gait Intention for Controlling a Lower-limb Exoskeleton System. In Proceedings of
the 2019 7th International Winter Conference on Brain-Computer Interface, Gangwon, Korea, 18–20 February 2019. [CrossRef]

14. Soriano-Segura, P.; Ianez, E.; Quiles, V.; Ferrero, L.; Ortiz, M.; Azorin, J.M. Selection of Spatial, Temporal and Frequency Features
to Detect Direction Changes during Gait. In Proceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS, Montreal, QC, Canada, 20–24 July 2020; Volume 2020, pp. 3835–3838. [CrossRef]

15. Zhang, Y.; Prasad, S.; Kilicarslan, A.; Contreras-Vidal, J.L. Multiple Kernel Based Region Importance Learning for Neural
Classification of Gait States from EEG Signals. Front. Neurosci. 2017, 11, 170. [CrossRef] [PubMed]

16. Kilicarslan, A.; Prasad, S.; Grossman, R.G.; Contreras-Vidal, J.L. High accuracy decoding of user intentions using EEG to control a
lower-body exoskeleton. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBS, Osaka, Japan, 3–7 July 2013; pp. 5606–5609. [CrossRef]

17. Lisi, G.; Morimoto, J. EEG single-trial detection of gait speed changes during treadmill walk. PLoS ONE 2015, 10, e0125479. [CrossRef]
18. López-Larraz, E.; Trincado-Alonso, F.; Rajasekaran, V.; Pérez-Nombela, S.; Del-Ama, A.J.; Aranda, J.; Minguez, J.; Gil-Agudo, A.;

Montesano, L. Control of an ambulatory exoskeleton with a brain–machine interface for spinal cord injury gait rehabilitation.
Front. Neurosci. 2016, 10, 359. [CrossRef] [PubMed]

19. Kilicarslan, A.; Grossman, R.G.; Contreras-Vidal, J.L. A robust adaptive denoising framework for real-time artifact removal in
scalp EEG measurements. J. Neural Eng. 2016, 13, 026013. [CrossRef]

20. Kong, W.; Lin, J.; Waaning, L.; Sessa, S.; Cosentino, S.; Magistro, D.; Zecca, M.; Kawashima, R.; Takanishi, A. Comparison of gait
event detection from shanks and feet in single-task and multi-task walking of healthy older adults. In Proceedings of the 2016
IEEE International Conference on Robotics and Biomimetics, ROBIO 2016, Qingdao, China, 3–7 December 2016; pp. 2063–2068.
[CrossRef]

21. Pei, X.M.; Zheng, C.X.; He, W.X.; Xu, J. Quantitative measure of complexity of the dynamic event-related EEG data. Neurocomput-
ing 2006, 70, 263–272. [CrossRef]

22. Philiastides, M.G.; Sajda, P. Temporal Characterization of the Neural Correlates of Perceptual Decision Making in the Human
Brain. Cereb. Cortex 2006, 16, 509–518. [CrossRef]

23. Ortiz, M.; Vicente, P.; Ianez, E.; Montiel, E.; Azorin, J.M. Assessing footwear comfort by electroencephalography analysis. IEEE
Access 2021, 9, 134259–134269. [CrossRef]

http://doi.org/10.1093/brain/awr039
http://dx.doi.org/10.1159/000348879
http://dx.doi.org/10.1016/S1388-2457(99)00141-8
http://dx.doi.org/10.1007/978-3-319-08072-7_98
http://dx.doi.org/10.1186/s12984-020-00675-5
http://www.ncbi.nlm.nih.gov/pubmed/32299460
http://dx.doi.org/10.5220/0005214002190226
http://dx.doi.org/10.3389/fnins.2018.00757
http://www.ncbi.nlm.nih.gov/pubmed/30405340
http://dx.doi.org/10.1016/j.robot.2016.10.005
http://dx.doi.org/10.3389/fnins.2017.00660
http://dx.doi.org/10.1088/1741-2560/12/3/036007
http://dx.doi.org/10.1109/TNSRE.2020.2998778
http://www.ncbi.nlm.nih.gov/pubmed/32634099
http://dx.doi.org/10.1109/IWW-BCI.2019.8737311
http://dx.doi.org/10.1109/EMBC44109.2020.9176164
http://dx.doi.org/10.3389/fnins.2017.00170
http://www.ncbi.nlm.nih.gov/pubmed/28420954
http://dx.doi.org/10.1109/EMBC.2013.6610821
http://dx.doi.org/10.1371/journal.pone.0125479
http://dx.doi.org/10.3389/fnins.2016.00359
http://www.ncbi.nlm.nih.gov/pubmed/27536214
http://dx.doi.org/10.1088/1741-2560/13/2/026013
http://dx.doi.org/10.1109/ROBIO.2016.7866633
http://dx.doi.org/10.1016/j.neucom.2006.02.011
http://dx.doi.org/10.1093/cercor/bhi130
http://dx.doi.org/10.1109/ACCESS.2021.3115179


Appl. Sci. 2022, 12, 415 20 of 20

24. Singh, A.; Hussain, A.A.; Lal, S.; Guesgen, H.W. A comprehensive review on critical issues and possible solutions of motor
imagery based electroencephalography brain–computer interface. Sensors 2021, 21, 2173. [CrossRef]

25. Rodríguez-Ugarte, M.; Iáñez, E.; Ortíz, M.; Azorín, J.M. Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling
Intent. Front. Neuroinform. 2017, 11, 45. [CrossRef]

26. Müller-Putz, G.R.; Scherer, R.; Brunner, C.; Leeb, R.; Pfurtscheller, G. Better than random? A closer look on BCI results. Int. J.
Bioelectromagn. 2008, 10, 52–55.

27. Bai, O.; Rathi, V.; Lin, P.; Huang, D.; Battapady, H.; Fei, D.Y.; Schneider, L.; Houdayer, E.; Chen, X.; Hallett, M. Prediction of
human voluntary movement before it occurs. Clin. Neurophysiol. 2011, 122, 364–372. [CrossRef] [PubMed]

28. Ortiz, M.; Iáñez, E.; Contreras-Vidal, J.L.; Azorín, J.M. Analysis of the EEG Rhythms Based on the Empirical Mode Decomposition
During Motor Imagery When Using a Lower-Limb Exoskeleton. A Case Study. Front. Neurorobot. 2020, 14, 48. [CrossRef] [PubMed]

29. Hortal, E.; Úbeda, A.; Iáñez, E.; Azorín, J.M.; Fernández, E. EEG-Based Detection of Starting and Stopping during Gait Cycle. In
International Journal of Neural Systems; World Scientific Publishing Co. Pte Ltd.: Singapore, 2016; Volume 26. [CrossRef]

30. Cohen, M.X. A tutorial on generalized eigendecomposition for source separation in multichannel electrophysiology. arXiv 2021,
arXiv:2104.12356.

http://dx.doi.org/10.3390/s21062173
http://dx.doi.org/10.3389/fninf.2017.00045
http://dx.doi.org/10.1016/j.clinph.2010.07.010
http://www.ncbi.nlm.nih.gov/pubmed/20675187
http://dx.doi.org/10.3389/fnbot.2020.00048
http://www.ncbi.nlm.nih.gov/pubmed/32973481
http://dx.doi.org/10.1142/S0129065716500295

	Introduction
	Materials and Methods
	Subjects
	Equipment
	Experimental Procedure Training
	Analysis IMUs
	Offline BMI
	Features
	Electrode Selection
	Cross-Validation and Feature Selection

	Pseudo-Online BMI
	Closed-Loop BMI

	Results
	BMI Offline
	Feature Selection Methodology
	Cross-Validation Analysis of Electrode Configurations and Combined Features

	Pseudo-Online Results
	Exoskeleton Closed-Loop

	Discussion
	Offline Cross Validation
	Pseudo-Online
	Closed-Loop
	Study Limitations

	Conclusions
	References

