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Abstract: Truss size and topology optimization problems have recently been solved mainly by many
different metaheuristic methods, and these methods usually require a large number of structural
analyses due to their mechanism of population evolution. A branched multipoint approximation
technique has been introduced to decrease the number of structural analyses by establishing approx-
imate functions instead of the structural analyses in Genetic Algorithm (GA) when GA addresses
continuous size variables and discrete topology variables. For large-scale trusses with a large number
of design variables, an enormous change in topology variables in the GA causes a loss of approx-
imation accuracy and then makes optimization convergence difficult. In this paper, a technique
named the label–clip–splice method is proposed to improve the above hybrid method in regard to
the above problem. It reduces the current search domain of GA gradually by clipping and splicing
the labeled variables from chromosomes and optimizes the mixed-variables model efficiently with
an approximation technique for large-scale trusses. Structural analysis of the proposed method is
extremely reduced compared with these single metaheuristic methods. Numerical examples are
presented to verify the efficacy and advantages of the proposed technique.

Keywords: topology optimization; large-scale truss; label–clip–splice technique; a branched multi-
point approximation; genetic algorithm

1. Introduction

Planar trusses are one of the most commonly used structural forms [1,2]. One of
the classical problems in their design and optimization is finding the optimal topology
configuration as well as the optimal size. Two main techniques are generally used to
address this problem: continuum topology optimization and the discrete ground structure
method. The first strategy, achieved through many methods such as the solid isotropic
material with penalization (SIMP) method [3], the level-set method [4,5] and evolutionary
structural optimization (ESO)/bi-directional ESO (BESO) method [6–8], aims to obtain the
optimal material distribution in a continuous space given in advance. Postprocessing work
is always needed after obtaining the optimal material distribution, and it is sometimes
difficult to obtain a clear outline shape. Although some newly developed element-based
algorithms that have solved the boundary issue [9,10], for large-scale trusses, a large
amount of postprocessing work is usually unacceptable. For the second strategy, the
discrete model is closer to the actual structure and does not require any postprocessing
work for the terminal truss structure [11]. Based on this, a large number of design variables,
large search space, and a large number of design constraints are the major preventive
factors in determining optimal design in a reasonable time for large-scale trusses. These are
also prominent differences from small ones.

Therefore, the use of optimization algorithms to solve such difficult problems is
inevitable. Traditional structure optimization methods are essentially based on mathemati-
cal programming [12] and optimality criteria [13,14] approaches. However, they rely on
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cumbersome gradient-based formulations and have shortcomings in handling real-world
instances with discrete design variables. Thus, metaheuristic algorithms based on popu-
lation evolution are mainly used for truss optimization. They are based on a single or on
multiple populations, such as the genetic algorithm (GA) [15], cuckoo search algorithm
(CS) [16], salp swarm algorithm (SSA) [17], adaptive dimensional search (ADS) [18], and
shuffled frog-leaping algorithm (SFLA) [19]. For large-scale trusses, Tomasz [20] investi-
gated a new method based on the ground structure approach with selective subsets of active
bars in finding the optimal topology of large-scale Michell trusses. Sadik [21] proposed an
enhanced hybrid harmony search (HS) algorithm for weight minimization of large-scale
truss structures. Saeid [22] extended a recently developed design-driven heuristic method,
namely, guided stochastic search (GSS), to truss optimization problems with thousands
of design variables. Kaveh [23] studied the cascade optimization method in the design
optimization of truss towers with large numbers of design variables.

The above evolutionary methods have a large number of individuals, which all need
structural analyses. This would cost considerable calculation space and time, especially
for large-scale trusses with a large number of design variables. Dong and Huang [24]
solved this problem by combining a branched multipoint approximation (BMA) with a
genetic algorithm. The objective and constraint functions of structure optimization are
approximated by several structural analysis results on real design points. Thus, the large
number of individuals in GA can obtain approximate fitness results directly from explicit
approximate functions instead of structural analyses. This extremely decreases the burden
from a large amount of structural analyses [25] and provides an outstanding advantage over
metaheuristic methods without BMA. This effective method has been applied successfully
in many circumstances [26].

The above efficient method has been applied to sizing and topology optimization for
large-scale trusses. Size variables are continuous, and topology variables are discrete, i.e.,
0/1, to represent the absence/presence of bar members. However, it faces an obstacle when
addressing large-scale problems with mixed variables. Based on the binary encoding of
topology variables for individuals, the search domain of GA will expand exponentially as
the topology variables increase. For a large-scale truss, this search domain is very large.
Meanwhile, the 0/1 topology variables in GA change considerably with respect to the last
optimal result in the last iteration of the first-level approximation problem. This will cause
the accuracy of the approximation for individuals in GA to significantly decrease. As a
result, the search will lose the right direction in a huge domain, which makes it formidable
to find the optimum for large-scale truss optimization.

Therefore, in this work, we present a label–clip–splice technique (LCS) for GA to
overcome the obstacle in large-scale truss sizing and topology optimization. First, label
variables are “deleted” by continuous generation for the current best individual. Then,
chromosomes are clipped by the labeled variables inherited between generations before
conducting operators, and all the current individuals are further spliced before checking
the validity of the topology configuration and calculating their finesses. This technique
reasonably reduces the search domain of GA that increases exponentially to ensure the
approximate effect of BMA, while it achieves good global optimization on the mixed-
variables problem for large-scale trusses with extremely few structural analyses.

The paper is organized as follows: Section 2 presents the problem formulation for
large-scale truss sizing and topology optimization. Section 3 elaborates on the optimization
scheme with the improved method, and numerical examples are given in Section 4 to verify
the proposed method.
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2. Problem Formulation
2.1. Optimization Model of a Large-Scale Truss

Based on the ground structure method, the simultaneous size and topology optimiza-
tion problem for a large-scale truss is formulated in Equation (1):

Find X = {x1, x2, · · · , xn}T

α = {α1, α2, · · ·, αn}T

Min W(X, α) =
n

∑
i=1

αiWi(xi)

S.t. gj(X, α) ≤ 0 j = 1 · · · v
αixL

i + (1− αi)xb
i ≤ xi

xi ≤ αixU
i + (1− αi)xb

i
αi = 0 or αi = 1 i = 1 · · · n

(1)

In this formulation, two kinds of variables are defined but coupled together.
X = {x1, x2, · · · , xn}T is the continuous size variable vector, where xi represents the cross-
sectional areas of bar members in the i-th group. α is the discrete topology variable vector,
where each αi, in the i-th group, takes the value 0/1 to represent the absence/presence
of bar members in this group. If αi = 0, members in the i-th group are removed, and the
related size variables xi are set to a very small value xb

i (i.e., 10−6x0
i ); if αi = 1, members

in the i-th group are retained, and xi are optimized between the upper bound xU
i and the

lower bound xL
i . If some bar or node is removed, the constraint associated with it will also

be removed. W(X, α) means the total weight of the truss structure. gj(X, α) denotes the j-th
normalized constraint related to structural responses, for example, nodal displacement,
modal frequency, or buckling factor, and v is the total number of constraints. Additionally,
two or more symmetrical bars in symmetrical response situations are usually chained to
reduce the number of topology variables of the large-scale truss structure. They share the
same single topology variable, while the respective size variables remain unchanged.

2.2. Further Explanations for the Model

To explain the optimization model, a seven-bar truss is taken as an example. As shown
in Figure 1, the left corners of the truss are pinned in the X–Y plane. Above all, a certain
number of bars need to be designed by nodes, which is called the ground structure. Then,
they are numbered as shown in the finite element model in Figure 1. For example, the
topology variable vector could be α = {α1, α2, α3, α4, α5, α6, α7}T, which relates to the seven
discrete bars in sequence for this truss. Each α1 represents the deletion or retention of the
i bar in the truss; therefore, their values and relationship with each other need to meet
the structural rationality. The section size of each bar Ai is an independent size variable,
and the seven continuous size variable vectors X = {x1, x2, x3, x4, x5, x6, x7}T are listed in
Table 1. In symmetrical response situations, bars numbered 1 and 4 or 2 and 3 will usually
be chained to the same variables. Then, the number of size variables and topology variables
is reduced to 5.

Figure 1. Seven-bar truss structure.



Appl. Sci. 2022, 12, 407 4 of 20

Table 1. Definition of design variables.

Design Domain Cross-Sectional Type Topology Variables Size Variables

Truss BAR αi (i = 1, 2, 3, 4, 5, 6, 7) xi (i = 1, 2, 3, 4, 5, 6, 7)

3. Optimization Scheme
3.1. Flowchart for the Optimization Scheme

The flowchart of a hierarchical optimization scheme for large-scale truss sizing and
topology optimization is shown in Figure 2. Before optimizing the mixed variables by GA,
a first-level approximation problem is established by the BMA method. As the state of the
model, the current optimal variable contains a size vector X∗p and topology vector α∗p coded
in the GA chromosome. The current optimal α∗p chromosome is then labeled and clipped.
To solve for different types of design variables, GA is nested with an internal optimization,
as shown in the dotted box. In an external GA, topology variable vectors are binary-coded
to form individuals, and a certain number of individuals make up a population. The
initial population is generated based on the current best individual clipped, while all the
individuals are only spliced at the validity check and in the fitness calculation. Based on
the given value of the topology variable vector, truss cross-sectional sizes for each member
in the k-th population are determined through internal optimization. To determine the
optimal size of this topology design, the Taylor expansion approximation is conducted
based on the first-level approximate functions, and then the dual method and BFGS method
are used to solve it. On the basis of the optimal results of internal optimization, the fitness
value of each individual can be obtained. After the end of the GA iteration, the current
optimal design variable

[
X∗p, α∗p

]
is obtained through elite selection based on structural

analysis. It updates the first-level approximation problem as a new point is added, and the
whole algorithm goes to the next p + 1 iteration. Structural analyses and sensitivity analyses
are implemented in the general finite element analysis software MSC.PATRAN/NASTRAN,
while the two-level approximation and the GA and size optimization are implemented by
the FORTRAN program. The Patran Command Language (PCL) is utilized for software
calculation and programming optimization to realize the automation of a series of complex
processes.

Figure 2. Optimization flowchart.
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3.2. The First-Level Approximation Problems by BMA

The branched multipoint approximation (BMA) method has proven to be one of the
most effective approximation techniques for complicated structure optimization prob-
lems [26] and is applied to approximate functions of the primal problem in Equation (1).
The function gj(X, α) is approximated as g(p)

j (X, α) in Equations (2)–(6). In the p-th stage,

g(p)
j (X, α) is the j-th approximate constraint function at the p-th stage.

g(p)
j (X, α) =

H

∑
t=p−(H−1)

{
gj(Xt, αt) +

n

∑
i=1

g̃j,i,t(X, α)

}
ht(X, α) (2)

g̃j,i,t(X, α) =


1

ro,t

∂gj(Xt ,αt)

∂xi
x1−ro,t

it

(
xro,t

i − xro,t
it

)
, i f αi = 1

1
rm,t

∂gj(Xt ,αt)

∂xi

(
1− e−rm,t(xi−xit)

)
, i f αi = 0

(3)

ht(X, α) =
ht(X, α)

H

∑
i=1

hl(X, α)

t = 1, · · ·, H (4)

hl(X, α) =
H

∏
s=1,s 6=l

(X−Xs)
T(X−Xs) (5)

 min

√√√√{ H

∑
z=1

{
gj(Xz, αz)− gj(Xt, αt)− g̃j,i,t(Xt, αt)

}}2

s.t. −5 ≤ ro,t ≤ 5, −5 ≤ rm,t ≤ 5, t = 1, · · ·, H − 1

(6)

where xt is the t-th known point (from structural analyses), H is the number of counted
points in the approximate function, and H = min{p, Hmax}. When the number of known
points is larger than Hmax (in this work, Hmax = 5), only the last Hmax points are included
in the function. X is the convex domain that limits the bounds of x; ht(X, α) is a weighting
function, which is defined in Equations (4) and (5). ro,t and rm,t are the adaptive parameters
controlling the nonlinearity of g(p)

j (X, α), which are determined by solving the least-squares
parameter estimation in Equation (6). Here, gj(Xz, αz) is the j-th constraint value of the
t-th known point. For every value of t, a parameter rt(ro,t or rm,t) will be obtained from
Equation (6). To avoid large fluctuations in the approximation formula, the value range
of rt (ro,t or rm,t) should be limited to within (−5, 5). If t equals 1, then ro,t = −1 and
rm,t = 3.5. It can be seen that the construction of the approximate function only requires the
partial derivatives of the continuous variables, and discrete variables only act the role of
branching, deciding α1 to equate to which value, i.e., 0 or 1. The form of the BMA function
is similar to the Hermite interpolation function, and in the known points, the value of the
approximate function and their derivatives are consistent with the values in the primal
function. This approximate function has been proven to be efficient without singularity
even if the continuous variables are close to zero. The approximation accuracy of BMA
functions was discussed in [27,28].
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To solve the problem in Equation (1), which is always implicit and nonlinear, a first-
level approximation problem is first constructed to transform it into an explicit problem.
Based on the above BMA method, the first-level approximation problem in the p-th stage is:

Find Xp =
{

x1(p), x2(p), · · · , xn(p)

}T

α =
{

α1(p), α2(p), · · ·, αn(p)

}T

Min W(p)(Xp, αp
)
=

n

∑
i=1

αi(p)Wi

(
xi(p)

)

S.t. g(p)
j
(
Xp, αp

)
≤ 0 j = 1 · · · J1

αi(p)xL
i(p) +

(
1− αi(p)

)
xb

i ≤ xi(p)

xi(p) ≤ αi(p)xU
i(p) +

(
1− αi(p)

)
xb

i

αi(p) = 0 or αi(p) = 1 i = 1 · · · n

(7)

xU
i(p) = min

{
xU

i , x̃U
i(p)

}
(8)

xL
i(p) = max

{
xL

i , x̃L
i(p)

}
(9)

where g(p)
j (X, α) is the approximate constraint function and W(p)(X, α) is the objective

function at the p-th stage. J1 is the number of active constraints related to the primal
problem in Equation (1). xU

i(p) and xL
i(p) are the upper and lower bounds of xi at the p-th

stage; x̃U
i(m)

x̃U
i(p) and x̃L

i(p) are the moving limits of xi at the p-th stage.
In the p-th stage of optimization, the optimal result, as a new point, in the p-1-th

stage is added to update the approximate functions. The data of the initial first point is
deleted; thus, the number of counted points in the approximate function remains constant
in the iteration of the first-level approximation problem. Since the first-level approximation
problem involves both continuous and discrete variables, it can never be solved directly
by using general mathematical programming methods. If GA is directly used and the
continuous and discrete variables are encoded simultaneously, the scale of the design vari-
ables and the computational costs will become tremendous. Thus, a layered optimization
strategy is introduced: discrete variables are optimized by GA in the external layer, and
continuous variables are optimized in the internal layer by using the dual method, which
can significantly reduce the gene code length in GA while improving the optimization
efficiency and accuracy.

3.3. The Label–Clip–Slice Strategy and GA to Address Mixed Variables

The BMA is a method of local approximation and has an effective range for design
variables. The farther the point is from the known point constructing the approximation,
the worse the approximation is at this point. In addition, the search domain of GA expands
exponentially as the topology variables increase based on binary encoding. Thus, for a large-
scale truss, the variation of 0/1 topology variables in GA with respect to the last optimal
result in the last iteration of the first-level approximation problem becomes extremely large.
In other words, the point to approximate in BMA would be far away from the known
points that construct the approximation. This will cause the accuracy of the approximation
to greatly decrease. The search will then become almost random and will lose the right
search direction, which is fatal for optimization in a huge search domain. Therefore, the
label–clip–splice strategy (LCS) is proposed to reduce this size contrast. It contains three
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parts: label the topology variables, clip the chromosomes and splice the chromosomes and
is nested on the optimization scheme.

3.3.1. Labeling of the Topology Variables

As shown in Figure 3, for the optimal individual in the last iteration of the first-level
approximation problem, we save and inspect its code, which is the topology variable of
the optimal structure. When the bits of code are “0” for continuous k generations, their
bit orders are labeled as Rbit. Here, k is a control parameter in this strategy and needs an
appropriate value. If k is too large, GA labels few variables after many iterations. Moreover,
it is very likely to not label any variable for dozens of iterations due to the large search
domain and GA operators. If k is too small, many variables will be quickly labeled within
a few iterations, and the number will increase with more iterations. The GA will quickly
converge to a local optimum, which is far from the global optimum. Hence, the value of k
for a specific problem needs to be appropriate but not fixed, similar to other parameters in
GA. Its appropriate value pertains to the characteristics of the specific problem to address.

Figure 3. Clipping of the chromosome of the topology variable.

3.3.2. Clipping of the Chromosome of the Last Best Individual

In the next iteration, the optimal individual of the last iteration that has been labeled is
first clipped before executing GA optimization. As shown in Figure 3, the shaded variables
that have been labeled are clipped, and a new individual with a shorter chromosome
is reassembled by the remaining topology variables in sequence. The following steps,
including “generate the new population”, “crossover”, and “mutation”, are all carried out
in individuals with this shorter chromosome length. In other words, the labeled topology
variables are not involved in these processes and remain at “0”.

3.3.3. Generating of the Initial Population

Based on the vector α∗p−1,clipped, which has been clipped from the vector α∗p−1 obtained
in the last iteration, the GA generates a random initial population, in which the vector

αl,k,p =
{

αl,k,p,1, · · ·, αl,k,p,n

}T
(k = 1) represents the l-th individual in the k-th generation at

the p-th iteration of the first-level approximation problem. The initial population consists
of three parts:

(a) The optimized individual α∗p−1,clipped that is obtained in previous iterations;

(b) Individuals that randomly mutated from the optimized topology vector α∗p−1,clipped;

(c) Individuals that are calculated according to the optimized size vector X∗p−1,clipped.

3.3.4. Splicing of the Individuals in the Current Population

In the iterative process, the variables labeled Rbit are spliced to their original positions
for the above population before checking the validity of the structure configuration and
calculating the individuals’ fitness. In the two stages, the topology variables will not be
operated on but the size variables will be. The shaded bits are the label variables, and they
are spliced to each individual, as shown in Figure 4. This is because the validity check needs
the individual’s physical meaning, which consists of all the initial variables. In addition,
the labeled variables have almost no effect on the fitness calculation of GA.
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Figure 4. Splicing of the chromosome of the topology variable.

3.3.5. Fitness Calculation and Sizing Optimization

Before calculating the fitness of each individual, the validity of the topology config-
uration is checked. Invalid individuals are set to a small fitness value and will not be
considered by the GA. Considering the mixed variables, the individual fitness is calculated
with a penalty function method based on the formulations defined in Equations (10)–(14).

f itness(X∗l,k,p, αl,k,p) =
{

f p
max −

(
Wp
(

X∗l,k,p, αl,k,p

)
+ penal

(
X∗l,k,p, αl,k,p

))}
(10)

f p
max = max

l=1,2,...,Ns

{
Wp
(

X∗l,k,p, αl,k,p

)
+ penal

(
X∗l,k,p, αl,k,p

)}
(11)

penal
(

X∗l,k,p, αl,k,p

)
= W

J1
∑

j=1

∣∣∣gj

∣∣∣
J1
∑

j=1
g2

j

vj

(
X∗l,k,p, αl,k,p

)
(12)

vj

(
X∗l,k,p, αl,k,p

)
= max

{
0, g(p)

j

(
X∗l,k,p, αl,k,p

)}
(13)

W =
1

Ns

Ns

∑
l=1

Wp
(

X∗l,k,p, αl,k,p

)
gj =

1
Ns

Ns

∑
l=1

gp
j

(
X∗l,k,p, αl,k,p

)
vj =

1
Ns

Ns

∑
l=1

vj

(
X∗l,k,p, αl,k,p

)
(14)

The above formulas describe the f itness
(

X∗l,k,p, αl,k,p

)
calculation of the l-th individual

in k generation of GA for the p-th stage of the first-level approximation problem. X∗l,k,p
is the optimum size variable vector; αl,k,p is the topology variables of the l-th individual;

f p
max is the maximum fitness value among all individuals; and W(p)

(
X∗l,k,p

)
is the objective

value. J1 is the number of active constraints; Ns is the number of valid individuals in the present
population; W is the average weight of these individuals; g(p)

j

(
X∗l,k,p, αl,k,p

)
is the approximate

constraint functions calculated with the formulations defined in Equations (2)–(6); gj is the

average of g(p)
j

(
X∗l,k,p, αl,k,p

)
; vj

(
X∗l,k,p, αl,k,p

)
is the violation level of the j-th constraint

for the l-th individual; and vj denotes the average of vj

(
X∗l,k,p, αl,k,p

)
. The optimum size

variable vector X∗l,k,p is obtained by solving a second-level approximation problem. In the
m-th step, the second-level approximation problem is given by Equation (15):

f ind X̃ = {x̃1, · · · , x̃n}

Min W̃(m)
(
X̃, αl

)
= W(p)

(
X̃(m), αl

)
+

D
∑

i=1

∂W(p)(X̃(m),αl)
∂x̃i

(
x̃i − x̃i(m)

)
s.t. g̃(m)

j
(
X̃, αl

)
= g(p)

j

(
X̃(m), αl

)
−

D
∑

i=1
x̃2

i(m)

∂g(p)
j (X̃(m),αl)

∂x̃i

(
1
x̃i
− 1

x̃i(m)

)
≤ 0 j = 1, · · ·, J2

xL
i(m) ≤ x̃i ≤ xU

i(m) i = 1, · · ·, n

xL
i(m) = min

{
xL

i(p), x̃L
i(m)

}
xU

i(m) = max
{

xU
i(p), xU

i(m)

}
(15)

where W̃(m)
(
X̃, αl

)
is the approximate objective value obtained by the first-order Taylor

expansion of design variables in the m-th step, g̃(m)
j
(
X̃, αl

)
is the approximate value of the
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j-th constraint obtained by the first-order Taylor expansion of reciprocal design variables
in the m-th step, x̃U

i(m)
and x̃L

i(m) are move limits of x̃i in the m-th step. xU
i(m) and xL

i(m)

are the upper and lower bounds of variables x̃i. After the construction of the second-
level approximation problem, a dual method is implemented to transform the constraint
optimization problem into an unconstrained problem. Then, an unconstrained optimization
algorithm BFGS is used to seek the optimization size variable X∗l,k,p.

After fitness calculation and obtainment of the optimal size results, the labeled bits
for all individuals are clipped again before conducting the genetic roulette wheel selection,
crossover, and mutation operator procedures in sequence due to their only processing
topology variables. When the maximum generation is reached in every run of the GA, it
goes to the elite selection strategy. A few (i.e., 5) appropriate individuals (the individual
with the highest fitness value and four individuals of the lowest weight) are selected.
Among them, the individual X∗p,clip that satisfies the constraints will be selected as the elite
individual and reserved for the next generation.

∣∣∣xip − xi(p−1)

∣∣∣ ≤ εx (i = 1, 2, · · ·, n)

Max
(

g(p)
1
(
Xp, αp

)
, g(p)

2
(
Xp, αp

)
, · · ·, g(p)

J1

(
Xp, αp

))
≤ εg or p ≤ pmax

∣∣∣∣W(p)(Xp ,αp)−W(p)(Xp−1,αp−1)
W(p)(Xp ,αp)

∣∣∣∣ ≤ ε f

(16)

The convergence criterion defined in Equation (16) is used to determine whether the
first-level approximation problem is terminated, as well as the whole scheme. εx is the
convergence control parameter of size variables, εg is the constraints control parameter, ε f
is the weight convergence control parameter, and pmax is the maximum iterative number
for the first-level approximation problem. In this paper, εx= 0.0001, εg = 0.05, ε f = 0.001,
and pmax = 100; the maximum number of second-level iterations for sizing optimization is
20 with a convergence accuracy of 0.001.

3.4. Analysis and Discussion

The label–clip–splice strategy is proposed to solve the problem of the large search
domain of GA resulting in the bad approximation effect of BMA for large-scale truss
optimization. Its efficacy is analyzed and discussed from the understanding of the problem
without the LCS strategy.

The number of whole topology variables is set as n, and the topology variable
α = {α1, α2, · · · , αn}; then, the total search domain of topology variables in the current
iteration for the GA is Ω = 2n. Here, the iteration means the solution process of the first-
level approximation problem. m is denoted as the maximum number of topology variables
changed with respect to the last iteration’s optimal result after a GA process. Obviously,
m increases when n becomes bigger. This means that the two optimal topology variables
between two consecutive iterations are very different for large-scale problems. In other
words, the new updated points will be far away from the known points that construct the
first-level approximation problem. The accuracy of approximation will decrease with more
iterations. As a result, the GA will search with very inaccurate functions, wander locally
in a huge domain and lose the right direction for optimization. A more serious result is
that the iteration will diverge. The former result is illustrated schematically in Figure 5.
The global optimum x∗ is marked by a red point. The purple area indicates a distribution
domain Ωi of some optimum individuals in the GA of each iteration, and the yellow area
indicates a total search domain Ω. Owing to the inaccuracy of approximation caused by
large-scale variables of GA, the optimization scheme without the LCS strategy is almost
impossible to catch x∗ in Ωi (i = 1, 2, . . . , n), as shown in the Figure 5.
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Figure 5. Schematic domain with iterations.

The LCS technique shrinks the search domain by decreasing the dimensions of topol-
ogy variables. The optimal result is saved in each iteration. In the p-th iteration of the
first-level approximation problem, the last optimal result X∗p−1 is inspected after being
used in updating the first-level approximation. The position i where α∗p−1,i = 0 is labeled
like fluorescent labeling. If some positions

{
i1, i2, · · · , iq

}
are labeled for k consecutive

iterations, the bits of the topology variable
{

α∗p−1,i1
, α∗p−1,i2

, · · · , α∗p−1,iq

}
are cut off from

individual α∗p−1 of the GA. Then, this clipped individual is used to generate the initial
population for the GA process in the p-th iteration. Thus, the topology variable’s dimension
involved in GA optimization is reduced empirically in this way, and the search domain
is shrunk at an exponential speed Ωp = 2n−q. This will decrease the distance between
approximate points and maintain a sufficiently good approximation accuracy, which offers
an appropriate search direction in a large search domain. As shown schematically in
Figure 6, the purple and yellow areas have the same meaning as Figure 5. The domain
bounded by a red circular curve is Ωp, which indicates the search space that has shrunk in
each iteration. As the optimization iterates, the total search domain decreases gradually so
that the bad effect on the accuracy of BMA will be weakened. With an accurate result of
BMA for GA, the optimization can go along the right way and would eventually catch x∗

in Ωi afterward.

Figure 6. Schematic domain with iterations by the LCS strategy.
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4. Numerical Examples

Numerical examples are presented in this section to illustrate the feasibility of the pro-
posed method in handling large-scale truss optimization problems with size and topology
design variables. First, its effectiveness and efficiency are verified by designing a classic
small-scale truss structure, and a brief comparison with the literature is made. Subse-
quently, the structure of a large-scale cantilever truss is optimized to show the effectiveness
of the LCS strategy on a large-scale problem by contrast with the scheme without the LCS
strategy. Afterward, the efficacy of the improved scheme on large-scale truss optimization
is verified by a large-scale Michell truss problem with mixed variables. Comparison of the
same-scale problem with other literature results demonstrates its high efficiency with very
few structural analyses.

4.1. Example 1: 15-Bar Planar Truss

The ground structure of this example is shown in Figure 7. A vertical tip load of
10,000 lb is imposed on node 8. The material density is 0.1 lb/in.3 and Young’s modulus
is specified as 1.0× 107 Psi. The weight of this truss is minimized with 15 size variables
and 15 topology variables. The original cross-sectional area for each bar is 0.5 in.2 and
is permitted to vary from 0.1 in.2 to 10.0 in.2. The stress limit is 25,000 Psi for both the
tension and compression of all members. The parameters of the GA are set as follows: the
population size is 100, evolution generation is 100, and crossover and mutation probabilities
are 0.9 and 0.1, respectively.

Figure 7. Ground structure of the 15-bar truss.

Figure 8 illustrates the topology evolution. Two typical configurations are generated
in the iterative procedure (Iterations 1 and 4). Figure 9 shows the optimized configurations
of this paper, and Figure 10 shows the weight iteration history of this paper. The optimal
solutions of variables, structural weight, critical constraint, and structural analyses are
listed in Table 2 and compared with the literature. The optimal weight found by this
paper is 75.376 kg after seven iterations. In contrast with the 15-bar truss size and layout
optimization of previous studies, our solution weighs less than the solutions found by
Tang [29], Miguel [30] by 5.57% and 0.23%, respectively. The critical constraint is zero,
implying the validity of the presented result. Five topology variables were labeled in
the process. In particular, the method in this paper converged by 15 structural analyses.
Compared with past studies, this method only took 0.19% of the structural analyses in
the referred to literature, demonstrating the greatly enhanced efficiency of the proposed
method. The optimal results of this classic example and the comparison illustrate the
efficacy and the high efficiency of the improved method on truss optimization with mixed
variables.



Appl. Sci. 2022, 12, 407 12 of 20

Figure 8. Topology evolution of the 15-bar truss.

Figure 9. Optimization results in this paper.

Figure 10. Iteration history for the 15-bar truss.
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Table 2. Optimization results of the 15-bar truss.

Design Variables Data from [29] Data from [30] Present

A1 1.081 0.954 1.60
A2 0.539 0.539 1.59
A3 0 0.141 0
A4 1.081 0.954 2.39
A5 0.954 0.539 0.80
A6 0.440 0.287 0.79
A7 0 0.141 0
A8 0.141 0 0
A9 0 3.813 0

A10 0.270 0.440 1.13
A11 0.270 0.440 0.20
A12 0.539 0.220 0.20
A13 0.141 0.220 1.13
A14 0.440 0.347 1.13
A15 0 0.141 0

Iteration number 7
Labeled variables 5
Critical constraint −0.00088 −0.0649 0.000

Weight (lb.) 77.84 74.33 75.376
Percentage difference (%) 5.57 0.23 —

Structural analysis 8000 8000 15
Percentage difference (%) 0.19 0.19 —

4.2. Example 2: A Cantilever Truss

A large-scale cantilever truss is adapted from the numerical example in the research of
Wolfgang Achtziger and Mathias Stolpe [31]. As shown in Figure 11, this cantilever truss
has 63 bars. The width and height of the rectangular truss are 3 and 2, respectively. The
nodes on the left side are pinned, and a vertical external load is applied at the bottom of
the right-hand side that equals 1. Nodes are connected by a potential bar unless this creates
an overlapping bar. The density is 1, and the modulus of elasticity is 1000. The original
cross-sectional area for each bar is 0.1 and is permitted to vary from 0.01 to 10. The nodal
displacement of the loading point is limited from −0.05 to 0.01. The parameters of GA are
set as follows: the population size is 150, the maximum number of evolutions is 100, and
the initial probabilities of crossover and mutation are 0.9 and 0.1, respectively.

Figure 11. Ground structure of the 63-bar truss.



Appl. Sci. 2022, 12, 407 14 of 20

Figure 12 illustrates the topology evolution. Gradually changing configurations are
generated in the iterative procedure, and eight typical configurations are chosen. Figure 13
shows the optimized configurations of this paper compared with the same method without
the LCS strategy, and the weight iteration history for the two methods is presented in
Figure 14. The method without the LCS strategy yields a result of nonconvergence and
a middle topology configuration, and the method with the LCS strategy obtains a more
concise, effective, and valid configuration. The optimal solutions of variables, structural
weight, critical constraint, and structural analyses are compared in Tables 3 and 4. The
critical constraint of the method without the LCS strategy is 5.492 × 10−2, which indicates
the iteration’s nonconvergence. The method with the LCS strategy converges after 57 iter-
ations and 66 analyses with 51 topology variables labeled, showing the efficiency of the
proposed method. The contrast of the two circumstances verifies the efficacy and efficiency
of the LCS strategy in improving the GA with BMA on addressing the size and topology
optimization for large-scale trusses with mixed variables.

Figure 12. Topology evolution of the 63-bar truss.

Figure 13. (a) Optimization results in this paper; (b) Optimization results in this paper without the
LCS strategy.
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Figure 14. Iteration history for the 63-bar truss.

Table 3. Optimization results of the 63-bar truss.

With LCS Without LCS (No Convergence)

Iteration number 56 100
Labeled variables 51 /
Critical constraint 0.000 5.492 × 10−2

Weight 0.525 0.517
Structural analysis 66 117

Table 4. Optimal design of the 63-bar truss.

NO. Area
LCS/No LCS No. Area

LCS/No LCS No. Area
LCS/No LCS

1 0.1830 0.4293 15 0 0.1 43 0 1.0140
2 0 0.1 16–18 0 0 44–47 0 0
3 0.4113 0.2727 19 0.1 0 48 0.1 1.3853
4 0.5575 0.3942 20–26 0 0 49 1.4154 0.1386
5 0.4056 0.1349 27–28 0 0.1 50–51 0 0
6 0 0.1 29–35 0 0 52 0 0.1
7 0 0 36 0 0.1 53 0 0
8 0 0.1 37 0 0.4385 54 1.6756 0

9–11 0 0 38 0 0.1 55–56 0 0.1
12 0 0.1470 39 0 0 57–61 0 0
13 0 0 40 0.4103 0 62 0 0.1026
14 0.1826 0.1860 41–42 0 0 63 0 0.1414
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4.3. Example 3: A Michell Truss

The ground structure for the 662-bar Michell truss shown in Figure 15a was studied by
Wolfgang Achtziger and Mathias Stolpe [31,32]. The data are consistent with the literature.
The width and height of the whole structure are 8 and 4, respectively. Three nodes on the
left side, centered on the horizontal mid-axis, are fixed to a rigid wall of height 2, these
are indicated as filled (“•”), and other nodes that are not filled (“◦”) are free. Nodes are
connected by a potential bar unless this creates an overlapping bar.

Figure 15. (a) Ground structure of the 662-bar truss; (b) The solution of the literature.

In the referred literature, the modulus of elasticity is 1, and the cross-sectional area is
chosen from the set {0, 1} for all bars. The objective function is the minimum strain energy,
and the constraint function is a certain volume. The design size variable is discretized
into a 0/1 variable, and a series of nonconvex continuous relaxations based on convergent
branch and bound algorithms is used to address discrete truss variables. The referred
literature achieved topology optimization for this large-scale truss by discrete size variable
optimization. The optimum configurations of the work of Wolfgang Achtziger is showed
in Figure 15b.

We apply this example to our problem to optimize the size and topology for a large-
scale truss with a nodal displacement constraint of the loading point and minimum weight
objective. The structural parameters are set as follows: the modulus of elasticity is 103;
the density is 1; the load Py = 1; the nodal displacement of the loading point is limited
from −0.0453 to 0.0453; the initial cross-sectional area is 1, and it is permitted to vary
between 0.0001 and 2. The parameters of GA are set as follows: the population size is 100,
the maximum number of evolutions is 30, and the initial probabilities of crossover and
mutation are 0.9 and 0.05, respectively. The maximum of the first-level iteration is 150, and
the convergence accuracy is 0.005; the maximum of the second-level iteration for sizing
optimization is 20, with a convergence accuracy of 0.05.

Figure 16 illustrates the topology evolution. Gradually changing configurations are
generated in the iterative procedure, and 11 typical configurations are chosen. Figure 17
shows the optimum configurations of this paper. The weight iteration history of this paper
is presented in Figure 18. Tables 5 and 6 offer the optimal solutions of variables, structural
weight, critical constraint, and structural analysis. The optimal weight found by this paper
is 50.522. The critical constraint is zero, implying the validity of the presented result. The
optimization process converged by 124 iterations, and a total of 314 topology variables
were labeled. In particular, the method in this paper converged by 139 structural analyses,
which only took 1.29% of that in the literature. Thus, the method in this paper achieves a
valid optimum result and a concise topology configuration with fewer structural analyses.
This advantage is significant because truss optimization problems with mixed variables of
a similar scale usually require thousands of structural analyses in past literature [31].
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Figure 16. Topology evolution of the 662-bar truss.

Figure 17. Optimization results in this paper.

Figure 18. Iteration history for the 662-bar truss.



Appl. Sci. 2022, 12, 407 18 of 20

Table 5. Optimization results of the 662-bar truss.

Literature Present

Iteration number 124
Labeled variables / 314
Critical constraint 0.000 0.000

Weight / 50.522
Structural analysis 10,783 139

Percentage difference (%) 1.29 -

Table 6. Optimal design of the 622-bar truss.

No. Area No. Area No. Area No. Area

1–12 0 56 0.9887 96 0.6406 171 0.1
13 0.2199 57–60 0 97–128 0 172–238 0

14–19 0 61 0.3213 129 1.4555 239 2.847
20 0.9186 62–63 0 130 0 240–317 0

21–35 0 64 0.3215 131 0.5037 318 0.1578
36 0.4054 65 0.7449 132 0 319–331 0

37–43 0 66–88 0 133 0.957
44 0.1221 89 0.6388 134–169 0

45–55 0 90–95 0 170 0.1438

5. Conclusions

This paper proposes a new label–clip–splice strategy to improve GA with a multipoint
approximation method to realize simultaneous size and topology optimization for large-
scale trusses efficiently. A mathematical model with continuous size design variables and
discrete topology design variables is established based on the ground structure. A branched
multipoint approximation is used for implicit functions in the model to conduct the first-
level approximation problem. GA is selected to address the mixed variables optimization.
To solve the problem of a large number of topology variables for GA resulting in a decrease
in the approximation effect for BMA and convergence difficulties for large-scale truss
optimization, a label–clip–splice strategy is proposed to shrink the search domain gradually
and reasonably with iterations.

In addition to verifying the improvement of the label–clip–splice strategy on the hybrid
method of GA with BMA for large-scale truss optimization, the numerical simulations in
this paper also suggest the efficacy of the presented approach in finding the optimal design
of large-scale truss optimization with mixed variables. The performance of the proposed
method in reducing the number of structural analyses is significant and is far superior to
other methods. Furthermore, the proposed method shows its potential applicability for the
optimum design of practical structures with the extensive ground structure method and
structural analyses from the finite element method.
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