
����������
�������

Citation: Cortés, J.P.; Alzamendi,

G.A.; Weinstein, A.J.; Yuz, J.I.;

Espinoza, V.M.; Mehta, D.D.;

Hillman, R.E.; Zañartu, M. Kalman

Filter Implementation of Subglottal

Impedance-Based Inverse Filtering to

Estimate Glottal Airflow during

Phonation. Appl. Sci. 2022, 12, 401.

https://doi.org/

10.3390/app12010401

Academic Editor: Francesc Alías

Received: 4 November 2021

Accepted: 27 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Kalman Filter Implementation of Subglottal Impedance-Based
Inverse Filtering to Estimate Glottal Airflow during Phonation

Juan P. Cortés 1,* , Gabriel A. Alzamendi 2, Alejandro J. Weinstein 3 , Juan I. Yuz 1 , Víctor M. Espinoza 4,
Daryush D. Mehta 5,6,7, Robert E. Hillman 5,6,7 and Matías Zañartu 1

1 Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaiso 2390123, Chile;
juan.yuz@usm.cl (J.I.Y.); matias.zanartu@usm.cl (M.Z.)

2 Institute for Research and Development on Bioengineering and Bioinformatics, Consejo Nacional de
Investigaciones Científicas y Técnicas–Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
galzamendi@ingenieria.uner.edu.ar

3 Department of Biomedical Engineering, Universidad de Valparaíso, Valparaiso 2362905, Chile;
alejandro.weinstein@uv.cl

4 Department of Sound, Universidad de Chile, Santiago 8340380, Chile; vespinoza@uchile.cl
5 Massachusetts General Hospital, Boston, MA 02114, USA; mehta.daryush@mgh.harvard.edu (D.D.M.);

hillman.robert@mgh.harvard.edu (R.E.H.)
6 Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA 02115, USA
7 MGH Institute of Health Professions, Boston, MA 02129, USA
* Correspondence: juan.cortess@usm.cl

Abstract: Subglottal Impedance-Based Inverse Filtering (IBIF) allows for the continuous, non-invasive
estimation of glottal airflow from a surface accelerometer placed over the anterior neck skin below
the larynx. It has been shown to be advantageous for the ambulatory monitoring of vocal function,
specifically in the use of high-order statistics to understand long-term vocal behavior. However,
during long-term ambulatory recordings over several days, conditions may drift from the laboratory
environment where the IBIF parameters were initially estimated due to sensor positioning, skin
attachment, or temperature, among other factors. Observation uncertainties and model mismatch may
result in significant deviations in the glottal airflow estimates; unfortunately, they are very difficult
to quantify in ambulatory conditions due to a lack of a reference signal. To address this issue, we
propose a Kalman filter implementation of the IBIF filter, which allows for both estimating the model
uncertainty and adapting the airflow estimates to correct for signal deviations. One-way analysis
of variance (ANOVA) results from laboratory experiments using the Rainbow Passage indicate an
improvement using the modified Kalman filter on amplitude-based measures for phonotraumatic
vocal hyperfunction (PVH) subjects compared to the standard IBIF; the latter showing a statistically
difference (p-value = 0.02, F = 4.1) with respect to a reference glottal volume velocity signal estimated
from a single notch filter used here as ground-truth in this work. In contrast, maximum flow
declination rates from subjects with vocal phonotrauma exhibit a small but statistically difference
between the ground-truth signal and the modified Kalman filter when using one-way ANOVA
(p-value = 0.04, F = 3.3). Other measures did not have significant differences with either the modified
Kalman filter or IBIF compared to ground-truth, with the exception of H1-H2, whose performance
deteriorates for both methods. Overall, both methods (modified Kalman filter and IBIF) show similar
glottal airflow measures, with the advantage of the modified Kalman filter to improve amplitude
estimation. Moreover, Kalman filter deviations from the IBIF output airflow might suggest a better
representation of some fine details in the ground-truth glottal airflow signal. Other applications may
take more advantage from the adaptation offered by the modified Kalman filter implementation.

Keywords: vocal hyperfunction; inverse filtering; Kalman filter

1. Introduction

Voice disorders are a health problem of significant concern in our society. In the United
States, voice disorders affect about 7% of the working population [1–4]. Many of these voice
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disorders are chronic or recurring conditions that result from repeated detrimental patterns
of vocal behavior, referred to as vocal hyperfunction (VH) [5,6]. Subtypes of VH include
phonotraumatic VH (PVH) that is associated with the formation of benign vocal fold lesions
(e.g., nodules) due to phonotrauma, and non-phonotraumatic VH that is associated with
the dis-coordination of laryngeal muscle control in the absence of structural abnormalities
(often diagnosed as primary muscle tension dysphonia) [7]. Despite the significant preva-
lence of these disorders, very little is known about the underlying physical mechanisms
of VH. Given that multiple factors contribute and interact in different ways to cause and
sustain VH disorders, there are non-specific, broad-based behavioral treatments that are
inefficient, make patient compliance more challenging, and make it difficult or impossible
to link improvements in vocal function to specific parts of the therapy program [8].

Several efforts have been carried out to develop objective measures that can capture
VH, such as aerodynamic measures obtained from estimates of the glottal airflow [5,9,10],
relative fundamental frequency [11], estimates of spectral tilt of the voice source [12,13],
and cepstral-related measures [14], among others. However, these measures are typically
applied in the context of a laboratory assessment with sustained vowels and do not capture
the nuances of VH in natural speech during daily activities.

The objective assessment of VH is expected to be significantly enhanced through
ambulatory monitoring of vocal function. Ambulatory voice monitoring aims at providing
complementary information that current clinical methods cannot offer, such as long-term
behavior through the use of high-order statistics [14–20]. An ambulatory approach that
could precisely pinpoint the instance, duration, and type of VH behavior would have
the capability to provide transformative advancements in how clinical practices monitor,
evaluate, and treat VH. Efforts in ambulatory methods are heading in this direction [17–19],
but there are many associated challenges.

Some of the ambulatory voice monitors use either a microphone signal to estimate
fundamental frequency ( f0) and jitter [21], a surface electromyograph to estimate increased
muscle tension [22], or a neck-surface accelerometer over the extrathoracic trachea to
estimate sound pressure level, fundamental frequency, voicing activity, vocal dose, and
related measures[15,23–28], as well as aerodynamic, cepstral and related parameters [14,16].
Aerodynamic measures have been successfully used to differentiate both phonotraumatic
and non-phonotraumatic VH patients from matched controls using sustained vowels [9,29],
and have been shown to become salient features of compensatory mechanisms associated
with VH in modeling studies [30,31]. Thus, these aerodynamic measures have a strong
potential to enhance the ability to identify VH in ambulatory settings [16].

Given that traditional assessment of aerodynamic signals using a Rothenberg mask [32]
is not feasible for ambulatory scenarios, indirect estimation methods are required. The
Subglottal Impedance-Based Inverse Filtering (IBIF) scheme [33] allows for estimating the
glottal airflow signal from neck-surface vibration. The IBIF approach was recently tested in
a discrimination task using week-long ambulatory recordings for 50 patients with vocal fold
nodules and 50 matched healthy-control subjects [16]. The results of classification task using
aerodynamic features outperformed previous efforts with other measures [14,15,17,19] and
provides a new avenue to improve the assessment and treatment of VH disorders.

Despite of these advances, unquantified uncertainties are associated to the estimation
of the glottal airflow signal with the IBIF scheme due to a number of factors. First, the
determination of the IBIF model parameters uses inverse filtering of the oral airflow from
few sustained vowel samples, which can lead to IBIF parameter variations for different
vowels and pitch conditions [16,34]. The latter becomes especially challenging for high-
pitched female voices, which are common in ambulatory studies. In addition, there are
combined measurement uncertainties from the accelerometer due to sensor positioning,
skin attachment, temperature, etc. Furthermore, there is no direct reference that can be
used to quantify these combined effects in ambulatory scenarios. Thus, there is a need
to quantify the magnitude of the uncertainty in the estimation process, and to potentially
improve the estimation of the aerodynamic signals through the IBIF framework.
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To address the aforementioned limitations, we propose a Kalman filter (KF) imple-
mentation of the IBIF filter, which allows for both assessing the estimation uncertainty and
correcting for potential deviations in the airflow signal estimates. The KF structure is based
in a Moving Average (MA) Kalman Filter with colored state noise modeling the glottal
airflow signal. To assess the accuracy of the KF, we compare aerodynamic measures describ-
ing the glottal airflow signal obtained from the oral mask using a notch-filter [35,36], the
standard IBIF [33], and the modified Kalman filter for a group of PVH and healthy-controls
subjects reading a phonetically balanced passage.

The paper is structured as follows: In Section 2, we present the methods utilized to
estimate glottal airflow, namely the IBIF method and its Kalman filter implementation.
Then, in Section 3, we describe the experimental setup with participants with PVH and
vocally healthy control subjects. In Section 4, we present the results of the experiments, and
in Section 5, we discuss them in detail. Finally, in Section 6, we present the conclusions and
future work.

2. Materials and Methods
2.1. Standard IBIF Implementation

The IBIF scheme is described in the frequency domain, where the glottal airflow (also
referred to as glottal volume velocity, GVV) and the acceleration signal are related by

U̇skin(ω) = Tskin(ω) ·Usub(ω) (1)

where U̇skin(ω) is the acceleration signal, Usub(ω) is the inverted GVV (assuming source is
a dipole, that is, two equal and opposite volume velocity sources [37]), and Tskin(ω) is the
neck-skin frequency response. In what follows, we remove the frequency dependency ω in
the expressions for the sake of clarity. Tskin can be modeled by:

Tskin =
U̇skin
Usub

=
Hsub1 · Zsub2 · Hd

Zsub2 + Zskin
, (2)

where Hsub1 is the frequency response of the subglottal section from the glottis to the
accelerometer location, and Hd = jω is a derivative filter (similar to the lip radiation effect,
except that in this case is the acceleration in free field). Zsub2 is a frequency-dependent
driving-point impedance corresponding to the subglottal section [38] below the accelerom-
eter position. Zskin is the neck-skin impedance modeled as a mechanical analog of a
resistor-inductor-capacitor circuit in series:

Zskin = Rm + j
(

ωMm −
Km

ω

)
+

jωMacc

Aacc
, (3)

where Rm, Mm, and Km are the per-unit-area resistance, inertance, and stiffness of the skin,
respectively. The radiation impedance due to the accelerometer loading is modeled as a
derivative term jω times the mass Macc divided by the surface Aacc (per-unit-area) of the
accelerometer and the coating or mounting disk attached to it [39]. These parameters are
subject specific, and therefore involve calibration factors that can be fitted per subject using a
reference GVV signal and an optimization method. The calibration factors Q = {Qi}i=1,...,5
are defined as:

Q = {Q1, Q2, Q3, Q4, Q5} (4)

Rm = 2320 ·Q1 [g · s−1 · cm−2], (5)

Mm = 2.4 ·Q2 [g · cm−2], (6)

Km = 491,000 ·Q3 [dyn · cm−3], (7)

Ltrachea = 10 ·Q4 [cm], (8)

Lsub1 = 5 ·Q5 [cm], (9)
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where Ltrachea (related to the length of the trachea) and Lsub1 (related to sensor position on
the neck-surface) are embedded in Zsub2 and Hsub1, respectively. The derivation of these
terms is beyond the scope of this paper and details can be found in [33,40]. Given the Q
factors above, the impulse response of neck-skin h(n) in the time domain is obtained by first
taking the fast Fourier transform (FFT) of Tskin(ω) with N points, which becomes T̂skin(k)
with k = 0, 1, . . . , N− 1, where N is the number of FFT frequency points. Then, after forcing
T̂skin(k) to be conjugate symmetric (T̂skin(k) = T̂∗skin(N − k)), we take the inverse FFT to
obtain a real impulse response h(n). In this way, the resulting IBIF filter is implemented
as a deterministic finite impulse response filter (FIR) of length N. Therefore, in the time
domain, the IBIF scheme assumes that the GVV signal x(n) is convolved with the impulse
response h(n) to produce an output signal y(n), which corresponds to the neck-surface
acceleration. Since we are interested in estimating x(n), the discrete frequency response
T̂skin(k) is inverted to yield T̃skin(k) = 1/T̂skin(k) and, as with T̂skin(k), it is also forced to
be conjugate symmetric, so when taking the IFFT the sequence h̃(n) is obtained, which is
the impulse response of T̃skin(k). Therefore, the GVV signal x(n) can be estimated through
the convolution of the acceleration signal y(n) and the response h̃(n). One limitation of
this approach is the assumption of fixed Q factors for each subject. However, these factors
contain certain degree of uncertainty [34,41] due to small changes either in the mechanical
properties of the neck-skin tissue, as well as changes in the effective length of the trachea
when the speaker is voicing in continuous speech. Therefore, a better approach to estimate
the GVV signal would be to consider the uncertainty associated to the estimation process
with an adaptive filter.

2.2. Formulation of IBIF Model Based on a Kalman Filter

Even though the IBIF algorithm performs well in laboratory settings where the cali-
bration procedure is done with a Rothenberg mask, there are uncertainties related to the
application of the IBIF filter in ambulatory settings. First, the position and arrangement
of the sensor during in field monitoring might not match laboratory specifications, so
the subject-specific parameters could change slightly. One approach for tracking relevant
latent signals (i.e., GVV) of a given process (i.e., IBIF) based on related noisy/perturbed
observations (i.e., neck-skin acceleration) is the use of a Bayesian approach, which allows
to simultaneously estimate both the unknown signal and its uncertainty [42]. Under the
assumption of linearity and Gaussian distributions for the unknown states, a Kalman Filter
is the optimal Bayesian estimator. In this work, we propose an alternative formulation of
IBIF combining the state-space framework with the MA canonical form [43] obtained from
the h(n) impulse response:

x(n + 1) = Ax(n) + w(n), (10)

y(n) = Cx(n) + v(n). (11)

What follows is the instantiation of a Kalman filter from the model (10) and (11),
to our particular problem, where x(n) is the state vector containing the GVV signal:
x(n) = [x(n− N + 1) x(n− N + 2) x(n− N + 3) · · · x(n)]T where N is the length
of the skin-impulse response. Following [43], the transition matrix A is given by:

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 ∈ RN×N ,
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and w(n) is a Gaussian process noise with zero mean and covariance matrix:

Rw =


0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 σ2

w

 ∈ RN×N.

The initial condition is specified with the mean m0 = E(x0) and covariance
P0 = E((x0 −m0)(x0 −m0)

T) of the initial state x0.
The observation Equation (11) relates the accelerometer signal y(n) as the convolution

between the unobserved state x and the neck-skin impulse response h(n) with coefficients:

C =
[
h(0) h(1) h(2) · · · h(N − 1)

]T ∈ R1×N .

According to (11), Gaussian measurement noise v(n) with mean zero and variance
σ2

v is assumed as the additive perturbation to the observed signal. Implementation of the
standard MA Kalman filter for a discrete-time set n = 1, . . . , T is described in Algorithm 1:

Algorithm 1 Kalman Filter Algorithm

1: procedure KALMAN(A, C, Rw, Rv, µ0, Σ0, y(n))
2: Initialization: Set x(0|0) = µ0 and P(0|0) = Σ0
3: Filtering: For n = 1, 2 . . . T
4: Prediction equations:
5: x(n|n− 1) = Ax(n− 1|n− 1)
6: P(n|n− 1) = AP(n− 1|n− 1)AT + Rw
7: Update equations:
8: K(n) = P(n|n− 1)CT(CP(n|n− 1)CT + Rv)−1

9: x(n|n) = x(n|n− 1) + K(n)(y(n)−CTx(n|n− 1))
10: P(n|n) = P(n|n− 1)−K(n)CP(n|n− 1)

The state matrix A is circular, and the state vector is defined by including the glottal
flow for different delays. Therefore, when the filter is applied, states with different delays
n− N + 1, n− N + 2, . . . , n− 1 are estimated conditioned on the observations up to the
current time index n, i.e., future information is used in the inference process. In this
case, the structure of the Kalman filter in Equations (10) and (11) fulfill that of a fixed-lag
smoother [44]. It is important to notice that the canonical MA framework assumes that the
GVV signal follows a Gaussian distribution with zero mean and variance σ2

w (note that
the last term in Equation (10) is x(n) = w(n), where w(n) ≈ N (0, σ2

w).) In the following
section, we propose a colored noise model that resembles a physiological glottal spectrum
in accordance to the source-filter theory of voice production [45].

2.3. Glottal Flow Model for the Kalman Filter

According to Fant’s source-filter theory of speech production [45], the glottal excitation
is assumed independent of the vocal tract. Even though there is evidence for certain cases of
non-linear coupling between the glottal source and the vocal tract [25,40], the source-filter
theory has served well for the development of glottal source modeling and estimation. In
terms of modeling the glottal source, parametric time domain models have been proposed,
such as the Rosenberg model of glottal pulse [46] and the Lijecrants-Fant (LF) model of the
derivative of the glottal pulse [47]. These models are widely used and serve as templates to
other more complex source modeling strategies [48,49]. In this work, we use the Rosenberg
model to construct a glottal spectrum, due to its efficacy in modeling colored noise as a
low-pass filter with fewer parameters than the LF model [50,51].
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Rosenberg Model for the Glottal Pulse

A parametric model of the glottal pulse can be obtained from the Rosenberg model [46],
which can be formulated as [51]:

g[n] =


0.5[1− cos(π(n + 1))/N1], 0 ≤ n ≤ N1 − 1,
cos(0.5π(n + 1− N1)/N2), N1 ≤ n ≤ N1 + N2 − 1,
0, otherwise,

where N1 is the number of samples of the opening phase and N2 is the number of samples of
the closing phase. For a sequence of 96 samples (equivalent to approx. 210 Hz fundamental
frequency, pitch period of 4.8 msec., and sampling frequency fs = 20 kHz), with N1 = 25
and N2 = 10, the z-transform G(z) has the form:

G(z) = z−33
33

∏
k=1

(−b−1
k )

33

∏
k=1

(1− bkz), (12)

where bk corresponds to the zeros of G(z), which can also be written in the following form:

G(z) = g[0] + g[1]z−1 + g[2]z−2 + · · ·+ g[N − 1]z−(N−1),

= β0 + β1z−1 + β2z−2 + · · ·+ βN−1z−(N−1),

=
N−1

∑
k=0

βkz−k.

(13)

The glottal pulse time-domain waveform g[n] and its spectrum are plotted in Figure 1

0 5 10 15 20 25 30 35 40 45 50

n

0

0.5

1

g[n]

0 2 4 6 8 10

Frequency (kHz)

-2

0

2

log|(G(f))|

Figure 1. Rosenberg model in time domain (only first 50 samples shown, top panel) and the magni-
tude of its spectrum (bottom panel).

The periodic comb excitation p[n] is modeled as one-sided quasi-periodic impulse train:

p[n] =
∞

∑
k=0

γkδ[n− kNp], (14)

which has z-transform:

P(z) =
∞

∑
k=0

γkz−kNp =
1

1− γz−Np
, (15)

where Np = fs/ f0 (fundamental period in samples) and γ is a number close to 1 (e.g.,
0.999) to make the filter stable. The spectrum of the periodic input P(z) has a fundamental
frequency of f0 = 210 Hz (Np = 96).
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Therefore, P(z)G(z) is the z-transform of the glottal flow model (spectrum shown in
Figure 2). In the time-domain, the GVV signal can be represented by an ARMA model
that can be constructed as a shaping filter (s f ) driving the canonical MA model (see
Equation (16)) [43,44]:

xs f (n) = −
p

∑
k=1

αkxs f (n− k) +
q

∑
k=0

βkw2(n− k), (16)

where xs f (n) is the state of the shaping filter, αk = −γk and βk are the kth coefficient of the
AR and MA model, respectively, and w2(n) is Gaussian noise with mean 0 and variance
σ2

w2
. The state-space equation for this model is:

xSF(n + 1) = ASFxSF(n) + BSFw2(n), (17)

w1(n) = CSFxSF(n), (18)

where xsf(n) = (xSF(n− p + 1) xSF(n− p + 2) . . . xSF(n))T is the state vector and p
is the order of the AR model. Since the periodic input has Np poles, the order of the AR
model is p = Np. ASF is the transition matrix p× p:

ASF =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
0 0 0 . . . 0 1
−αp −αp−1 −αp−2 . . . −α2 −α1

 ∈ Rp×p,

BSF = [0 0 . . . 1]T ∈ Rp×1 and w2(n) is a stochastic driving noise with zero mean and
variance σ2

w2
. The MA equation Equation (18) contains CSF = [βq βq−2 . . . β1 β0] ∈

R1×(q+1) and the colored noise w1(n) ∈ R is the dot product of CSF and xSF(n). Considering
the source-filter theory, the colored noise model can be considered as modeling the GVV
for the Kalman implementation of IBIF in Equation (19). A diagram of this augmented
system is shown in Figure 3. The white noise w2(n) is the input to the shaping filter, the
latter being the Rosenberg model convolved with the periodic input (Figure 2). The output
of this filter is the colored noise w1(n) modeling the GVV signal, which is the state noise to
the canonical MA system (physical system in Figure 3), whose output z(n) is the observed
signal, i.e., the neck-skin acceleration. The new state-space equations in discrete-time are:

XT(n + 1) = ATXT(n) + BTw2, (19)

z(n) = CTXT(n) + v(n), (20)

where

AT =

[
A CSF
0 ASF

]
(21)

BT =

[
0

BSF

]
(22)

CT =
[
C 0

]
(23)

XT =

[
x

xSF

]
. (24)
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Figure 2. Spectrum of periodic input P(z) multiplied in the frequency domain by Rosenberg model
G(z), which corresponds to an ARMA model of the glottal source ( f0 = 210 Hz).

Figure 3. Diagram of modified Kalman Filter with colored state noise process. The physical system
corresponds to the standard MA Kalman Filter, with a shaping Kalman filter based on a autoregressive
noise process from the spectrum of a periodic Rosenberg glottal flow excitation.

An example of the estimated GVV using matrix AT is shown in Figure 4 and compared
to the estimated GVV using the original matrix A. The upper plot shows the tracking
of the first time step state x̂(n − N + 1|n), which corresponds to the smoothed (time
delayed estimate) GVV. Can be noticed that there are no differences between the original
MA Kalman filter and the one incorporating a colored state noise. There is, however, a
noticeable difference in the tracking of the last time step state x̂(n|n) of the GVV, which
corresponds to the the filtered GVV estimate considering all the observation information
up to the current sample n. The original Kalman filter produces a zero-mean signal, while
the modified Kalman filter with colored state noise modeling the glottal spectrum tracks an
expected GVV signal.
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Figure 4. Top panel: GVV estimates (x̂(n− N + 1|n)) using A (blue) and Alp (red). Bottom panel:
GVV estimates (x̂(n|n)) using A (blue) and Alp (red).

The proposed implementation of the IBIF method in a Kalman filter framework has
two important additions: the adaptive tracking of the GVV signal using the accelerometer
and the modeling of state and observation noise. In the first case, the adaptive tracking is
performed through the sample by sample correction of the predicted accelerometer signal
by the Kalman gain K(n). In our hypothesis, the correction term helps to improve the
estimation of the GVV signal by minimizing the deviations from the GVV signal obtained
with IBIF. The process noise variance σ2

w (mL2/s2) and the observation noise variance
Rv = σ2

v (cm2/s4) were selected using a grid-search process to compare the root-mean-
square error (RMSE, mL/s) between the Kalman state x(n− N + 1) and a reference GVV
signal obtained by inverse filtering of the OVV signal [9]. Figure 5 shows different values
of σ2

w and σ2
v where multiple minima (RMSE = 17.268) are found within a range for

one subject producing the vowel /a/. Most blue RMSE values in Figure 5 correspond to
RMSE = 17.273 which are very close to the minimum. Similar trends were found for other
subjects and vowels. We selected σ2

w = 100 and σ2
v = 1 in this work, which are plausible

values for the state and measurement noises due to the assumption of higher process noise
due to glottal flow variance with low observation noise, while they produce the minimum
RMSE value.
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Figure 5. RMSE values for different combinations of σ2
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3. Experimental Setup

The human studies protocol used to collect the data for this study was approved
by the Institutional Review of the Mass General Brigham (formerly, Partners Healthcare
System) at the Massachusetts General Hospital. Study participants were 50 pairs of adult
females (total of 100 subjects) with each pair comprised of one patient with PVH (diagnosed
with vocal fold nodules) and one normal control subject matched to the patient by age
and occupation. Due to the higher incidence of female patients with PVH than male in
the overall population [52,53] and potential sex-specific effects (e.g., due to differences in
fundamental frequency), only females were selected for this study. The patient matching
was done to normalize for general vocal behavior differences. Clinical diagnoses were
based on a complete team evaluation by laryngologists and speech-language pathologists at
the Massachusetts General Hospital Voice Center that included (a) a complete case history,
(b) endoscopic imaging of the larynx, (c) aerodynamic and acoustic assessment of vocal
function [54], (d) a patient-reported Voice-Related Quality of Life questionnaire [55], and
(e) a clinician-administered Consensus Auditory-Perceptual Evaluation of Voice assess-
ment [56]. All patients were enrolled prior to the administration of any voice treatment.
Written informed consent was obtained from all subjects. The average (standard deviation)
age of all subjects was 25.0 (10.5) years old.

Each subject was recorded reading a phonetically balanced text (Rainbow Passage, [57]),
at a comfortable loudness level, using a Voice Health Monitor system that consists of an
accelerometer attached to the front of the neck below the larynx and connected to an
smartphone application [14]. Also, synchronized recordings of oral airflow volume velocity
provided a reference signal from which glottal airflow could be extracted using standard
inverse filtering [32]. The sampling frequency for each signal is 20,000 Hz with an average
of 30 s per passage. A typical set-up of the accelerometer attached to the neck surface is
shown in Figure 6.

Figure 6. Experimental setup with oral airflow (pneumotachograph) mask and accelerometer sensor
(ACC) on neck-surface location.

3.1. IBIF Calibration

Each subject underwent a session in the laboratory to obtain a subject-specific calibra-
tion for the IBIF algorithm. The session involved simultaneous and synchronous recordings
of a circumferentially vented mask-based OVV and neck-surface acceleration in an acousti-
cally treated room. Each subject performed a series of sustained vowel gestures (/a/ and
/i/) with a constant pitch using comfortable and loud (approximately 6 dB increase) voice.
For each gesture, a bandpass-filtered (60–1100 Hz) oral airflow vowel segment was used
to perform inverse filtering with a single notch filter (SNF) constrained to unitary gain at
DC [35,36].
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Once a glottal airflow approximation was obtained from the OVV signal, the previ-
ously introduced Q parameters were estimated using the optimization scheme described
in [33]. These are the parameters describing the mechanical properties of the neck skin, as
well as the length of the trachea and the position of the accelerometer with respect to the
glottis [33].

3.2. Ground Truth GVV

A ground truth GVV signal is necessary to compare the performance of the proposed
algorithm. However, a measurement of GVV is infeasible because there is no sensor
available to directly measure the airflow in the glottis. An alternative is to obtain a GVV
estimate from an external sensor, e.g., an oral flow mask. Following the same method for
IBIF calibration (Section 3.1), the SNF method is used in this work to calculate the ground
truth GVV. Even though this ground truth is an estimation of the true glottal flow (due to
the difficulty of obtaining directly the latter signal), the SNF method has been successfully
applied in previous work related to GVV estimation in sustained vowels [5,9,29,36,58].
Since we have running speech in this case, the optimization procedure that finds the best
notch frequency and bandwidth is done in every 50 ms non-overlapping frame. A simple
voice activity detector based on the autocorrelation method [51] is used to remove unvoiced
frames. The signal is reconstructed from individual frames by using the overlap-and-add
method [51].

3.3. Reducing Order of the IBIF Filter

In order to reduce the complexity of the Kalman filter, we need to reduce the size of
the matrices A and C in Equations (10) and (11). This is necessary due to the computational
cost of Kalman filter in the multiplications of state-space matrices of size 550× 550 when
processing running speech. Since A and C depend on the length of the neck-skin impulse
response h(n), the latter is truncated in the middle region and then windowed (Hanning
function) to 350 points. This procedure seeks to maintain the performance of IBIF filter
because most of the energy of the impulse response is concentrated in the middle section,
while the extremes are considerably low in energy. As an example, Figure 7 shows a given
h(n) in blue and the resulting truncated version in orange. The magnitude of the frequency
response is shown in Figure 8.
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Figure 7. Neck-skin impulse response for a healthy female subject, full impulse (blue) and truncated
version with a Hanning window (orange).
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Figure 8. Neck-skin frequency response for a healthy female subject, full length (blue) and truncated
version with a Hann window (red).

3.4. Aerodynamic Features

The GVV signals from IBIF, SNF, and Kalman methods are divided in 50 ms, non-
overlapping frames. Voicing is detected by calculating the normalized autocorrelation of
the ACC signal and the main peak exceeding a threshold of 0.8. If the frame is voiced, mea-
sures are extracted from the GVV waveform, its time-derivative, and spectrum. Figure 9a
shows an ACC frame and (b) a GVV waveform, the spectrum (c) and the time-derivative
waveform (d). The features used in this work are described in Table 1. Some of these aero-
dynamic features, such as AC flow (ACFL) and maximum flow declination rate (MFDR),
have been shown to be useful to discriminate between subjects with PVH and healthy
controls [5,9,16,29,58]. Instead of estimating time-domain features based on the detection
of glottal opening and/or closing instants, the normalized amplitude quotient (NAQ) is
calculated in this study, due to its robustness to noisy measurements and its correlation to
the close quotient of the glottal cycle [59]. For time-domain measures (ACFL, MFDR, NAQ
and f0), the median for all cycles within the 50 ms frame is obtained. The difference in
magnitude of the first and second harmonic (H1-H2) is computed from the GVV spectrum.
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Figure 9. (a) ACC frame, (b) GVV frame, (c) spectrum from (b), and (d) time-derivative from (b).
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Table 1. Frame-based derived glottal airflow measures.

Glottal Airflow Measures Description Units

ACFL Peak-to-peak glottal airflow mL/s
MFDR Negative peak of the first derivative of the glottal waveform L/s2

H1-H2 Difference between the magnitude of the first two harmonics dB
Normalized Amplitude Quotient (NAQ) Ratio of ACFL to MFDR divided by the glottal period −
Fundamental frequency ( f0) Inverse of the glottal period Hz

4. Results

Table 2 shows summary statistics (mean ± standard deviation) of average values, per
subject, of ACFL, MFDR, H1-H2, NAQ, and f0 from the Rainbow passage speech data,
across PVH and healthy subjects, calculated with SNF, IBIF, and KF implementation of IBIF
with colored noise model. Mean values are not statistically different for the three methods.
Figure 10 shows box plots for some of the measures. Overall, the distribution of measures
is similar when using the standard IBIF and the modified Kalman filter algorithm.

Table 2. Mean and ± standard deviation from a pool of average values of ACFL, MFDR, H1-H2,
NAQ, and f0 extracted from the Rainbow Passage (voiced frames only).

ACFL MFDR H1-H2 NAQ f0

PVH
SNF 238.8± 74.9 279.5± 102.0 11.1± 1.30 0.19± 0.02 202.4± 20.1
IBIF 306.8± 147.7 346.8± 178.6 10.3± 4.89 0.20± 0.05 202.6± 20.3

Kalman 287.6± 131.3 357.3± 199.1 9.69± 5.51 0.19± 0.05 200.8± 20.1

Healthy
SNF 184.5± 47.0 199.7± 77.8 10.7± 1.49 0.19± 0.02 204.6± 20.9
IBIF 212.2± 82.9 260.0± 122.1 8.73± 3.63 0.19± 0.04 204.6± 21.0

Kalman 199.7± 77.8 266.1± 138.3 7.73± 3.85 0.18± 0.04 203.5± 21.7

From Table 3, the mean values of ACFL and MFDR from healthy subjects are not
significantly different between the standard IBIF, the modified Kalman filter, and the
ground-truth GVV (one-way ANOVA: F = 1.8, p = 0.2 for ACFL, F = 2.7, p = 0.07 for
MFDR). Therefore, both IBIF and the modified Kalman filter have similar ACFL values
comparable to the ground-truth GVV. Instead, ACFL from PVH subjects are significantly
different between the standard IBIF and the ground-truth GVV (F = 4.1, p = 0.02),
while the modified Kalman does not have significant differences withe the same ground-
truth. Similar to ACFL from healthy subjects, MFDR from the same group do not show
significantly differences between the two methods and the ground-truth GVV. However,
there was a small but significantly difference between the modified Kalman filter and the
ground-truth GVV for PVH subjects (F = 3.3, p = 0.04), indicating that MFDR from the
modified KF does not estimate MFDR as well as the standard IBIF, when compared to the
ground-truth of that group. For all other measures, there were not significantly differences,
in which either case, the modified KF or standard IBIF could provide similar mean results
comparable to the ground-truth measure.

Table 3. One-way ANOVA table with mean values of glottal flow features for both Healthy and PVH
subjects when comparing the standard IBIF, the modified Kalman filter, and the ground-truth GVV
(* Statistically differences: p < 0.05).

ANOVA ACFL MFDR H1-H2 NAQ

Healthy F 1.79 2.69 10.9 2.36
p-value 0.17 0.07 * >0.001 0.1

PVH F 4.12 3.27 1.39 0.74
p-value * 0.02 * 0.04 0.25 0.48
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Figure 10. Distribution of average measures from the Rainbow passage for 50 vocally-healthy subjects
(left panel in each subplot) and 50 PVH subjects (right panel in each subplot): (a) ACFL, (b) MFDR,
(c) H1-H2, and (d) NAQ

The root-mean-square-error (RMSE) between the KF implementation and the ground-
truth GVV (RMSEKF) and the RMSE between the standard IBIF and the ground-truth
GVV (RMSEIBIF) were calculated for each subject with voiced frames from the Rainbow
Passage.The percentage of the error difference ∆ = (RMSEKF − RMSEIBIF)/RMSEIBIF are
shown in Table 4 as the median and interquartile range for each PVH and healthy group
for all the glottal features. The results indicate an improvement on the median of ACFL for
both healthy and pathological using the KF implementation compared to the standard IBIF.
Other features show medians indicating IBIF provides a better estimate of the ground-truth
signal. However, it is worth to notice that there is a large dispersion of ∆’s for all subjects,
indicating that some subjects estimates have a large improvement by using KF as well.
Moreover, ACFL estimated from the neck-surface acceleration signal is a key measure able
to discriminate between PVH subjects from healthy controls [29] in steady vowels, and
which the KF implementation can provide better estimates.

Table 4. Median (interquartile range) of RMSE ∆s in percentage (%) of the modified Kalman filter
with respect to the standard IBIF.

ACFL MFDR H1-H2 NAQ

Healthy −9.28 (41.6) 14.2 (27.5) 1.13 (22.2) 5.17 (18.4)

PVH −9.95 (39.9) 7.73 (37.5) 2.45 (27.2) 0.76 (18.2)

We can observe some differences between the IBIF and its KF implementation when es-
timating the peak-to-peak amplitude (e.g., ACFL). Figure 11 shows a voiced segment of the
Rainbow passage from a vocally healthy female. The KF method (green line) estimates a rea-
sonably good fit to the GVV waveform from the SNF method (RMSE = 24.9 mL/s). How-
ever, the IBIF method does not follow the same ground truth signal (RMSE = 42.7 mL/s).
The peak-to-peak amplitude is smaller, and the close phase contains a large resonance.
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However, the KF method improves the estimation of the peak-to-peak amplitude for the
same segment. There is some phase distortion in the closed and opening phase, but overall,
the waveform has a closer match to the SNF method than IBIF. The errors to IBIF could
be attributed to the production of vowels whose spectra are substantially different to a
steady /a/ vowel, which in some cases could affect estimated glottal features up to 50% in
error [60].

Figure 12 shows a voiced segment from a PVH female subject. In this case, the IBIF meth-
ods overestimates the peak-to-peak values from the SNF method (RMSE = 229.4 mL/s).
Also, the opening phase is faster compared to ground truth. The KF method compensates
the large amplitude of the IBIF output waveform, while at the same time it gets closer to the
ground truth signal in the opening and close phase (RMSE = 76.3 mL/s). As previously
stated, the IBIF and, therefore, the model used by the Kalman filter, are both calibrated using
a procedure based on fitting the vowel /a/. In these cases, the method based on Kalman
follows the reference signal a bit closer than IBIF. Even though the Kalman filter is an
alternative implementation of the IBIF filter, the adaptive filtering nature of Kalman allows
to track better the ground truth signal than IBIF. Similar trends were found in different
subjects and tokens.

Figure 11. Section from the Rainbow passage (healthy female) with estimations of GVV: Kalman
filter (solid and dot green), IBIF (dashed red), and single notch filter (solid blue). The estimation of
GVV using Kalman filter includes ±2σ (standard deviation) on the green shaded region.

Figure 12. Section from the Rainbow passage (female PVH) with estimations of GVV: Kalman filter
(solid and dot green), IBIF (dashed red), and single notch filter (solid blue). The estimation of GVV
using Kalman filter includes ±2σ (standard deviation) on the green shaded region.
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5. Discussion

The proposed method based on the modified MA framework and the Kalman filter
algorithm is an adaptive implementation of the IBIF scheme. Therefore, it has some
differences with the original IBIF design, namely a forward prediction of the accelerometer
signal (i.e., no filter is inverted) and a truncation of the finite impulse response required
to reduce the computational burden. Despite these differences, in this paper we have
shown that the Kalman filter implementation allows for enhancing the glottal airflow
estimates, as it optimally adapts its latent states to better predict the accelerometer signal,
thus resulting in a closer estimation of the glottal airflow from a Rothenberg mask in
benchmark experiments. It is important to note that there are still differences between the
Kalman filter glottal airflow estimates and the reference signal from the Rothenberg mask,
due to supraglottal inverse filtering errors and measurement uncertainty of the oral airflow
signal [61]. Small, but significant, differences between the mean values of ACFL and MFDR
from PVH subjects can be observed using the IBIF and Kalman method, respectively. These
are difficult to assess, particularly, for high-pitched female pathological voices [62]. For
example, the method of closed phase covariance requires several samples in the closed
phase of the glottal flow, which are difficult to obtain for high-pitched subjects [63].

The signal deviations between the Kalman filter and the original (time invariant) FIR
IBIF glottal airflow estimates are relatively small, although the former better estimates the
amplitude, or peak-to-peak flow, compared to IBIF. These differences can be relevant in
some cases, depending on the application. In the case of ACFL, there is an improvement
on its estimation using KF from running speech, which adds value in a clinical setting,
where ACFL has proven to be a key discriminant measure between health subjects and
subjects with PVH only for steady vowels [29]. When assessing the relevance of these
differences in the context of a classification task to discriminate between vocal fold nodules
patients and control subjects using ambulatory accelerometer data, no significant variations
in the classification were found, even when comparing frames with low and high error
(or deviation) [64]. Thus, the classification task for long periods of time seems to be
fairly insensitive to the uncertainty of the airflow estimates from IBIF model parameters,
sensor positioning, and other effects. This supports the use of the original FIR version
of the IBIF scheme for such classification tasks, which indicates that factors affecting the
classification performance in [16] were not degraded by the airflow estimates. However,
other applications more sensitive to signal quality (for instance, the estimation of glottal
biomechanics and assessment of tissue-flow-acoustic interaction [65]) can further benefit
from the enhancement offered by the proposed Kalman implementation to estimate more
accurate glottal airflow in running speech and/or ambulatory scenarios.

The main differences between the Kalman filter and SNF approach can be observed in
H1-H2 and NAQ measures, which are related to low-frequency content and closed quotient,
respectively. The IBIF method shows similar differences as well. In order to better estimate
these measures, it is necessary to correctly detect the upward and downward slope of the
glottal cycle, as well as the closed phase portion. Undue modelled rapid changes in the
signal trajectory might induce errors in the Kalman approach which affect the detection of
those landmarks in the glottal cycle. In addition, for some subjects, errors in the parameters
from IBIF due to calibration could carry through to the Kalman implementation since the
latter is built upon the IBIF scheme.

The main current limitation of the proposed Kalman filter approach is the relatively
high computational cost due to the FIR model used, which can become a problem when
processing many hours of recordings (as in ambulatory monitoring) in numerous subjects.
Future efforts can be devoted to optimizing the approach via more efficient methods, using
for example an autoregressive model in the construction of the state space model. Also, an
optimal tuning of process and observation covariance matrix can be explored to improve
the estimation. Other variations in the construction, e.g., addition of a random walk
term or an extended Kalman filter could be investigated as well to encompass non-linear
implementations of the accelerometer signal to glottal airflow signal transformation. Flow
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estimation can also be improved by considering the backward Kalman smoother algorithm,
at the expense of an increase in the computational burden and the memory requirements.
New model strategies suitable for Kalman filter and smoother would be explored in the
future [66].

6. Conclusions

A Kalman filter implementation of the subglottal impedance-based inverse filtering
scheme was introduced to enhance the estimated glottal airflow from recordings of a
neck-surface vibration signal and to assess the relevance of model uncertainty in such
estimates. The proposed approach can adapt the signal estimates to correct for inverse
filtering deviations, as observed in benchmark experiments with different sustained vowels.
Future work is related to the exploration of other applications that can further benefit
from the Kalman filter enhancement when estimating glottal airflow and to reduce its
computational complexity.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC Neck Surface Accelerometer
ACFL AC Flow, i.e., Unsteady Flow Peak-to-Peak Amplitude
ANOVA Analysis of Variance
FFT Fast Fourier Transform
FIR Finite Impulse Response
f0 Fundamental Frequency
H1-H2 Difference of Magnitudes between First and Second Harmonic
KF Kalman Filter
MA Moving Average
MFDR Maximum Flow Declination Rate
NAQ Normalized Amplitude Quotient
OVV Oral Volume Velocity
PVH Phonotraumatic Vocal Hyperfunction
RMSE Root-Mean-Square-Error
SNF Single Notch Filter
VH Vocal Hyperfunction
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