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Abstract: This paper adopts an intelligent controller based on supervised neural network control for
a magnetorheological (MR) damper in an aircraft landing gear. An MR damper is a device capable of
adjusting the damping force by changing the magnetic field generated in electric coils. Applying an
MR damper to the landing gears of an aircraft could minimize the impact at landing and increase the
impact absorption efficiency. Various techniques proposed for controlling the MR damper in aircraft
landing gears require information on the damper force or the mass of the aircraft to determine optimal
parameters and control commands. This information is obtained by estimation with a model in a
practical operating environment, and the accompanying inaccuracies cause performance degradation.
Machine learning-based controllers have also been proposed to address model dependency but
require a large number of drop test data. Unlike simulations, which can conduct a large number of
virtual drop tests, the cost and time are limited in the actual experimental environment. Therefore,
a neural network controller with supervised learning is proposed in this paper to simulate the
behavior of a proven controller only with system states. The experimental data generated by applying
the hybrid controller with the exact mass and force information, which has demonstrated high
performance among the existing techniques, are set as the target for supervised learning. To verify
the effectiveness of the proposed controller, drop test experiments using the intelligent controller and
the hybrid controller with and without exact information about aircraft mass and force are executed.
The experimental results from the drop tests of a landing gear show that the proposed controller
maintains superior performance to the hybrid controller without using explicit damper models or
any information on the aircraft mass or strut force.

Keywords: magnetorheological damper; semi-active suspension; aircraft landing gear; machine
learning; neural network; intelligent controller

1. Introduction

Aircraft landing gears are critical elements that effectively mitigate and absorb vibra-
tions and shocks during the takeoff and landing process to support the safe operation of the
aircraft. Therefore, the landing gears must maintain their performance in various landing
situations. The damper is the heart of the landing gear, which is the central part responsible
for absorbing and dissipating kinetic energy during the touchdown and taxing phases.
However, oleo-pneumatic dampers, the most commonly used passive devices, are designed
only at a critical case following FAR Part 25 [1]. Thus, the passive dampers are limited in
improving the landing performance in different landing cases. Magnetorheological (MR)
dampers have received significant attention to replace these passive dampers. The MR
damper has many applications, such as suppressing chatter conditions during the milling
operations of thin-floor components [2], changing the structural behavior of buildings
during earthquakes [3], and reducing vibrations in gun recoil control [4]. An MR damper is
a semi-active device that adjusts the damping force due to the fluid inside the damper by
changing the magnetic field formed in the coil around the orifice. Thus, for the effective
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use of the MR damper, a controller is designed to produce an appropriate electrical current,
which generates the desired damping force [5].

Thus far, many control algorithms for MR damper landing gears have been devel-
oped and applied through drop test simulations or experiments. For example, Grzegorz
Mikulowski and Lukasz Jankowski developed an adaptive control to mitigate the peak
force transferred to the aircraft structure during touchdown [6]. Young-Tai Choi and et al.
designed and analyzed an MR landing gear system for a helicopter and then developed
feedback control algorithms to apply a constant damping force over the desired sink speed
range [7]. X. M. Dong and G. W. Xiong invested in an intelligent control algorithm based on
a human-simulated control to reduce the peak impact load of sprung mass within the stroke
of a damper [8]. Young-Tai Choi and Norman M. Wereley applied a sliding mode control to
reduce the vibration during touchdown [9]. The controllers in the previous studies require
measurements or estimates of the strut force of a damper, i.e., the internal reaction between
the cylinder and piston of the damper. It is not possible in operating aircraft landing gears
to measure the strut force directly due to its nature. The strut force can be indirectly mea-
sured and estimated with multiple sensors and mathematical models, increasing the system
complexity and cost. Moreover, in the estimation models and controllers, the aircraft mass
is assumed to be known, of which the accuracy is, however, limited. Thus, the controllers
underdeliver due to the inaccurate information on the aircraft mass and strut force in
certain practical operations of the dampers. This problem also occurs in force control [10]
and hybrid control [11] developed in previous studies by the authors.

Machine learning is a subset of artificial intelligence [12] that has proven its ability
to improve the adaptiveness of autonomous systems, such as self-driving cars [13] and
robotics [14], without exact prior knowledge of the systems and operating environment.
Qiang Xu and et al. [15] developed a back-propagation artificial neural network, which is
optimized by an artificial bee colony algorithm based on the control force calculated by
a linear quadratic regulator. Luong and et al. [16] applied an intelligent controller based
on a neural network to improve the landing performance in different landing cases. The
neural network is trained by using a genetic algorithm and policy gradient estimation. If a
neural net with system state variables as its inputs is used to generate a control command,
a controller could be designed to adaptively operate in differing landing situations with-
out parameter estimates or models. However, existing techniques using neural nets use
optimization or reinforcement learning schemes, so a large amount of data is required for
sufficient learning. A sufficient amount of data can be given in a numerical simulation
environment, and thus a neural net controller shows good performance. On the other
hand, sufficient learning could be challenging to achieve with actual drop test experiments
because only a limited number of drop tests are performed due to cost and time limitations.
Neural nets that are not sufficiently learned not only degrade the performance but can also
cause unpredictable behavior. A supervised learning approach with a proven controller as
a target can be a solution to this problem. This enables a controller to show adaptability in
various landing conditions without relying on models and parameter estimations, with a
relatively small number of experiments.

This paper presents an intelligent controller based on supervised learning for a landing
gear equipped with an MR damper adaptively operating in various landing conditions,
without any online knowledge or estimates of mass and forces. To this end, the hybrid
control is applied to the MR damper in a drop test environment with a dSPACE platform
for generating training data for a neural network controller. The hybrid control [11,17]
utilizes exact values of test mass and data from a load cell for measuring the ground
reaction force, which is, of course, ideal because it is not possible in the actual operating
environment of aircraft landing gears. The hybrid controller is also well tuned for each
landing condition to maintain high landing performance. The inputs of the neural net
are the state variables of the damper, and thus the presented controller trained with the
hybrid control in the ideal environment is also applicable in landing conditions other than
where it is trained. Comparative experiments are conducted to verify the effectiveness of
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the presented intelligent controller against a passive damper and existing controllers, i.e.,
skyhook controller and hybrid controller in differing landing conditions of aircraft mass
and sink speeds. In the comparative experiments, the skyhook and hybrid controllers use
the estimates of aircraft mass and strut force with a mathematical model for emulating a
realistic operating environment.

The structure of the paper is as follows: Section 2 describes the environment of the
drop test experiments for an MR damper landing gear; Section 3 explains the performance
measure of the drop tests; Section 4 details the principles and experimental results of the
hybrid controller; Section 5 describes the structure and training of the neural network
controller; Section 6 presents the comparative experimental results; the conclusions are
presented in Section 7.

2. Drop Test Environment of MR Damper Landing Gear

The most common way to evaluate the performance of landing gears is to perform
drop tests. When an aircraft touches down on the ground, a large amount of kinetic energy
due to the aircraft’s descent speed must be effectively dissipated through the landing
gears. At this moment, the damper of a landing gear reciprocates several times after
being compressed in a very short time, and thus a significant impact is transmitted to
the aircraft structure above the landing gear. Therefore, for the aircraft’s structural safety
and passengers’ convenience, the damper must be designed and controlled so that the
strut force and stroke, i.e., the compression distance of the damper’s piston, appear at
appropriate levels.

Figure 1 shows a schematic diagram of the drop test environment for the MR damper
landing used in this study. The landing gear is fixed solidly to a carriage that can move
smoothly in the vertical direction by four slider guides. The carriage is lifted by using an
electric lift winch. The electric lift winch pulls the cable that connects with the carriage by
a hook. When the carriage is released out of the hook, the landing gear falls down to the
bottom, where a load cell sensor is installed to measure the ground reaction force FT of the
landing gear. The mass of the aircraft that the landing gear supports can be simulated and
adjusted by changing the weight of the flat plates placed on the carriage. The sink speed v,
i.e., the descent speed of the aircraft at touchdown, can also be changed by adjusting the
height H at which the landing gear is released from the bottom.

Figure 1. Structure of drop test apparatus.
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Figure 2 shows the details of the sensors and signal processing components of the
drop test environment. The drop test environment has six sensors for monitoring the
state variables and for computing control commands: a load cell measuring the ground
reaction force, a laser sensor for the displacement z1 of the sprung mass m1 (including
the plate weights, carriage, and damper cylinder), a position sensor for the stroke s of the
damper, two pressure sensors for the damper’s upper and lower oil chambers, and an
accelerometer for measuring the vertical acceleration of the sprung mass. Since the stroke
is the compression distance of the damper’s piston, it can be expressed as the difference
between the sprung mass displacement z1 and unsprung mass (including piston and tire)
displacement z2, and the z2 can be computed from the sensors for s and z1. The data
acquisition is achieved via a dSPACE mini box that connects to a host PC running MATLAB
Simulink. The controllers for the MR damper are developed in Simulink models to claim
the control signal, which then provides the electrical current to the MR damper’s coil.

Figure 2. Sensors and signal processing units of the drop test apparatus.

Figure 3 shows the structure of the landing gear equipped with the MR damper
in this work. The MR damper consists of a piston connecting to a wheel assembly and
a cylinder fixed to the carriage. Two wheels are set up symmetrically to the landing
gear to reduce the impact of the friction force on the bearings. The internal spaces of
the cylinder and piston, named the upper and lower chambers, are filled with MR fluid
(LORD MRF-140CG), which changes its microscopic property subject to a magnetic field.
The LORD MRF-140CG has many features and benefits that are suitable for landing gear,
such as fast response time, dynamic yield strength, temperature resistance, hard settling
resistance, and non-abrasiveness [18]. The cylinder has an MR core at its top. The core has
multiple coils placed near the annular passage (Figure 4), where the major portion of the
damping force is generated. As the damper is compressed or stretched, the cylinder rises
or falls, and a flow toward the lower chamber or the upper chamber is formed through the
annular passage. The viscosity of the fluid flowing through the narrow passage creates
a damping force as in traditional pneumatic dampers, and, by applying a current to the
coils, the resulting magnetic field forms the yield stress from the MR fluid, which causes a
controllable damping force in the opposite direction of the damper’s motion.
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Figure 3. Structure of landing gear equipped with MR damper.

Figure 4. Components of the MR damper (landing gear without tire).

In the piston, a floating piston separates the lower chamber and air chamber, filled
with pressured air to provide a spring-like force according to the damper stroke. Due to the
incompressibility of the MR fluid, the location of the floating piston and the air chamber
pressure is solely determined by the stroke position of the damper. The pressure levels
of the lower chamber and the air chamber are equalized with the minimal weight of the
floating piston, and the air chamber stores the un-dissipated redundant energy during the
compression phase and releases this energy during the next extension phase.

3. Performance Measure of Aircraft Landing Gear in Drop Tests

As mentioned in the previous section, the damper of an aircraft landing gear must
effectively absorb the kinetic energy of the aircraft in order to minimize the impact and
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vibration caused at the moment of landing. Accordingly, it is necessary to reduce the stroke
of the damper and the strut force transmitted to the aircraft fuselage through the damper.
The strut force is composed of the damping force, the spring force from the air chamber,
and the friction at the bearings. It is important to measure the elements of the strut force
without a significant increase in cost and complexity. Therefore, the ground reaction force
is generally utilized in performance measures for aircraft landing gear tests. The most
commonly used performance measure to quantify the effectiveness of energy absorption of
the damper is shock absorber efficiency [11,19]. The shock absorber efficiency η is defined
by the ratio between the energy absorbed by the damper during the first stroke and the
product of maximum ground reaction force Fmax

T and maximum stroke smax [11].

η =

∫ smax

0 FTds
smax Fmax

T
(1)

Figure 5 shows a force–stroke curve, called the efficiency curve, of a typical single
landing gear. The efficiency curve is the trajectory of the force–stroke pair of the damper’s
behavior during landing, and visualizes the implication of the energy absorption efficiency:
the ratio between the area below the curve in s = [0, smax] and the square area of Fmax

T × smax.
Therefore, the closer to the square the curve is, the higher the efficiency is. Observe
that the typical efficiency curve has two peaks at the first compression phase, where the
stroke translates from 0 to smax. The first peak occurs when the stroke velocity reaches its
maximum value because the nonlinear spring force from the air chamber is relatively small
compared to the damping force proportional to the velocity. The second peak appears when
the stroke reaches smax, where the spring force dominates the strut force. Since Fmax

T and
smax are reached in the first compression phase, the shock absorber efficiency is determined
by the shape of the efficiency curve in this phase. Therefore, if the heights of the two peaks
are adjusted to be the same, and the dent between them is filled with a controllable MR
damping force, the efficiency could be significantly improved. During touchdown, two
main parameters, which are aircraft mass (m1) and sink speed (v), have a huge impact on
the potential and kinetic energy of the aircraft [19]. Thus, only aircraft mass and sink speed
are considered in this research. According to the conditions of our experiment, the ranges
of aircraft mass and sink speeds are given by:

150 kg ≤ m1 ≤ 230 kg
1 m/s ≤ v ≤ 3 m /s

(2)

Figure 5. Efficiency curve of a typical landing gear.
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4. Hybrid Controller with Load Cell Data and Known Aircraft Mass
4.1. Control Principle

Figure 6 shows the principal concept of the hybrid controller with load cell data for
measuring FT and exact mass information. It can be seen that the hybrid controller is the
combination of the skyhook controller and force controller [11]. The skyhook controller [20]
is designed to achieve the maximum damping force at the point where the stroke velocity
reaches the maximum value (the first peak at s = s* in Figure 6a). The force controller [10]
is used to maintain the maximum damping force as far as possible during the first com-
pression phase to fill the dent between the two peaks. Thus, the hybrid controller input
(uh) is given by:

uh = us + u f (3)

where us is the skyhook control input, and u f is the force control input.

Figure 6. (a) Principles of hybrid controller, (b) hybrid control block. Hybrid controller with a load
cell sensor and known aircraft mass method.

The main idea of the skyhook control is to generate a damping force linear to the
unsprung mass velocity. The control input of the skyhook controller is given by [21,22]:

us =

{
Cs

.
z1,

.
z1

.
s > 0∪ .

s > 0

0, otherwise
(4)
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where
.
z1 is the vertical velocity of the sprung mass;

.
s is the stroke velocity; Cs is called

the skyhook gain. The skyhook gain is selected so that the resultant efficiency curve
has the same level of peaks. The optimal gain is searched by testing the controller with
the numerical simulation model of the damper for each landing condition composed of
different aircraft masses and sink speeds (refer to Figure 7).

Figure 7. Skyhook gain surface.

The force controller is used to maintain the force level that is attained at the first peak.
The controllable MR damping force is generated to compensate for the difference between
the measured ground reaction force from the load cell and desired force Fmax

T . The damping
force applies to only the opposite direction of the damper’s motion, and thus the force
control input can be given by:

u f =

{
0, Fmax

T < FT

Fmax
T − FT , Fmax

T ≥ FT
(5)

4.2. Experimental Results

In order to confirm the performance of the hybrid controller, drop test experiments
were executed with various aircraft mass and sink speeds. Figure 8 shows the comparison
results of the passive damper, skyhook controller, and hybrid controller from experiments
in the case of m1 = 190 kg and v = 1 m/s. The hybrid controller attempted to maintain the
maximum force after the first peak for as long as possible during the first compression,
bringing the curve closer to a square than other ones. However, the hybrid controller could
not completely compensate for the force error, mainly due to the response time of the MR
core and the limit of the applied voltage for system safety.

However, the hybrid controller still exhibited the highest shock absorber efficiency
compared with the passive damper and skyhook controller. Table 1 presents the comparison
results of the passive damper, skyhook controller, and hybrid controller for differing aircraft
masses and sink speeds. It can be seen that the hybrid controller produced better landing
gear performance than others. The hybrid controller exhibited the highest shock absorber
efficiency in all test conditions and showed the smallest stroke and the smallest maximum
ground reaction force in most of the conditions.
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Figure 8. (a) Voltage applied to MR core, (b) efficiency curve. The drop test results of the landing
gear using the passive damper, skyhook controller, and hybrid controller in the case of m1 = 190 kg,
v = 1 m/s.

Table 1. Damper performance using passive damping, skyhook controller, and hybrid controller in
differing landing cases. The best result for each criterion is marked in bold.

Passive Damper Skyhook Control Hybrid Control

Fmax
T

(kN)
smax

(m)
η

(%)
Fmax

T
(kN)

smax

(m)
η

(%)
Fmax

T
(kN)

smax

(m)
η

(%)

m1 = 150 kg

v = 1 m/s 3.09 0.160 81.4 3.09 0.16 81.4 3.85 0.148 84.9

v = 2 m/s 5.55 0.168 72.4 5.55 0.168 72.4 5.36 0.150 79.4

v = 3 m/s 8.59 0.176 72.5 8.59 0.176 72.5 8.60 0.157 81.0

m1 = 190 kg

v = 1 m/s 3.90 0.174 72.8 3.51 0.169 84.2 3.34 0.166 89.6

v = 2 m/s 5.83 0.182 78.2 5.83 0.182 78.2 5.90 0.167 85.3

v = 3 m/s 9.21 0.188 77.5 9.21 0.188 77.5 9.17 0.176 83.0

m1 = 230 kg

v = 1 m/s 5.20 0.180 65.3 4.17 0.172 85.5 3.93 0.172 90.5

v = 2 m/s 6.84 0.186 75.6 6.81 0.183 77.9 6.16 0.184 85.8

v = 3 m/s 9.93 0.194 80.6 9.93 0.194 80.6 9.78 0.191 85.1

4.3. Control Scheme in Practical Operation Environment

In practical operating environments of landing gears equipped with MR dampers, the
mass information of the aircraft supported by each landing gear may not be accurate, and
the ground reaction force or strut force cannot be measured, so MR damper controllers must
be driven with estimates based on mathematical models. It is assumed that the sensors that
the controllers can use are limited to an accelerometer generally installed in the aircraft
and a position sensor that measures the stroke of the landing gear to avoid an unnecessary
increase in weight and cost. The control structure of the MR damper in this context is
depicted in Figure 9. Among the two main factors that determine the landing conditions
of the aircraft, mass and descent speed, the descent speed is obtained with high precision
by integrating the output of the accelerometer. Thus, the skyhook and hybrid controller
can adjust the control parameters for corresponding landing conditions if updated mass
information is also given before touchdown. One method of estimating the aircraft mass is
using the least mean square method as below [11,23]:

m̂1 =

∫
FT
(

g− ..
z1
)
dt∫ (

g− ..
z1
)2dt

(6)
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Figure 9. Control scheme in practical operation environment.

This method requires the ground reaction force or an estimate of it. Therefore, it takes
at least tens of milliseconds to obtain an accurate mass estimate, resulting in degradation in
the control performance. Another possible method is Bayesian inference to estimate the
value in a fuel-flow model, and the aircraft mass is then calculated by:

m̂1 = mT −m f uel (7)

where mT is the total take-off weight, and m f uel is the consumed fuel mass in flight. This
method can estimate the aircraft mass before touchdown and the typical error is less than
5% [24]. This error causes the controller to be imperfect in adaptability to different landing
conditions.

5. Supervised Learning of Neural Network Controller

In order to solve these limitations of the hybrid controller, an intelligent controller
based on a neural network is developed. The structure of the neural network is shown in
Figure 10. The neural network consists of an input layer, a hidden layer, and an output
layer. There are four input signals: stroke, stroke velocity, aircraft displacement, and aircraft
velocity. These feed into the input layer. It should be noted that, after training, the controller
determines the command for the MR damper with respect to the inputs, i.e., real-time state
variables, and does not require any knowledge of system properties or models. The inputs
are normalized to [01] before being applied into the hidden layer for efficient learning. The
hidden layer has only a single layer with n neurons. The output of the neural network is
the desired damping force command. The relationship between the input signal (x) and the
output signal (y) can be given by:

y = f2( f1(W1 × x + b1)W2 + b2) (8)

where:
f1(x) =

2
(1 + e−2x)− 1

(9)

f2(x) =


0, x < 0
x, 1 ≥ x ≥ 0

1, x > 1
(10)

The target data for the supervised learning are generated by the drop test experiments
using the hybrid controller with exact mass and force information, the latter of which is
measured by the load cell. The experimental data of the hybrid controller are divided into
the training set and testing set. The training set contains the experimental results from
27 landing cases of the combinations of m1 = 150 kg, 190 kg, 230 kg, and v = 1−3 m/s with
a step of 0.25 m/s. The testing set is composed of the experimental results from 18 landing
cases of intermediate mass values m1 = 170 kg and 210 kg and the same sink speeds.
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Figure 10. The structure of the neural network.

In this research, the neural network design toolbox in MATLAB [25,26] is used to
determine the optimal parameter in the neural network. To evaluate the performance of
the neural network, the coefficient of determination R2 is defined by:

R2 = 1− ∑(y− ŷ)2

∑(y− y)2 (11)

where ŷ represents the calculated values of y and y is the mean of y [27]. Figure 11 shows
the coefficient of determination for varying numbers of neurons with the testing set and
training set. As the number of neurons increases, the coefficient of determination with
training data also increases, but at a diminishing rate. The coefficient of determination with
testing data is maximized when five neurons are used in the hidden layer, which seems to
be optimal, and reduces after the point due to overfitting. All the parameters in the neural
network after training are given in Table 2.

Figure 11. The coefficient of determination over the number of neurons with the testing data and
training data.
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Table 2. Trained neural network parameters.

W1

−2.536 4.404 −1.489 3.334 −1.500

−3.407 3.212 −0.015 3.467 −1.293

−3.215 −2.024 8.346 1.070 6.579

3.299 2.796 56.78 −0.758 −6.821

b1 5.773 −7.054 3.541 −6.433 4.576

W2 25.91 −24.22 16.95 46.08 −36.71

b2 15.75

6. Experimental Results and Discussion
6.1. Comparison between the Hybrid Controller with Ideal Information and Intelligent Controller

Figures 12 and 13 show the experimental results of the hybrid controller, with given
load cell data and exactly known aircraft mass, and the intelligent controller in a testing
case of m1 = 210 kg, v = 3 m/s, and a training case of m1 = 230 kg, v = 3 m/s. The
proposed controller seems to roughly regenerate the command of the hybrid controller
in both the training and testing cases, and produces very similar efficiency curves. The
difference in shock absorber efficiency between both controllers is less than 1%. Thus, the
proposed controller shows good performance without requiring either the load cell data or
knowledge of the aircraft mass.

Figure 12. (a) Voltage applied to MR core, (b) efficiency curve. The drop test results of the landing
gear using the hybrid controller with exact information and intelligent controller in the case of
m1 = 210 kg, v = 3 m/s (testing case).
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Table 3 presents the landing performance of the hybrid controller and intelligent
controller in 15 different landing conditions. In all training and test landing cases, while
the shock absorber efficiency of the controllers varies from 77% to 90%, they exhibit similar
performance. There are slight differences between the two controllers, which are less
than 3% for all cases. Overall, the proposed controller attains comparable performance
with the target controller in ideal environment in different landing scenarios without the
shortcomings assumed in the target controller.

Table 3. Damper performance using the hybrid controller with exact information and intelligent
controller in training and testing cases. The best efficiency for each case is marked in bold.

Training Set Testing Set

Hybrid Control Intelligent Control Hybrid Control Intelligent Control

Fmax
T

(kN)
smax

(m)
η (%)

Fmax
T

(kN)
smax

(m)
η (%)

Fmax
T

(kN)
smax

(m)
η (%)

Fmax
T

(kN)
smax

(m)
η (%)

m
1

=
15

0
kg v = 1 m/s 3.15 0.143 78.6 3.60 0.142 76.9

m
1

=
17

0
kg 3.49 0.159 80.6 3.61 0.147 82.1

v = 2 m/s 5.77 0.149 77.6 5.75 0.144 76.6 5.82 0.153 82.1 5.83 0.153 82.3

v = 3 m/s 9.06 0.155 79.7 9.06 0.154 78.9 9.11 0.164 81.2 8.95 0.167 81.2

m
1

=
19

0
kg v = 1 m/s 3.58 0.170 89.6 3.60 0.155 87.9

m
1

=
21

0
kg 3.74 0.163 90.3 3.81 0.160 90.0

v = 2 m/s 6.19 0.161 85.1 5.97 0.162 84.7 5.88 0.176 86.6 5.96 0.171 87.5

v = 3 m/s 9.69 0.174 82.1 9.32 0.176 82.6 9.43 0.183 84.6 9.48 0.183 84.2

m
1

=
23

0
kg v = 1 m/s 4.11 0.168 90.6 4.39 0.162 88.3

v = 2 m/s 6.14 0.181 86.5 6.46 0.173 89.6

v = 3 m/s 9.69 0.189 85.8 9.95 0.186 86.2

In order to verify the generalization ability of the neural network, drop tests in 12 other
landing cases, out of the training and test sets, were executed. Figure 14 shows the
experimental results of m1 = 220 kg, v = 2.32 m/s. Compared to the hybrid controller, the
proposed controller exhibits similar performance. There is a small gap of less than 2% in
shock absorber efficiency between the two controllers. Table 4 details the comparative
experimental results of the hybrid controller and the proposed controller in the 12 landing
cases. It can be seen that the proposed controller produces a marginally higher maximum
ground reaction force compared to the hybrid controller. However, it achieves a slightly
smaller maximum stroke. Thus, both the proposed controller and the hybrid controller
are comparable in shock absorber efficiency. The difference in shock absorber efficiency
between the two controllers is less than 3% in all 12 cases.

Figure 14. (a) Voltage applied to MR core, (b) efficiency curve. The drop test results of the landing
gear using the hybrid controller with exact information and intelligent controller in the case of
m1 = 220 kg, v = 2.32 m/s (different from training and testing cases).
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Table 4. Damper performance using the hybrid controller with exact information and intelligent
controller in other cases, which are different to training and testing cases. The best efficiency for each
case is marked in bold.

Landing Conditions
Hybrid Control Intelligent Control

Fmax
T (kN) smax (m) η (%) Fmax

T (kN) smax (m) η (%)

Case 1: m1 = 220 kg,
v = 1.83 m/s 4.97 0.175 88.5 5.16 0.165 91.5

Case 2: m1 = 220 kg,
v = 2.32 m/s 6.48 0.177 87.0 6.50 0.173 88.6

Case 3: m1 = 220 kg,
v = 2.85 m/s 8.31 0.181 86.0 8.36 0.180 86.7

Case 4: m1 = 200 kg,
v = 1.88 m/s 4.97 0.162 88.7 5.07 0.157 88.0

Case 5: m1 = 200 kg,
v = 2.31 m/s 6.38 0.166 86.4 6.43 0.165 85.8

Case 6: m1 = 200 kg,
v = 2.81 m/s 8.13 0.172 85.2 8.20 0.173 84.4

Case 7: m1 = 180 kg,
v = 1.83 m/s 4.81 0.151 85.4 5.00 0.152 83.1

Case 8: m1 = 180 kg,
v = 2.35 m/s 6.27 0.153 85.4 6.36 0.155 84.0

Case 9: m1 = 180 kg,
v = 2.80 m/s 7.94 0.160 84.5 7.89 0.163 83.0

Case 10: m1 = 160 kg,
v = 1.84 m/s 4.73 0.148 79.6 4.92 0.145 78.4

Case 11: m1 = 160 kg,
v = 2.32 m/s 6.24 0.147 80.9 6.25 0.147 81.1

Case 12: m1 = 160 kg,
v = 2.80 m/s 7.75 0.149 82.9 7.82 0.152 81.0

6.2. Comparison between the Hybrid Controller with Estimates and Intelligent Controller

Thus far, the hybrid controller is assumed to obtain the load cell data for the ground
reaction force and exact aircraft mass. However, in the practical operation environment of
aircraft landing gear, only the estimates of the force and mass are available. For selecting
the skyhook gain and computing the desired damping force, the strut force Fs in the damper
needs is estimated instead of FT [17].

Fs = Aa

(
P0

(
V0

V0 − Aa s

)n
− ATM

)
+ C1

.
s + C2

( .
s
)2 (12)

where Aa is the cross-area of the head piston, P0 is the initial air chamber charging pressure,
n is the polytropic process index, ATM is the atmospheric pressure, V0 is the initial air
chamber volume, C1 and C2 are nonlinear viscous force constants. All parameters in
Equation (12) are defined from previous studies [11,17]. The aircraft mass is assumed to
be estimated in flight with approximately 5% error. In order to compare the controllers in
practical assumptions, drop tests are executed by applying the proposed controller and the
hybrid controller without load cell data, and thus the damping force is estimated by using
Equation (12) and the aircraft mass is given with a 5% random error.

The drop test experimental results with the hybrid controller and the intelligent control
are shown in Figures 15 and 16 and Table 5. The neural network produced lower damping
forces and higher efficiency than the hybrid controller for all cases. Because the aircraft
mass estimate has some error, the skyhook gain cannot be well tuned so that the flatness of
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the efficiency curves of the hybrid controller is degraded. Moreover, in the hybrid controller,
because the struct force is estimated instead of using the measured ground reaction force,
the control input of the force control rule in Equation (6) cannot be accurate during the first
compression phase, where the upper envelope of the efficiency curve forms. Thus, at the
first peak, the damping force of the hybrid controller is lower or higher than the intelligent
controller, as can be seen in Figures 15 and 16. On the other hand, the intelligent controller
does not require any information about strut force or landing conditions. Therefore, the
intelligent controller exhibits better performance than the hybrid controller in this practical
condition of aircraft landing. The shock absorber efficiency is up to 6% more than that of
the hybrid controller.

Figure 15. (a) Voltage applied to MR core, (b) efficiency curve. The performance of the landing gear
using the hybrid controller without exact data and intelligent controller in the case of m1 = 210 kg,
v = 2 m/s.

Figure 16. (a) Voltage applied to MR core, (b) efficiency curve. The performance of the landing gear
using the hybrid controller without exact data and intelligent controller in the case of m1 = 230 kg,
v = 1 m/s.

Generally, the theoretical hybrid controller required the exact aircraft mass and force
information in order to produce good landing performance. Without the exact aircraft
mass, the skyhook gain is different from the optimal value. Thus, the shock absorber
efficiency is degraded. Moreover, the error in the mathematical model also reduces the
landing performance. The intelligent controller based on supervised learning is trained
using the data from the theoretical hybrid controller with the exact aircraft mass and force
information. Thus, the intelligent controller exhibits similar performance to the theoretical
hybrid controller without any information about strut force or aircraft mass.
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Table 5. Damper performance using real hybrid control without load cell sensor, and intelligent
control in the testing cases. The best efficiency for each case is marked in bold.

Hybrid Control Without
Exact Data Intelligent Control

Fmax
T

(kN)
smax

(m) η (%) Fmax
T

(kN)
smax

(m) η (%)

m1 = 150 kg

v = 1 m/s 3.89 0.146 71.2 3.60 0.142 74.9

v = 2 m/s 5.91 0.144 73.8 5.75 0.144 76.6

v = 3 m/s 9.27 0.146 78.5 9.06 0.154 78.9

m1 = 170 kg

v = 1 m/s 3.99 0.149 76.5 3.61 0.147 82.1

v = 2 m/s 5.93 0.152 79.8 5.83 0.153 82.3

v = 3 m/s 9.55 0.160 81.4 8.95 0.167 81.6

m1 = 190 kg

v = 1 m/s 4.06 0.152 82.5 3.60 0.155 87.9

v = 2 m/s 6.17 0.156 84.6 5.97 0.162 84.7

v = 3 m/s 9.71 0.170 82.2 9.32 0.176 82.6

m1 = 210 kg

v = 1 m/s 4.13 0.164 84.3 3.81 0.160 90.0

v = 2 m/s 6.25 0.160 87.1 5.96 0.171 87.5

v = 3 m/s 9.88 0.178 83.7 9.48 0.183 84.2

m1 = 230 kg

v = 1 m/s 4.24 0.172 83.7 4.39 0.162 88.3

v = 2 m/s 6.61 0.170 89.0 6.46 0.173 89.6

v = 3 m/s 9.82 0.186 85.5 9.95 0.186 86.2

7. Conclusions

This paper presents an application of supervised neural network control for a landing
gear equipped with an MR damper in various landing scenarios. Experimental environ-
ments for drop tests of the landing gear were set up for different aircraft masses and sink
speeds based on the dSPACE platform, which provides real-time control by models in
Simulink. The hybrid controller, which has demonstrated high performance among the ex-
isting techniques in both the simulation and experiments, was set as the target model of the
supervised learning and was provided with the exact mass of the aircraft and the measured
ground reaction force. The neural network controller receives only the system’s state vari-
ables as input and does not require any information on the aircraft mass or strut force. In the
actual operating situations of the aircraft landing gear, only the model-dependent estimates
of the aircraft mass and forces are available for control, which degrades the performance of
the existing controller. On the other hand, the proposed artificial neural network controller
reproduces the behavior of a hybrid controller, which shows the best performance under
ideal ground experiment conditions, using only the system state variable information.
Therefore, the proposed controller could maintain superior performance to the existing
controllers and proved this through comparative experiments. The main results show that
the proposed controller exhibits similar landing performance to the hybrid controller with
exact information. There is a small difference of 1–3% in shock absorber efficiency between
the two controllers. Moreover, the proposed controller produces better shock absorber
efficiency by up to 6% than the hybrid controller without exact information. In the future, a
robust controller based on sliding model control will be designed to improve the robustness
of the MR damper.
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