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Abstract: In the computer vision field, understanding human dynamics is not only a great challenge
but also very meaningful work, which plays an indispensable role in public safety. Despite the
complexity of human dynamics, physicists have found that pedestrian motion in a crowd is governed
by some internal rules, which can be formulated as a motion model, and an effective model is of great
importance for understanding and reconstructing human dynamics in various scenes. In this paper,
we revisit the related research in social psychology and propose a two-part motion model based on
the shortest path principle. One part of the model seeks the origin and destination of a pedestrian,
and the other part generates the movement path of the pedestrian. With the proposed motion model,
we simulated the movement behavior of pedestrians and classified them into various patterns. We
next reconstructed the crowd motions in a real-world scene. In addition, to evaluate the effectiveness
of the model in crowd motion simulations, we created a new indicator to quantitatively measure the
correlation between two groups of crowd motion trajectories. The experimental results show that our
motion model outperformed the state-of-the-art model in the above applications.

Keywords: crowd motion; computer vision; motion model of pedestrians; shortest path principle;
origin and destination

1. Introduction

Crowd motion is a common phenomenon in human society, which often appears in
train stations, shopping malls, street intersections and other mass events. As shown in
Figure 1, a crowd usually includes a large number of individuals, and some collective
patterns appear when the individuals are moving. To another point, gatherings of so
many people bring potential risks to public safety, such as stampedes, terrorist attacks
and so on [1,2]. In recent years, researchers analyzed crowd motions with computer
vision technology to extract real-time information for city emergency managers [3–5].
For instance, crowd collectiveness was proposed as a quantitative indicator to measure
the degree of orderliness of crowd motions [6,7]. From another perspective, abnormal
behaviors were detected from crowd motions to reveal the potential hazards for social
security [8,9]. Moreover, some studies estimated the density and distribution of crowd
motions to provide guidelines for designing public places [10,11].

Describing the motions in crowded scenes is one of the core issues of crowd motion
analysis in computer vision-related fields. Tracking individuals and learning motion
patterns are the two traditional topics, which describe the crowd motions at the microscopic
and macroscopic levels, respectively. Tracking individuals in a crowd provides an intuitive
and detailed description of crowd motion. However, due to technical difficulties, tracking
individuals in dense crowds still remains a relatively unexplored problem [12]. Thus,
following motion patterns gives a relatively reliable result for describing crowd motion.
However, instead of the entire moving process, motion patterns just describe the rough
motion tendency of individuals. To combine the advantages of the above two strategies,
Zhou et al. proposed a mixture model of dynamic pedestrian agents (MDA) to build the
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motion models of pedestrians in a crowd [13]. Motion models of pedestrians have many
significant applications. For example, given a motion model, a crowd’s motion can be
described with only a few parameters. Consequently, we can simulate the pedestrians’
motions with partially observed trajectories. Additionally, the motion models can be
applied to traffic flow statistics, crowd motion simulation and so on.

Figure 1. Examples of crowd scenes. A crowd usually includes a large number of individuals.

MDA is an agent-based model that treats the pedestrians as dynamic pedestrian-agents
and uses the affine transformation matrix as the control rule to drive the agent. However, a
single matrix can not accurately model the complicated movements of a pedestrian. In this
work, we revisit the related work in social psychology to summarize the rules governing
pedestrian motions. Sociologists indicated that pedestrians always take the shortest possible
paths to reach a certain destination, and we call this “shortest path principle.” In crowd
motions, the collective wills of pedestrians reinforce the shortest path principle. The motion
of a pedestrian consists of three basic elements: origin, destination, and the movement
path from the origin to the destination. Based on the shortest path principle, we propose
a two-part motion model to describe these basic elements of pedestrian motions. One
part estimates the probability of a pedestrian reaching each candidate pair of origin and
destination, and the other generates the movement path of a pedestrian between any two
points in the scene. We use the trajectories of feature points obtained by the Kanade–Lucas–
Tomasi (KLT) tracker as the observations of pedestrian motions.

In this paper, we first build a shortest path graph according to the trajectories of
feature points. Based on the shortest path principle, this graph can be used to generate the
movement path of a pedestrian between any two points in the scene. Then, we quantify
the shortest path principle as the shortest path likelihood. Combined with the connectivity
between trajectories, we propose a generalized path likelihood to estimate the probability of
the trajectory reaching each candidate pair of origin and destination. Finally, we identify the
origin and destination of the trajectory according to the generalized path likelihood. In the
experiments, we verified the effectiveness of the proposed motion model in the following
applications: a pedestrian motion simulation, motion pattern classification and traffic flow
statistics, and crowd motion description and simulation. In addition, we compared the
proposed model with the MDA model on the New York Grand Central Station dataset.
Experimental results show that our motion model outperformed the MDA model in the
above applications.

We summarize the innovations and contributions of this work as follows. (1) We
propose a two-part motion model to directly describe the basic elements of pedestrian
motion. The model is able to describe human moving behavior in a crowd in effective
and flexible ways. (2) Based on the sociological findings, we integrated the shortest path
principle into the proposed motion model, making our motion model highly consistent
with the behavioral decision-making of pedestrians. (3) We combined the shortest path
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principle with the connectivity between trajectories to propose a likelihood framework to
find the origin and destination of a trajectory. This strategy takes advantage of the spatial
and temporal information of the trajectories. (4) To assess the simulation of crowding
behavior, we propose an indicator to quantitatively measure the correlation between two
groups of crowd motion trajectories.

2. Related Work

Crowd motion description is an interdisciplinary subject, building mainly on social
psychology and computer vision. In the social psychology field, a lot of fundamental jobs
have been done [14], which provide guidelines for scholars in other research fields. Helbing
and Molnár pointed out that people want to reach their destinations as comfortably as
possible, which means that a pedestrian usually takes the shortest possible path [15]. Le Bon
showed that when pedestrians are gathered in a crowd, their conscious personalities vanish
while the common desire is amplified [16]. This constitutes the theoretical basis of the core
idea of this paper: the shortest path principle. In the computer vision field, individual
tracking, motion pattern learning and the agent-based model are the most representative
topics on crowd motion description. We attempted to combine the research results from
these two disciplines to propose a new framework to describe crowd motions.

Tracking individuals is a very intuitive task, which provides elaborated and flexible
results to describe crowd motion. Ali and Shah first proposed a method based on floor field
to track individuals in high-density structured scenes [17]; then Rodriguez et al. employed a
correlated topic model to promote the job in unstructured scenes [18]. Ge et al. detected and
tracked individuals utilizing a reversible-jump Markov chain and Monte Carlo model [19].
Kratz and Nishino, and Zhang et al. applied, respectively, the local Spatio-temporal
motion patterns and local patch motion patterns to track individuals in extremely crowded
scenes [20,21]. Bera and Manocha combined discrete and continuous flow models to extract
the trajectory of each pedestrian in moderately dense crowd videos [22]. However, tracking
results for individuals are not reliable due to the issue of frequent blocking in crowded
scenes. To solve this problem, Lin et al. proposed a tube-and-droplet-based approach to
represent motion trajectories [23]. Ren et al. have performed a lot of studies on optical flow
to improve the reliability of feature point tracking [24–26].

Learning motion patterns in a crowd is another hot point, which provides relatively
reliable results for describing the crowd motion. Hu et al. extracted super tracks to represent
the corresponding motion patterns based on the global motion field [27]. Saleemi et al.
built a statistical representation of motion patterns with the Gaussian mixture model [28],
and Mehran et al. adopted a streakline representation of flow to segment motion patterns
in crowd [29]. Wang et al. and Zhou et al. used topic models to build generative models
for motion patterns [30,31]. Wang et al. analyzed motion patterns by clustering the hybrid
generative-discriminative feature maps [32]. Tokmakov et al. learned motion patterns in
videos with the aid of a fully convolutional network [33]. Additionally, many studies have
been performed to learn motion patterns in crowds by clustering trajectories of feature
points [34–38]. However, motion patterns only describe the rough motion tendencies of
individuals instead of the entire trajectories.

The agent-based model is a powerful tool with which to describe crowd motion. Ali
and Shah formulated the individuals in the crowd as cellular automaton agents driven by a
scene structure-based force model [17], and Hu et al. expressed the motion patterns as super
track agents moving with the motion flow field [27]. The driving rules of the above agents
change with space and time; in other words, they are local rules. Zhou et al. proposed a
method called the mixture model of dynamic pedestrian-agents (MDA), which treated the
pedestrians as dynamic pedestrian-agents, and the transition processes of dynamic agents
were formulated as affine transformation matrices [13]. The innovation of Zhou’s work is that
they used a global rule (a fixed affine transformation matrix) to govern an agent throughout
the entire transition process. However, a fixed matrix is too simple to model the complicated
moving process of a pedestrian. Inspired by the MDA model, we propose a new model based
on the shortest path principle to describe pedestrian motion in a crowd.
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3. Model Learning

In this paper, the shortest path principle is treated as the control rule for pedestrian
motions. Under this rule, we propose a new motion model, which consists of two parts. One
part is the shortest path graph, which generates the movement path of a pedestrian between
any two points in the scene. The other is the generalized path likelihood, which estimates
the probability of a pedestrian reaching each candidate pair of origin and destination. In
this section, we first build the shortest path graph. Then, we quantify the shortest path
principle as a likelihood and define the connectivity between trajectories. Finally, we
combine the shortest path likelihood with the connectivity between trajectories to propose
a generalized path likelihood.

3.1. Data Pre-Processing

We divided a scene image into non-overlapping equal-sized grids with N × N pixels,
as shown in Figure 2b. Each grid corresponds to a node of the shortest path graph. We
labeled the entrance/exit regions of the scene by hand, assuming that the pedestrians can
only enter or leave the scene from these regions. The grids in entrance/exit regions are the
candidate origins and destinations, as shown in Figure 2c. We used the Douglas Peucker
algorithm to simplify the original trajectories to poly-lines and segment the trajectories
according to the turning points. As shown in Figure 3, the original trajectory AD was
divided into three new trajectory segments, AB, BC and CD, which can be approximated
as straight lines. We used the trajectory segments instead of the original trajectories as the
observations for the motion model.

(a) (b)
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Figure 2. (a) The original scene image. (b) The non-overlapping grids. (c) The human-labeled
entrance/exit regions. Blue grids are the candidate origins and destinations.
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Figure 3. (a) The original trajectory AD. (b) The simplified polyline obtained by the Douglas Peucker
algorithm. (c) The three new trajectory segments AB, BC and CD.

3.2. Shortest Path Graph

Although the shortest possible paths is preferred for reaching one’s destination, pedes-
trians usually do not walk in straight lines due to obstacles and human limitations. The
shortest path graph was built on the grids of the scene image to generate the movement
path of a pedestrian between any two grids in the scene. We recorded the distances between
pairs of grids in the shortest path graph. Initially, the distances between all grids were set
to infinity. Then the adjacent grids through which the trajectory passed were identified,
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and the distances between them were updated. As shown in Figure 4a, a trajectory passed
through the grids A1, B1, B2, C2, C3, D3 and E4. The distances of grid A1 to grid B1, grid
B1 to grid B2, grid B2 to grid C2, grid C2 to grid C3 and grid C3 to grid D3 were recorded
as 1. The distance of grid D3 to grid E4 was recorded as

√
2. Next, we updated the distance

between the start grid and the end grid of the trajectory. Based on the poly-lines simplifica-
tion and segmentation, the trajectory could be approximated as a straight line. As shown
in Figure 4b, we recorded the distance of grid A1 to grid E4 as 5. The calculation of the
shortest path between any two grids can be implemented with the dynamic programming
algorithm, and it is treated as the movement path of a pedestrian.

1
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3
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(b)

Figure 4. A simple example to show the distance recording process in the shortest path graph.
(a) Recording the distance between the adjacent grids through which the trajectory passes. (b) Record-
ing the distance between the start grid and the end grid of the trajectory.

3.3. Shortest Path Likelihood

To measure the probability of a trajectory reaching each candidate pair of origin and
destination, we quantified the shortest path principle as a likelihood in a straightway. As shown
in Figure 5a, the grids ga and gb are the start grid and end grid of the trajectory ab, and the grids
go and gd are the candidate origin and destination grids. We define the shortest path likelihood
of the trajectory ab reaching the origin go and destination gd as follows:

Lab(go, gd) =
S(go, gd)− S(go, ga)− S(gb, gd)

S(go, ga) + Str(ga, gb) + S(gb, gd)
. (1)

S
(

gi, gj
)

is the shortest distance from grid gi to grid gj calculated by the shortest path
graph; Str(ga, gb) is the shortest distance from grid ga to grid gb and through trajectory ab.
S(go, gd) represents the length of an ideal shortest path from origin go to destination gd;
S(go, gd)− S(go, ga)− S(gb, gd) represents the effective projection length of the trajectory
ab on the ideal shortest path; and S(go, ga) + Str(ga, gb) + S(gb, gd) represents the length of
a feasible shortest path of trajectory ab from origin go to destination gd.

We use the ratio between the effective projection length of the trajectory and the length
of the feasible shortest path to construct the shortest path likelihood. A larger numerator
means a greater intersection between the trajectory and the ideal shortest path, and a
smaller denominator means more consistency between the feasible shortest path and the
ideal shortest path. However, the effective projection lengths of the trajectories are usually
very small because of the short trajectories, which makes the shortest path likelihood
unreliable. Targeting this problem, we combine the connectivity between trajectories to
upgrade the shortest path likelihood.
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Figure 5. (a) An example to explain the definition of shortest path likelihood. The yellow line is the
trajectory ab; the small circles represent the grids of the start point, end point, candidate origin and
destination of the trajectory ab. The dashed lines represent the shortest paths between two grids
generated by the shortest path graph. The yellow dashed line is the ideal shortest path from origin
go to destination gd. The blue dashed line, the green dashed line and the red dashed line combine
into the feasible shortest path of trajectory ab from origin go to destination gd. (b) An example to
explain the definition of generalized path likelihood. The yellow lines represent the trajectory ab
and trajectory a′b′; the green dashed line represents the approximate trajectory ab′ of the generalized
trajectory ab′. The representations of other symbols are the same as in (a).

3.4. Connectivity between Trajectories

In crowd scenes, pedestrians are often occluded by each other. When an occlusion
occurs, the old feature point will stop tracking, and a new feature point will be detected
and tracked. The trajectories tracked for the same pedestrian at different times should be
connected. However, we cannot explicitly determine which trajectories belong to the same
pedestrian. Therefore, we define the connectivity between trajectories to indicate whether
there is a possible connection between two trajectories. Since the motion of pedestrians is
continuous in space and time, the connectivity between trajectories depends on the travel
times and relative positions of trajectories.

Suppose that there are trajectories ab and a′b′, and trajectory ab is before trajectory a′b′

in time. We define that there is a possible connection between trajectories ab and a′b′ if they
satisfy the following two conditions:

(1) tab
e ≤ ta’b’

s ≤ tab
e + T,

(2) d
(

Xab
e + vab ·

(
ta’b’
s − tab

e

)
, Xa’b’

s

)
≤ D or

d
(

Xab
e , Xa’b’

s − va’b’ ·
(

ta’b’
s − tab

e

))
≤ D.

Here, tab
e represents the end time of trajectory ab, ta’b’

s represents the start time of
trajectory a′b′ and T is the threshold constant of time interval. Xab

e represents the end
position of trajectory ab; Xa’b’

s represents the start position of trajectory a′b′; vab and va’b’
represent the velocities of trajectories ab and a′b′; d

(
Xi, Xj

)
represents the distance between

position i and position j; and D is the threshold constant of space interval. Conditions (1)
and (2) guarantee the continuity of the possible trajectory connection in time and space,
respectively, but they are not sufficient for the connection of trajectories.

3.5. Generalized Path Likelihood

We combine the shortest path likelihood with the connectivity between trajectories to
propose a generalized path likelihood. As above, we take the trajectory ab as an example. As
shown in Figure 5b, we suppose that there is a possible connection between the trajectories
ab and a′b′, and trajectory ab is in front of trajectory a′b′ in time. We connect trajectory ab
with trajectory a′b′ to construct a generalized trajectory ab′. Since the trajectory ab′ does
not practically exist, we generate an approximate trajectory ab′ to represent the generalized
trajectory ab′ based on the shortest path principle. The trajectory ab′ is composed of
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trajectory ab, trajectory a′b′ and the shortest path between the points b and a′. We defined
the shortest path likelihood of the generalized trajectory ab′ reaching the origin go and
destination gd as:

Lab’(go, gd) = Pab’ · Lab’(go, gd). (2)

where,
Pab’ =

S(go ,gb’)−S(go ,ga)
Str(ga ,gb’)

,

Lab’(go, gd) =
S(go ,gd)−S(go ,ga)−S(gb’,gd)

S(go ,ga)+Str(ga ,gb’)+S(gb’,gd)
,

Str(ga, gb’) = Str(ga, gb) + S(gb, ga’) + Str(ga’, gb’).

Here, Pab’ represents the probability of the existence of generalized trajectory ab′.
Str(ga, gb’) represents the length of a feasible shortest path of generalized trajectory ab′,
S(go, gb’)− S(go, ga) represents the effective projection length of generalized trajectory ab′
on the ideal shortest path from origin go to grid gb’. We use the ratio between them to
measure the probability of the existence of generalized trajectory ab′. Lab’(go, gd) is the
shortest path likelihood of the trajectory ab′. Then, we replace the trajectory ab with the
generalized trajectory ab′ and connect the trajectory with another trajectory to construct a
new generalized trajectory. We update the shortest path likelihood of the new generalized
trajectory and then iterate the above process until the likelihood is no longer increased. We
start with trajectory ab, and use A∗ algorithm to search the generalized trajectory, which has
the maximum shortest path likelihood in all possible trajectory connections, and take the
shortest path likelihood of this generalized trajectory as the generalized path likelihood of
the trajectory ab reaching the origin go and destination gd. The generalized path likelihood
makes full use of the spatial and temporal information of the trajectories, which makes it
more reliable.

4. Origin and Destination Seeking

Seeking the origin and destination of a trajectory is the core work and the basis of
the experiments in this paper. We label the entrance/exit regions in the scene, and find
the candidate grids of the origins and destinations, as shown in Figure 2c. We assume
that a pedestrian enters and leaves the scene from the different entrance/exit regions.
Therefore, the candidate origin and destination of a trajectory should be selected from
different entrance/exit regions. First, we pick two entrance/exit regions as the entrance
and exit for the trajectory. We take the grids in the entrance as the candidate origins and
the grids in the exit as the candidate destinations. We then calculate the generalized path
likelihood of the trajectory reaching each candidate pair of origin and destination, and select
the pair with the maximum likelihood as the potential pair of origin and destination of the
trajectory for this combination of entrance and exit. Then, we traverse all combinations
of entrance and exit and find the corresponding potential pairs of origin and destination.
Among all of the potential pairs, the one with the largest likelihood is chosen as the final
origin and destination of the trajectory.

5. Experiment Results Analysis

We compare the proposed motion model with the MDA model, which is the best
motion model to our knowledge. The surveillance video of New York Central Station
was chosen as the experimental object. All experimental results are reported for a 30-min
video with a frame rate of 24 frames per second and a resolution of 480 × 720. The size
of image grids was set to 5 × 5 pixels. We extracted and tracked the feature points using
the KLT tracker to obtain the original trajectories, and trimmed the trajectories beyond
the entrance/exit regions. The original trajectories were simplified and segmented by the
Douglas Peucker algorithm, and the threshold of the algorithm was set to 5

2

√
2 pixels. In all

the experiments in this paper, we used the trajectories processed above as the observations
of the pedestrian motions, as shown in Figure 6a. The number of trajectories was about
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160,000. The length histogram in Figure 6b shows that most of the trajectories were very
short.

(a)
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(b)

Figure 6. A brief introduction of the experimental data. (a) We show the trajectories with different
colored lines, and the human labeled entry/exit regions by yellow bounding boxes. (b) A histogram
of the trajectory lengths; the unit of length is the number of image grids. Most of the trajectories are
very short.

5.1. Pedestrian Motion Simulation

The objective of this experiment was to simulate the pedestrian motions by the partially
observed trajectories. Here, we take the movement path to represent the pedestrian motion.
Other simulation details, such as speed, will be discussed in the crowd motion simulation
experiment below. We found 680 complete trajectories in the original trajectories obtained
by the KLT tracker, which reached the entrance and exit regions in the scene, as shown in
Figure 7a, and they were taken as the true movement paths of pedestrians. We simplified
and segmented the complete trajectories with the Douglas Peucker algorithm, and obtained
2428 trajectory segments. These segments were taken as the partially observed trajectories,
and each trajectory corresponds to an independent pedestrian. Given a partially observed
trajectory, we first found the origin and destination of it. Then, we generated the feasible
shortest path of the trajectory from the origin to destination as the simulated movement
path of the pedestrian. The MDA model uses an affine transformation matrix to expand
the past and future movement paths of the trajectory to generate the simulated movement
path. We use both the pattern accuracy of the simulated paths and the distance between
the simulated and the true path to evaluate the simulation.

First, we analyzed the pattern accuracy of the simulated paths. We judged the pattern
of a simulated path to be correct if the entrance and exit of the simulated path were the
same as those of the corresponding true path. We show the pattern accuracies of the
simulated paths obtained by our model and the MDA model in Figure 7b,c, respectively.
The accuracy of our model was 74.92%; that of the MDA model was 53.42%. The green
trajectory indicates the correct simulated path, and the red trajectory indicates an erroneous
one. It is worth noting that if the entrances and the exits of the trajectories are adjacent,
the error rates of both models will increase markedly, which is demonstrated well by the
dense red trajectories among the entrance/exit regions 8, 9 and 10. The dense regions
exist because the regions near the entrance/exit are usually crowded; pedestrians are often
forced to change their routes frequently when passing between an adjacent entrance and
exit, causing difficulties for motion models. However, we can see that even in these extreme
cases, the accuracy of our model was significantly higher than that of the MDA model.

Next, we calculated the distance between the simulated path and the true path. For a
fair comparison, we only used the paths simulated correctly by both two motion models. We
respectively sampled the simulated paths and the true paths at equal distances. The sampling
frequency of the true paths was set to five times that of the simulated paths. For each sampling
point on the simulated path, we took the minimum distance between it and all sampling
points on the true path as the distance from the sampling point to the true path. The distance
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between the simulated path and the true path was defined as the average distance from all
sampling points on the simulated path to the true path. We calculated the mean values and
standard deviations of the distances between the simulated paths and the corresponding true
paths obtained by our model and the MDA model. In our results, the mean distance was
7.07; the standard deviation was 3.82. For the MDA model, the mean distance was 6.94; the
standard deviation was 4.74. The unit of distance is the pixel. The mean distances obtained
by the two models are approximately the same, though our model slightly outperformed
the MDA model in terms of standard deviation. We show some examples of the simulated
paths obtained by the two motion models in Figure 8 and mark the distances between the
simulated paths and the true paths. Overall, on the premise of finding the correct entrance
and exit, both models can simulate well the movement paths of pedestrians. However, if there
are big turning points on the movement path, maybe caused by sudden direction changing
or error tracking, the difference between the simulated path and the true path will increase
significantly in both model results, just like the last two examples.

Complete trajectories Ours MDA

Accuracy = 74.92% Accuracy = 53.42%

(b) (c)

Number = 680 

(a)

Figure 7. (a) The complete trajectories which reach the entrance and exit regions. The pattern
accuracies of simulated paths obtained by our model (b) and the MDA model (c). The green trajectory
represents a correct pattern of the whose simulated path, and the red trajectory represents an error.

EN

ET

Ours dist = 3.21    MDA dist = 1.45

ET

EN EN

ET

ET

EN EN

ET

EN

ET

Ours dist = 3.19    MDA dist = 4.01 Ours dist = 4.85    MDA dist = 5.84

Ours dist = 8.25    MDA dist = 4.98 Ours dist = 13.12    MDA dist = 14.27 Ours dist = 11.18    MDA dist = 24.29

Distance unit: pixel

Trajectory Groundtruth Ours MDA

Figure 8. Some examples of the simulated paths obtained by our model and the MDA model. The
green line represents the partially observed trajectory; the green dashed line represents the true path.
The blue and red dashed lines represent the simulated paths obtained by our model and the MDA
model, respectively. The EN and ET indicate the entrance and exit.

5.2. Motion Pattern Classification and Traffic Flow Statistics

We classified the motion pattern based on the entrances and exits of the scene. First,
we categorized the trajectories whose origins and destinations belonged to the same entry
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and exit regions into the same motion patterns. Then, we calculated the flow value of the
trajectory according to the motion pattern to which it belonged. Taking the trajectory ab in
Figure 5a as an example, it belongs to the motion pattern characterized by entrance 5 to
exit 13. We define the flow value of trajectory ab as:

Fvab =
Str(ga, gb)

S(go, ga) + Str(ga, gb) + S(gb, gd)
.

Finally, we summed up the flow values of all trajectories which belonged to a motion
pattern to count the traffic flow of the motion pattern.

We show the top 12 motion patterns with the largest flow values obtained by our
model and the MDA model in Figure 9a,b, and mark their flow values. We can see that
there are 11 intersections between the 12 motion patterns obtained by these two models,
which demonstrates that both models could identify the main motion patterns well in the
scene. However, there are some differences in the spatial distributions of trajectories for the
same motion patterns obtained by the two motion models, which is particularly obvious
in the motion pattern of entrance 11 to exit 1. In the results of the MDA model, almost all
trajectories in this motion pattern enter the scene from the right half of entrance 11 and pass
along the left side of the central ticket machines. In our model’s results, the trajectories enter
the scene from every part of entrance 11, and a small portion of the trajectories pass along
the right side of central ticket machines. This difference exists because the MDA model uses
a linear dynamic system to constrain the shapes of motion patterns. All trajectories in a
motion pattern approximately satisfy the same affine transformation, which limits the path
selection of trajectory. Our motion model does not preset the shapes of the motion patterns
but directly looks for the origin and destination of a trajectory based on the shortest path
principle, which makes the trajectory free to select the path. To sum up, compared with the
results of the MDA model, our results better retain the diversity of path decision-making
caused by pedestrians’ behavior habits and senses, surrounding environments and other
uncertain factors in the real situation. Note that feature point extraction has limitations.
For example, some pedestrians have several feature points, whereas others have no feature
points. The trajectory flow value calculated in this paper can only be a rough measurement
but not an accurate pedestrian counter.

Flow value = 2027 Flow value = 736 Flow value = 535 Flow value = 487

Flow value = 416 Flow value = 409 Flow value = 405 Flow value = 399

Flow value = 376 Flow value = 339 Flow value = 297 Flow value = 286

Ours

(a)

Flow value = 2213 Flow value = 504 Flow value = 501 Flow value = 440

Flow value = 390 Flow value = 373 Flow value = 332 Flow value = 324

Flow value = 309 Flow value = 306 Flow value = 258 Flow value = 241

MDA

(b)

Figure 9. Top 12 motion patterns with the largest flow values obtained by our model (a) and the
MDA model (b). The motion patterns are sorted in descending order according to the flow values.

5.3. Crowd Motion Description and Simulation

Crowd motion is the aggregation of pedestrian motions. The movement path of
a pedestrian can be approximately represented by the shortest path from the origin to
destination based on the shortest path principle. Therefore, we can describe the crowd
motion with a few motion parameters, including the number of pedestrians; pedestrian
entry time; origin and destination; and speed. The motion parameters are quite disparate
in different time periods and different motion patterns. Thus, we divide the crowd motion
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into several motion units and model the motion parameters of the motion units. A motion
unit contains a motion pattern of the crowd motion in a time period. Here, each time period
was set to 30 s. For each motion unit, we use the flow value of the observed trajectories to
represent the number of pedestrians. Due to the short time period, we suppose that the
entering times of pedestrians follow a uniform distribution. The origins and destinations of
pedestrians are represented by a probability model based on the frequency of the trajectories
reaching the grids at the entrance and exit, respectively. The speeds of pedestrians are
represented by a normal distribution, and the mean and variance are calculated by the
speeds of the trajectories. Next, we use the motion parameters and motion model to
generate the virtual pedestrians, and their trajectories to simulate the crowd motion. The
motion parameters are generated by the parameter models described above. To simulate
the behavior independence of the pedestrians in crowd motion, we add random noise to
the movement paths of virtual pedestrians. During the path generation of each pedestrian,
we randomly increase the length of each path in the shortest path graph by [0, 0.5] times.

To evaluate the validity of the crowd motion simulation, we propose a new indicator
to measure the correlations between the simulated trajectories and the original trajectories
obtained by the KLT tracker. A higher correlation means better effectiveness of the crowd
motion simulation. We use the spatial occupancy values of trajectory to build the feature
vector, and measure the similarity between the two groups of trajectories with the corre-
lation between their feature vectors. The spatial occupancy value of trajectory refers to
the appearance frequency of the trajectories within a certain spatial range in a time period.
We divide the scene image into non-overlapping blocks with a size of N × N pixels. In a
given time period, we calculate the sum of the number of trajectories appearing in a block
at all time points and take it as the spatial occupancy value of the block. We arrange the
spatial occupancy values of all image blocks into a feature vector according to the posi-
tion of blocks, and then use the Pearson correlation coefficient to represent the correlation
between the feature vectors. We set the sizes of image blocks to 60 × 60, 40 × 40 and
20 × 20 pixels; and calculated the correlations between the simulated trajectories and original
trajectories in different time periods to evaluate the effectiveness of the crowd motion simula-
tion. Each time period was set to 60 or 30 s. We show the correlation coefficients obtained by
our model and the MDA model in Figure 10. The results are displayed separately according
to the different sizes of blocks and different time periods. We can see that in most instances,
the correlation coefficients obtained by our model are larger than those obtained by the MDA
model, which means that our model can better simulate crowd motion in most cases. The
average values of the correlation coefficients obtained by both models decreased as the block
size and time period length were reduced. This is because that there must be differences
between the simulated trajectories and original trajectories, which will become more obvious
as the observation windows reduce. To intuitively illustrate the performance of our model
in crowd motion simulations, we show three comparison groups of the real scene and our
simulated scene with different crowd densities in Figure 11. We can see that in the three
groups of scenes, the spatial distributions of the simulated pedestrians and real pedestrians
are relatively close, which demonstrates the validity of our model from another perspective.
There are, of course, some differences between the simulated scene and the real one due to the
limitations of feature point extraction and the proposed model.
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Figure 10. The correlation coefficients between the simulated trajectories and original trajectories
obtained by our model and the MDA model. The average values of the correlation coefficients
obtained by our model are larger than those obtained by the MDA model in all sub-figures. A larger
correlation coefficient means better effectiveness of the crowd motion simulation. The p-values of the
t-test for all correlation coefficients are less than 0.01.
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Figure 11. Three comparison groups of the real scene and our simulated scene with different crowd
densities. The yellow small circles represent the simulated pedestrians. The colors of simulated
trajectories were assigned according to the motion patterns.

6. Conclusions

In this work, we revisited the research results of sociologists to summarize the shortest
path principle, and then proposed a new motion model to simulate the moving of pedes-
trians in crowded scenes. The proposed motion model consists of two parts: the shortest
path graph and the generalized path likelihood. The shortest path graph generates the
movement paths of pedestrians between pairs of points in a scene. The generalized path
likelihood estimates the probability of a pedestrian reaching each candidate pair of origin
and destination. We compared our motion model with the MDA model in experiments.
The experimental results showed that our model outperforms the MDA model in pedes-
trian motion simulation, motion pattern classification and traffic flow statistics, and crowd
motion description and simulation. In future work, the pedestrian motion model could
be used as the prior knowledge for pedestrian tracking, a contrast template for pedestrian
anomaly detection and so on.
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