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Abstract: Combining information (p-values) obtained from individual studies to test whether there is
an overall effect is an important task in statistical data analysis. Many classical statistical tests, such
as chi-square tests, can be viewed as being a p-value combination approach. It remains challenging to
find powerful methods to combine p-values obtained from various sources. In this paper, we study
a class of p-value combination methods based on gamma distribution. We show that this class of
tests is optimal under certain conditions and several existing popular methods are equivalent to its
special cases. An asymptotically and uniformly most powerful p-value combination test based on
constrained likelihood ratio test is then studied. Numeric results from simulation study and real data
examples demonstrate that the proposed tests are robust and powerful under many conditions. They
have potential broad applications in statistical inference.

Keywords: chi-square test; constrained likelihood ratio test; Fisher test; gamma distribution; uni-
formly most powerful test

1. Introduction

In statistical inference and decision making, it is critical but challenging to appropri-
ately aggregate information from different sources. p-value combination approaches pro-
vide possible solutions. A p-value combination method usually combines the transformed
statistics via the original individual p-values, and then, an overall p-value is obtained. The
development of combining p-value has a long history. Many pioneer statisticians, including
R. A. Fisher [1] and K. Pearson [2], had important contributions in this area. Their methods
(e.g., Fisher test), along with others, such as the z-test [3] and the minimal p-test [4], are still
widely used in today’s statistical practice. Many studies have been conducted to compare
the performances among those p-value combination tests [5–7]; it turned out that no test is
uniformly most powerful although some methods may perform better than others under
certain conditions. Combining dependent p-values is another research direction, as many
robust and powerful methods have been proposed in the literature, including a recently
proposed test based on Cauchy distribution (CCT) [8]. Although the CCT can be applied to
both independent and dependent p-values, it has been shown that this test can never obtain
a p-value less than the smallest p-value to be combined, and therefore, is not recommended
for combining independent p-values [9]. In this paper, we focus on the situation where we
have independent p-values to be combined.

It is well known that combining p-value methods have important applications in
meta-analysis [10,11]. However, it is less recognized that combining p-value methods are
more frequently but implicitly used in statistical testing. For instance, the commonly used
chi-square tests, including the likelihood ratio test, the score test, and the Wald test, with
degrees of freedom (df) greater than one can be viewed as p-value combination methods,
which are special cases of our proposed gamma distribution-based tests (see Section 2).
In other words, the popular chi-square tests only provide possible and special ways to
combine p-values that are not necessarily optimal; more powerful methods for combining
p-value may be found and used instead.
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With recent technical developments, larger volume data, such as genome-wide ge-
nomic data, are generated more easily and rapidly. Consequently, advanced statistical
methods, including p-value combination tests, are highly desirable [12–20]. For instance,
meta-analyses, which combine information from different genome-wide association studies
(GWASs), have identified many associated genetic variants that could not be identified
from a single GWAS [21,22]. It is expected that with more powerful p-value combination
tests being developed and available, more and more significant associated genetic variants
will be discovered in cancer genomics.

Unfortunately, as Birnbaum [23] already noticed, there exists no uniformly most
powerful (UMP) p-value combination test for all alternative hypotheses. However, it is
possible that a method is UMP under a certain condition. Moreover, if the true condition is
unknown, it is desirable to choose a robust p-value combination method in the sense that it
has reasonable detection power under many conditions.

In this paper, we first propose a class of p-value combination methods based on
gamma distribution. We show that several existing popular methods are equivalent to
certain special cases of this class of tests. Then, we show that the proposed tests are UMP
when the p-values to be combined are from certain distributions. When the p-values to be
combined are from certain type of distributions whose parameters are partially or fully
unknown, asymptotically UMP tests based on constrained likelihood ratio test (CLRT) are
proposed and studied.

The rest of the manuscript is organized as follows: In Section 2, we first introduce
some existing popular p-value combination tests, describe our proposed tests based on
gamma distributions, and then study their connections to existing popular methods and
their properties as of UMP tests. Finally, some asymptotically UMP tests based on CLRT are
proposed and studied. In Section 3, we compare the performances of the proposed tests with
some existing popular methods through a simulation study. In Section 4, two examples
of real data applications are demonstrated to illustrate the desired performance of the
proposed tests. This paper concludes in Section 5 with discussion and conclusions.

2. Methods

Suppose we have n independent p-values, denoted as Pi(i = 1, · · · , n), obtained from
testing the individual null hypothesis Hi0 versus the alternative hypothesis Hi1, respectively.
In addition, throughout this paper, we assume Pi ∼ U(0, 1) under Hi0, where U(0, 1) stands
for the uniform distribution between 0 and 1. For a combining p-value test, in this paper, we
consider testing the global null hypotheses, H0= ∩Hi0 vs. the global alternative hypothesis,
H1 = ∪Hi1. In statistical literature, several p-value combination tests were proposed long
time ago but are still widely used today. We introduce some of the most popular ones
as follows.

2.1. Some Existing Popular Tests
2.1.1. The Minimal p-Value (Min p) Test

This test is denoted as Tp, with the test statistic defined as [4]:

min(P1, P2, · · · , Pn) (1)

whose null distribution is the beta distribution Beta(1, n) and its p-value is defined as

1−
(

1− P(1)
)n

, where P(1) = min(P1, P2, · · · , Pn). The Tippett’s Min p test in (1) is closely
related to the Bonferroni method [24]. When the minimal p-value p(1) is small, the two tests
obtain similar results, and both are close to np(1).
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2.1.2. The Chi-Square Test with n Degrees of Freedom

Denoted as χ2
n, it has the test statistic [25,26]:

n

∑
i=1

(
Φ−1(1− Pi)

)2
(2)

where Φ−1(·) is the inverse function of the cumulative distribution function (CDF) of the
standard normal distribution, N(0, 1). The null distribution of the test χ2

n in (2) is the
chi-square distribution with n df.

2.1.3. The Fisher Test

Denoted as Fp, it has the following test statistic [1]:

− 2
n

∑
i=1

ln(Pi) (3)

whose null distribution is χ2
2n, the chi-square distribution with 2n df.

2.1.4. The z Test

Denoted as Zp, it has the test statistic [3]:

n

∑
i=1

Φ−1(1− Pi)/
√

n (4)

whose null distribution is N(0, 1).
Note that for all of the above tests, their overall one-sided p-values are calculated based

on the right-tails, i.e., the areas beyond the test statistics from the right sides of their null
distributions, to reflect the fact that smaller individual p-values provide stronger evidence
to support the global alternative hypothesis.

2.2. New Tests Based on Gamma Distribution

We use Gamma(α, β) to denote a random variable that has a gamma distribution
with shape parameter α and rate parameter β, where both parameters are positive. The
probability density function (PDF) of Gamma(α, β) is:

fG(α,β)(x) = βαxα−1 exp(−βx)/Γ(α) (5)

for x > 0, where the gamma function Γ(z) =
∫ ∞

0 xz−1e−xdx. Denote the corresponding
CDF as FG(α,β)(x). We can combine n independent p-values using Gamma(α, β) and obtain
an overall p-value accordingly.

2.2.1. Gamma Distribution-Base Test TG(α,β)

Define the following test statistic:

TG(α,β)(P1, P2, · · · , Pn) =
n

∑
i=1

F−1
G(α,β)(1− Pi), (6)

where F−1
G(α,β)(y) is the inverse function of the CDF FG(α,β)(x).

We also define the following right-tailed p-value for TG(α,β):

P = Pr(Gamma(nα, β) > t) = 1− FG(nα,β)(t) = SG(nα,β)(t) (7)

where t is the observed value for the test TG(α,β), and FG(nα,β)(·) and SG(nα,β)(·) are the CDF
and the survival function of Gamma(nα, β), respectively.
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The above test determined by the test statistic TG(α,β) in (6) and the p-value P in (7) is
called TG(α,β). The p-value for a specific test T is also denoted as PT . Therefore, the p-value
in (7) can also be written as PTG(α,β)

. Based on the properties of gamma distributions, we
have the following result for the test TG(α,β):

Proposition 1. The test TG(α,β) with statistic defined in (6) and p-value defined in (7) controls type
I error rate exactly at given significance level.

To study the properties of the new tests, we use the following definitions:

Definition 1. Two tests T1 and T2 are called equivalent and denoted as T1 ≡ T2 if pT1(x) = pT2(x)
for any observed data x, where pTi (x) is the p-value obtained by test Ti(i = 1, 2) from given data x.

Based on the properties of the gamma distributions, we can easily verify the follow-
ing result:

Proposition 2. For any α > 0 and β > 0, TG(α,β) ≡ TG(α,1).

Therefore, the rate parameter of the gamma distribution has no effect on the test TG(α,β).
For convenience, in this paper, we set β = 1 and use TG(α) to denote TG(α,1) hereafter unless
otherwise specified.

Definition 2. A positively-valued function c(θ) is called the exact slope of the sequence of tests Tn if
lim

n→∞
[(−2/n)ln(1− Fn(Tn))] = c(θ) with probability 1, where Fn(Tn) is the CDF of Tn. A test is

called asymptotically Bahadur optimal (ABO) if its exact slope is maximal at every θ ∈ Θ−Θ0,
where Θ is the parameter space, and Θ0 is the parameter space under the null hypothesis. The exact
slope is a measure of the rate at which the attained p-value of a test statistic tends to 0 and is a
measure of asymptotic efficiency.

It has been proven that TG(α,1/2) is ABO for any α ∈ (0, ∞) [27]. Hence, from proposi-
tion 2, we have the following property:

Proposition 3. The test TG(α) is ABO for any α ∈ (0, ∞).

Previously, we proposed a different p-value combination test based on gamma dis-
tribution with the test statistic T = ∑n

i=1 F−1
G(1/Pi ,1)

(1− Pi), which uses the random shape
parameter ai = 1/Pi for p-value Pi, and its null distribution is intractable, and a resampling
method is used to estimate the p-value. While in the current proposed tests, the same shape
parameter is used for all individual p-values.

2.2.2. Connections between TG(α) and Existing Popular Tests

Although the existing popular tests described in Section 2.1 were proposed a long time
ago, and their theoretical properties and empirical performances have been extensively
studied and compared [6,7,25,28,29], surprisingly, their relationships have not been fully
investigated, and the theoretical explanation on the differences of their performances is
lacking. In this subsection, we show that they are connected to the aforementioned gamma
distribution-based tests TG(α) with different α values. In fact, we have the following results:

Theorem 1. The class of gamma distribution-based tests TG(α) include special cases that are
equivalent to the aforementioned existing popular methods. More specifically,



Appl. Sci. 2022, 12, 322 5 of 15

TG(0) , lim
α→0+

TG(α) ≡ Tp;

TG(0.5) ≡ χ2
n;

TG(1) ≡ Fp; and
TG(∞) , lim

α→∞
TG(α) ≡ Zp.

The proof of Theorem 1 is given in the Appendix A.

2.2.3. T(α) as the Uniformly Most Powerful Test

Besides the ABO property, there is another attractive property for the gamma distribution-
based test TG(α): under certain conditions, it is UMP. We thus have the following theorem:

Theorem 2. Suppose P1, P2, · · · , Pn are iid from the following common density function with
parameters α > 0 and 0 < c < 1

fα,c(p) = (1− c)αexp
[
cF−1

G(α)
(1− p)

]
for p ∈ (0, 1), (8)

If both α and c are known, then test TG(α) is UMP.
The proof is given in the Appendix A.

Remark 1. (i) For p ∈ (0, 1), when c = 0, fα,0(p) = 1. Therefore, fα,0(p) corresponds to
the global null hypothesis. (ii) Under the condition fα,c(p) = (1− c)αexp

[
cF−1

G(α)
(1− p)

]
with

0 < c < 1, from Theorem 1, the existing tests Tp, χ2
n, Fp, and Zp defined in (1)–(4) are UMP for

given α = 0, 0.5, 1, and ∞, respectively. (iii) Along with Theorem 1, Theorem 2 provides insightful
explanations on when and why an existing popular test described in Section 2.1 is preferred. For
instance, when the p-values are extremely heterogeneous (e.g., a very small α in (8)), the Min p test
(i.e., TG(0)i) s more powerful than the other gamma distribution-based tests. On the other hand,
when the p-values are more homogeneous (e.g., a large α in (8)), the z test (i.e., TG(∞)) is preferred.

(iv) The function fα,c(p) = (1− c)αecF−1
G(α)

(1−p) with two parameters α (α > 0) and c (0 < c < 1)
represents a large class of densities and can be used to approximate the true density functions under
the alternative hypotheses. Based on simulation study, we found that under many situations, the
true density functions under the alternative hypotheses can be closely approximated by fα,c(p) with
the two parameters being estimated from the data (see Figures S1–S19 in the Supplementary File).

2.3. Constrained Likelihood Ratio Tests

In Section 2.2, we have shown that TG(α) is UMP if the p-values to be combined are
from the common density as described in (8) with known constants α and c. When c is
unknown, or both α and c are unknown, constrained likelihood ratio tests (CLRTs) can
be constructed accordingly. In this subsection, we study those CLRT-based tests when
parameter c is unknown with α being known or unknown.

2.3.1. CLRT-Based Tests with Known α Values

Under (8), with known α = α0, the CLRT-based tests can be constructed based on
the constrained MLE of c obtained through maximizing l(α0, c) = l(c) = nα0ln(1− c) +
c ∑n

i=1 F−1
G(α0)

(1− Pi). More specifically, we define the following test statistic:

TCLRT,α0(P1, · · · , Pn) = 2α0nln
(
1− ĉCLRT,α0

)
+ 2
(
ĉCLRT,α0

) n

∑
i=1

F−1
G(α0)

(1− Pi), (9)

where ĉCLRT,α0 is the constrained MLE of c through maximizing the log-likelihood l(α0, c)
with the constrain 0 < c < 1. We will reject the overall null hypothesis if the test statistic is
large. In other words, a one-sided p-value will be calculated from the test.
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For the above CLRT-based test TCLRT,α0 in (9), we have the following result [30]:

Proposition 4. The asymptotic distribution of the test TCLRT,α0 is a mixture of chi-square dis-
tributions ∑1

i=0 wiχ
2
i , where χ2

i is the chi-square distribution with d f = i, χ2
0 is the random

variable with probability 1 of being 0, and the weights w0, w1 are determined by the null and the
alternative hypothesis.

In practice, the p-values of the test TCLRT,α0 can be estimated through resampling
methods (e.g., see Section 2.3.2 for an example). However, the following result shows that
this test is tightly connected with the gamma distribution-based test TG(α0)

, whose p-value
can be calculated directly.

Theorem 3. Let tCLRT,α0 be the observed statistic of test TCLRT,α0 ; the p-value of TCLRT,α0 is
determined by the gamma distribution-based test TG(α0)

= ∑n
i=1 F−1

G(α0)
(1− Pi) as follows:

Pr
[
TCLRT,α0 > tCLRT,α0

]
=

{
PTG(α0)

if tCLRT,α0 > 0

Pr
[

TG(α0)
< nα0

]
i f tCLRT,α0 = 0

(10)

The proof is given in the Appendix A.

Proposition 5. Under the conditions specified in (8), if the parameter α = α0 is known, then
asymptotically TG(α0)

≡ TCLRT,α0 .

Proof. From the proof of Theorem 3, we know that under (8), when 0 ≤ c < 1, Pr[TG(α0)
<

nα0] = Pr[ĉα0 ≤ 0] → 0 (as n→ ∞), and hence, the two p-values from tests TG(α0)
and

TCLRT,α0 are asymptotically equal with probability 1. �

Theorem 4. Under the conditions specified in (8), if the parameter α = α0 is known, then the gamma
distribution-based test TG(α0)

and the CLRT-based test TCLRT,α0 are both asymptotically UMP.

Proof. When α = α0 is known, it can be shown that the constrained MLEs for c is consistent
(see, for instance, Theorem 1 of Self and Liang [30]). Hence, from Theorem 2, TG(α0)

is
asymptotically UMP. From Proposition 5, TCLRT,α0 is asymptotically UMP. �

2.3.2. The Optimal CLRT-Based Test When α Is Unknown

When both parameters α and c in (8) are unknown, they need to be estimated via the
constrained MLEs, from which the following constrained likelihood ratio test is defined:

TCLRT(P1, · · · , Pn) = 2α̂CLRTnln(1− ĉCLRT) + 2(ĉCLRT)
n

∑
i=1

F−1
G(α̂CLRT)

(1− Pi) (11)

where α̂CLRT and ĉCLRT are the constrained MLEs for parameters α and c, respectively,
through maximizing the log-likelihood function l(α, c) = nαln(1− c) + c ∑n

i=1 F−1
G(α)

(1− Pi)

with the constrains 0 < c < 1 and α > 0. The R function “nlminb” can be applied to find the
constrained MLEs and the corresponding test statistic. The proposed test was implemented
using R; the R package “opt” (optimal p-value combination test) can be freely download
from https://github.com/zchen2020/opt (accessed on 15 November 2021).

For the above CLRT-based test TCLRT , similar to Proposition 4, we have the following
result [30]:

Proposition 6. The asymptotic distribution of the test TCLRT is a mixture of chi-square distribu-
tions ∑2

i=0 wiχ
2
i , where χ2

i is the chi-square distribution with d f = i, χ2
0 is the random variable

with probability 1 of being 0, and the weights w0, w1, w2 are determined by the null and the
alternative hypothesis.

https://github.com/zchen2020/opt
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The above asymptotic result may not be directly applicable to estimate the p-value for
this test, as the number of p-values n is usually small, and more seriously, the weights wi

′s
are difficult to obtain. Instead, a simple resampling method can be used to approximate
the null distribution and to estimate the p-value of TCLRT . More specifically, for given
sample size n, randomly sample n null p-values evenly distributed between 0 and 1, then
calculate the test statistic using (10). Repeat this process many times (e.g., 105); then, the
empirical distribution of the test statistic can be used to approximate the null distribution
and therefore the p-value of TCLRT .

Similar to Theorem 4, we have the following result for TCLRT :

Theorem 5. Under the conditions specified in (8), the CLRT-based test TCLRT is asymptoti-
cally UMP.

Proof. Under conditions (8), it can be shown that the constrained MLEs for α and c are
consistent (see, for instance, Theorem 1 of Self and Liang [30]). Hence, TCLRT is asymp-
totically equivalent to TCLRT,α0 for known α = α0 in (8). Then from Theorem 4, TCLRT is
asymptotically UMP. �

Remark 2. (i) When α = α0 is known, compared with test TCLRT,α0 , the test TG(α0)
is preferred

because (a) its test statistic and p-value are easier to get and (b) the two tests in general have very
similar performances. (ii) When both α and c are unknown, the test TCLRT is asymptotically UMP,
while, in general, neither TCLRT,α0nor TG(α0)

for preset α = α0 is UMP or asymptotically UMP.
Therefore, it is expected that TCLRT is more robust, and overall, it has better performance than each
individual gamma distribution-based test TG(α), including the existing popular ones described in
Sections 2.1.1–2.1.4.

3. Numeric Studies

In this section, we assess the performances of the proposed tests through a simulation
study. In the simulation, we compare the optimal CLRT-based test TCLRT with the popular
and representative gamma distribution-based tests, TG(0), TG(1), and TG(∞) (i.e., the Min p,
Fisher, and z test, respectively).

In the simulation study, fifty (n = 50) independent p-values are simulated and com-
bined. Among these 50 p-values, m (m = 0, 10, 20, 40, 50) are assumed from the true
individual alternative hypotheses, and the rest (n−m) are from the true individual null
hypotheses. When m = 0, all 50 individual null hypotheses are true, and the empirical
power obtained under this condition is the empirical type I error rate. The p-values from the
true null hypotheses are randomly sampled between 0 and 1 from the uniform distribution.
For a true individual alternative hypothesis Hi1 (i = 1, · · · , m), we assume the p-value pi is
obtained via a random variable zi ∼ N(µi, 1). We randomly set k of the m u′is as positive
or negative (those alternative hypotheses with the same direction of the effects are called
concordant alternatives) and the rest of m − k having the other direction. A two-sided
p-value for each true individual alternative hypothesis are obtained via the standard z test
by comparing the test statistic with the standard normal distribution N(0, 1).

For the true alternative hypotheses, we consider three different scenarios for the
effects of µi

′s. Scenario 1: |µi| = µvi/ ∑m
i=1 vi, where vi = 10ri ; ri ∼ N(0.3, 1); and

µ = 0.8, 0.6, 0.4, 0.3 when there are 10, 20, 40, and 50 true individual alternatives,
respectively. Scenario 2: |µi| = µvi/ ∑m

i=1 vi, where vi ∼ U(1, 100) and µ = 1.2, 1.0, 0.6, 0.5
when the number of true individual alternatives is m = 10, 20, 40, and 50, respectively.
Scenario 3: |µi| = µ/m, and µ = 1.5, 1.2, 0.8, and 0.6 when m = 10, 20, 40, and 50,
respectively. Note that (i) the constants (e.g., µ, the parameters in the normal distribution
for ri and the uniform distribution for vi) are chosen in the way so that the empirical powers
are appreciable for comparison. (ii) For all the three scenarios, the sum of the absolute
effect sizes is equal to µ; and (iii) for given m, the degree of heterogeneity of the effect
sizes among the true individual alternatives decreases from Scenario 1 to Scenario 3. More
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specifically, in scenario 1, the effect sizes are extremely heterogenous when the number of
the true individual alternatives is small. In Scenario 3, the effect sizes are more homogenous.
The situations in Scenario 2 are between those in Scenarios 1 and 3. By considering those
different conditions, we tried to conduct a reasonable and realistic simulation study to
fairly compare our proposed tests with others.

The empirical power values of the tests are estimated using the rejection proportions
based on 1000 replicates at the significance level of 0.05. For the new tests, TCLRT 105

replicates are used to estimate their p-values from the resampling method described in
Section 2.3.2. Under the overall null hypotheses (i.e., all individual null hypotheses are
true), the empirical type I error rates for all methods with different significance levels were
obtained. From the simulation study, all methods controlled type I error rate quite well
(see Table S4 in the Supplementary File).

Figures 1–3 plot the empirical power values of the Min p (Min), Fisher (Fisher), z
test (Z), and the proposed CLRT-based test TCLRT (LRT_CS) when p-values are combined
under Scenarios 1 to 3, respectively. We have the following observations: First, for Scenario
1 (Figure 1), where the effect sizes from the true individual alternative hypotheses are
extremely heterogeneous, the Min p test (i.e., TG(0)) usually performs better than the Fisher
test (TG(1)), which in turn performs better than the z test (TG(∞)). Second, when the
degree of heterogeneity of the effect sizes among individual alternative hypotheses are
less extreme, as in Scenarios 2 and 3 (Figures 2 and 3), Fisher test and the z test usually
perform better or much better than the Min p test. Third, for the Min p, Fisher, and z test,
one may perform very well for some conditions but very poorly under others. For instance,
under Scenario 1 (extremely heterogeneous effect sizes among the alternatives), the Min
p test is more powerful than the other two, while it is much less powerful under scenario 3
(homogeneous effect sizes among the alternatives). The opposite direction was observed for
the z test. Fourth, under all conditions considered, the new test TCLRT is either the best or
very comparable to the best one. When the number of p-values to be combined is small, we
observed similar patterns (see the simulation results in Tables S1–S3 in the Supplementary
Materials when n = 10). This demonstrates that, as expected, TCLRT is a robust test in
the sense that under many conditions, it has reasonable detection power compared with
other tests. We would like to point out that, as expected, the empirical power values
from the CLRT-based test TCLRT,α0 are very close to those from the corresponding gamma
distribution-based tests TG(α), with α = 0, 1, ∞ being fixed (data not shown).

Appl. Sci. 2022, 11, x FOR PEER REVIEW 8 of 15 
 

true individual alternatives is small. In Scenario 3, the effect sizes are more homogenous. 
The situations in Scenario 2 are between those in Scenarios 1 and 3. By considering those 
different conditions, we tried to conduct a reasonable and realistic simulation study to 
fairly compare our proposed tests with others. 

The empirical power values of the tests are estimated using the rejection proportions 
based on 1000 replicates at the significance level of 0.05. For the new tests, 𝑇஼௅ோ் 10 ହ 
replicates are used to estimate their p-values from the resampling method described in 
Section 2.3.2. Under the overall null hypotheses (i.e., all individual null hypotheses are 
true), the empirical type I error rates for all methods with different significance levels were 
obtained. From the simulation study, all methods controlled type I error rate quite well 
(see Table S4 in the Supplementary File). 

Figures 1–3 plot the empirical power values of the Min p (Min), Fisher (Fisher), z test 
(Z), and the proposed CLRT-based test 𝑇஼௅ோ் (LRT_CS) when p-values are combined un-
der Scenarios 1 to 3, respectively. We have the following observations: First, for Scenario 
1 (Figure 1), where the effect sizes from the true individual alternative hypotheses are 
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Figure 1. Empirical power values of the tests based on two-sided p-values under Scenario 1:
|µi| = µvi/ ∑m

i=1 vi, where vi = 10ri , ri ∼ N(0.3, 1), and µ = 0.8, 0.6, 0.4, 0.3 when there are 10, 20,
40, and 50 true individual alternatives, respectively.
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|µi| = µvi/ ∑m

i=1 vi, where vi ∼ U(1, 100), and µ = 1.2, 1.0, 0.6, 0.5 when the number of true
individual alternatives is m = 10, 20, 40, and 50, respectively.
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Figure 3. Empirical power values of the tests based on two-sided p-values under scenario 3:
|µi| = µ/m, and µ = 1.5, 1.2, 0.8, and 0.6 when m = 10, 20, 40, and 50, respectively.

4. Real Data Examples

In this section, we apply the proposed tests along with others to two real-world
problems to demonstrate the usefulness of the proposed test.

4.1. Example 1: A Meta-Analysis

In a meta-analysis, 12 randomized trials examining the effect of patient rehabilitation
designed for geriatric patients versus usual care on improving functional outcome at
3–12 month follow-up were used [31,32]. The estimated odds ratios (ORs) from the 12 trials
are listed in Table 1.

The p-value from the Cochran’s test for homogeneity was 0.021, indicating that the
commonly used fixed effect model of meta-analysis was inadequate for this data set.
Therefore, the authors ran the meta-analysis with a random effect model and estimated
the overall OR as 1.36 with 95% CI (1.08, 1.71) [32]. However, the goodness-of-fit test
for the random effect model obtained a p-value of 0.025 [33], indicating the lack of fit of
the random effect model for this data set. Therefore, instead of using the problematic
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fixed or random effect models to combine information from the 12 trials, we use p-value
combination methods to test whether there is an overall effect.

Table 1. Estimated odds ratio and its 95% CI from each study in a meta-analysis with 12 trials. Data
were taken from Bachmann et al. and Riley et al.

Study OR 95% CI Study OR 95% CI Study OR 95% CI

1 1.11 0.51, 2.39 5 0.88 0.39, 1.95 9 1.06 0.63, 1.79
2 0.97 0.78, 1.21 6 1.28 0.71, 2.30 10 2.95 1.54, 5.63
3 1.13 0.73, 1.72 7 1.19 0.69, 2.08 11 2.36 1.18, 4.72
4 1.08 0.42, 2.75 8 3.82 1.37, 10.60 12 1.68 1.05, 2.70

In order to use the p-value combination methods, for each trial, we calculate its p-
value based on its reported 95% CI. Denote U and L the upper and lower limits of the
95% CI; the test statistic can be approximated as t = ln(U × L)/

√
4 ln(U/L)/3.92, whose

asymptotic null distribution is N(0, 1). The sample sizes of these 12 trials were relatively
large, ranging from 108 and 1388; therefore, we can reasonably estimate their p-values
using the asymptotic null distribution. We calculate the two-sided p-value for each trial
and apply the gamma distribution-based tests. The p-values from the Min p (i.e., TG(0)),
Fisher (TG(1)), z test (TG(∞)), and TCLRT for combining those two-sided p-values are 0.013,
0.0068, 0.075, and 0.0047, respectively. Except for the z test, which is known to be less
powerful for this heterogeneous situation, all methods obtained p-values less than 0.05, and
the proposed test TCLRT had the smallest p-value, indicating that the proposed test is more
powerful than the other tests under this specific situation.

4.2. Example 2: A Survival Analysis from a Clinical Trial

The second data set is from the randomized, double-blinded Digoxin Intervention
Trial [34]. In this trial, patients with left ventricular ejection fractions of 0.45 or less were
randomly assigned to digoxin (3397 patients) or placebo (3403 patients) groups. A primary
outcome was the mortality due to worsening heart failure (see Figure S20 in the Supplemen-
tary Materials). In the original study, the authors used the log-rank (LR) test and obtained
a p-value of 0.061, indicating that the evidence of the effectiveness of digoxin, in terms of
reducing the mortality due to worsening heart failure, is at most marginal.

However, it is well known that the LR test may fail to detect the difference between
two survival functions if their hazard rate functions are crossing [35,36]. We apply the
two-stage approach [35,36] to this data set and obtained two p-values of 0.06 and 0.04 for
the two stages. Since, under the null hypothesis, the two p-values from the two stages
are asymptotically independent [35,36], we can combine them using the proposed test
TCLRT and the gamma distribution-based tests. The p-values are 0.078, 0.017, 0.0099, and
0.011 from the Min p, Fisher, z test, and TCLRT , respectively. The proposed test obtained
the second smallest p-value, which is slightly larger than the smallest one obtained by the
z test.

In addition, the drug effect may differ between males and females. To investigate
the possible interaction between sex and treatment, we divide the data into four groups
based on the combinations of sex and treatment: Male—Placebo (MP), Male—Drug (MD),
Female—Placebo (FP), and Female—Drug (FD). The sample sizes for the four groups are
2639, 2642, 764, and 755, respectively. We then compare the survival functions in the fol-
lowing three pairs of groups: MP vs. MD, (MP + MD) vs. FP, and (MP + MD + FP)
vs. FD, where (MP + MD) is a new group with pooled data from groups MP and
MD, and (MP + MD + FP) includes all the subjects from groups MP, MD, and FP (see
Figure S21 in the Supplementary Materials). For each comparison, the two-stage approach
is applied. We obtain the following six p-values: 0.019, 0.026, 0.504, 0.092, 0.975, and 0.050.
It has been shown that under the null hypothesis, the six p-values obtained from the above
approach are asymptotically independent [36]. Applying the gamma distribution-based
tests, along with TCLRT , to the six asymptotically independent p-values, we obtain p-values
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of 0.11, 0.0067, 0.020, and 0.013 from the Min p, Fisher, z test, and TCLRT , respectively. It
noticeable that the proposed test obtained the second smallest p-value, while Fisher test
obtained the smallest one among those methods. These results show that except for the
Min p test, all other tests obtain p-values less than 0.05. In addition, the p-values from TCLRT
in general are close to the smallest ones, while the popular tests, Fisher and z test, may get
quite different p-values under different situations (two groups vs. four groups).

Compared with the original analysis, the results of the proposed optimal test TCLRT
using p-values from the two-stage approach applied to either two groups (placebo vs. drug)
or four groups (combinations of sex and drug) provide stronger evidence against the null.

5. Discussion and Conclusions

In this paper, we studied a class of gamma distribution-based p-value combination
methods, which include special cases that are equivalent to some existing popular methods.
This class of tests provide unlimited choices for combining independent p-values. However,
under a given situation, some of them may perform very poorly. Therefore, arbitrarily
picking one of them may result in failing to detect true alternatives. On the other hand,
if we try many different methods and report the smallest p-value, we need to adjust this
p-value due to multiple comparison issue; otherwise, we will have more false findings than
expected due to inflated type I error rate. Therefore, it is desirable to develop methods that
can adaptively find the optimal approach from candidate tests. Our proposed CLRT-based
test TCLRT is one of such methods. We have shown that if the p-values to be combined are

from a common density function fα,c(p) = (1− c)αecF−1
G(α)

(1−p) for p ∈ (0, 1), the gamma
distribution-based test TG(α) is UMP when both parameters α and c are known. When
α = α0 is known but c unknown, both TG(α) and the CLRT-based test TCLRT,α0 are asymp-
totically UMP. Furthermore, when both α and c are unknown, the proposed CLRT-based
test TCLRT is asymptotically UMP.

In a meta-analysis, it is natural to assign different weights to individual stud-
ies [5,7,37,38]. For instance, a larger weight can be assigned to a study with more subjects;
hence, in the z test, a p-value from a larger study may receive a greater weight. Weights can
also be assigned based on other quantities, such as the variances of the estimated effect sizes.
However, there is no consensus on weight assignment. For our proposed tests, we can easily
incorporate weights assigned to each individual p-value. For instance, the weighted gamma
distribution-based tests can be constructed using Tw

G(α)
= ∑n

i=1 F−1
G(wiα)

(1− Pi), where wi

is the weight assigned to study i (i = 1, · · · , n). Based on the properties of gamma dis-

tributions, it is not difficult to show that lim
α→∞

Tw
G(α)
≡ ∑n

i=1 wiΦ−1(1− Pi)/
√

∑n
i=1 wi

2, the

weighted z test. Therefore, the class of weighted gamma distribution-based tests Tw
G(α)

are
generalizations of the weighted z test. Likewise, the weighted log-likelihood function with
given weights becomes lw(α, c) = αln(1− c)∑n

i=1 wi + c ∑n
i=1 F−1

G(wiα)
(1− pi), from which

the corresponding weighted CLRT-based optimal test TW
CLRT can be constructed accordingly.

Our proposed tests have much broader applications than in meta-analysis. In fact, they
can be applied to almost all statistical testing problems when (asymptotically) independent
p-values from individual components are available. For instance, in model selection, a typi-
cal step is to test whether a set of variables (or a single categorical variable with multiple
levels) should be included in the final model. Often the time, the parameters, and the
covariances of their estimates are estimated simultaneously through maximum likelihood
estimation. Then the LRT via comparing the log-likelihood values from two models with
and without the candidate variables, or the Wald chi-square test of the weighted sum
of the squared estimated effect sizes, can be applied. For both LRT and the Wald test, a
set of asymptotically independent p-values can be obtained through their asymptotically
independent components (see, e.g., Chapter 16 of [39]). Hence, our proposed p-value
combination methods, such as TCLRT , can be applied and may result in a better final model.

Another example is the association test for two categorical variables in a two-way
contingency table to which the Pearson chi-square test is usually applied. It is known
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that the Pearson’s chi-square test statistic with k df can be partitioned into k asymptoti-
cally independent components whose null distributions are asymptotically iid chi-square
distribution with 1 df [40]. For instance, the partition can be done through the Lancaster
approach [41]. Hence, we can calculate a set of asymptotically independent p-values to
which our proposed CLRT-based test is applicable.

The performance of the proposed approaches can be improved if the p-values to be
combined are obtained from an individual study using more powerful tests. For instance,
if we already know the direction of the effect (positive or negative) when we compare two
group means, we can use a one-sided rather than a two-sided test to obtain the individual
p-value. However, it should be pointed out that sometimes one-sided tests may not be
always applicable to individual studies. Nevertheless, our proposed approaches can still
be used.

In this paper, we focus on using gamma distribution to combine independent p-values.
Our future direction will be developing gamma distribution-based methods to combine
dependent p-values. The difficulty in this direction is how to choose the “optimal”-shape
parameter so that the resulting test has good detection power and can control type I error
rate for arbitrary dependency structure of the p-values to be combined. Our preliminary
results indicate that this direction is promising. A follow-up paper will be published.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app12010322/s1, Figure S1: some densities of fa,c(t); Figure S2: Histogram and the esti-
mated density from simulated data when µi = 0; Figures S3–S21: Histograms and the estimated
densities from simulated data; Table S1: Empirical power from simulation under scenario 1 using
n = 10 and α = 0.05; Table S2: Empirical power from simulation under scenario 2 using n = 10 and
α = 0.05; Table S3: Empirical power from simulation under scenario 3 using n = 10 and α = 0.05;
Table S4: Empirical type I error rates from simulation study with 10,000 replicates using different
significant levels.
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Appendix A Proof of Theorems

To prove Theorem 1, we need the following results:

Lemma A1 (Theorem 1 of Liu, Martin, and Syring 2017). If Yα = Gamma(α, 1), then
lim

α→0+
− αln(Yα) ∼ Exp(1) in distribution [42].

Corollary A1. Pr
(

lim
α→0+

Yα > 1
)
= 0.

Proof of Corollary A1. From Lemma A1, Pr
(

lim
α→0+

Yα > 1
)

= Pr( lim
α→0+

ln(Yα) > 0) =

Pr( lim
α→0+

− α ln(Yα) < 0) = Pr(Exp(1) < 0) = 0. �

Corollary A2. Let Y = lim
α→0+

Y−α
α , where Yα = Gamma(α, 1), then the PDF of Y is fY(y) =

1/y2 for y ∈ (1, ∞).

Proof of Corollary A2. Notice that Y = lim
α→0+

Y−α
α = exp [ln( lim

α→0+
Y−α

α )]= exp[ lim
α→0+

−
α ln(Yα)]. But from Lemma A1, lim

α→0+
− α ln(Yα) ∼ Exp(1). Hence, the PDF of Y is fY(y) =

exp(− ln(y))/y = 1/y2 for y ∈ [1, ∞). �

https://www.mdpi.com/article/10.3390/app12010322/s1
https://www.mdpi.com/article/10.3390/app12010322/s1
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Lemma A2. Let 0 < p1 < p2 < 1 and q(α)i = F−1
G(α)

(pi) (i = 1, 2). Denote rα = q(α)2 /q(α)1 , then
we have lim

α→0+
rα = ∞. �

Proof of Lemma A2. Suppose lim
α→0+

rα = ∞ does not hold; then, there exists a constant

R such that rα < R for any α > 0. However, 0 < p2 − p1 = Pr
(

q(α)1 < Yα < q(α)2

)
=

Pr
[
−α ln

(
q(α)2

)
< −α ln(Yα) < −α ln

(
q(α)1

)]
= Pr[−α ln

(
q(α)1

)
− α ln(rα) < −α ln(Yα) <

−α ln
(

q(α)1

)
] < Pr

[
−α ln

(
q(α)1

)
− α ln(R) < −α ln(Yα) < −α ln

(
q(α)1

)]
→ Pr[−α ln

(
q(α)1

)
< −α ln(Yα) < −α ln

(
q(α)1

)
] = 0 (α→ 0+), a contradiction. �

Corollary A3. lim
α→0+

TG(α)(P1, P2, · · · , Pn) = lim
α→0+

F−1
G(α)

(
1− P(1)

)
, where P(1) is the smallest

value of P1, P2, · · · , Pn.

Proof of Corollary A3. This is a direct consequence of Lemma A2. �

Proof of Theorem 1. Now, we prove Theorem 1:

(i) Denote Q1 = lim
α→0+

F−1
G(α)

(
1− P(1)

)
. From Lemma A1 and Corollary A3, PTG(0)

=

lim
α→0+

Pr(Gamma(nα, 1) > Q1) = lim
α→0+

Pr(Ynα > Q1) = lim
α→0+

Pr(−nα ln(Ynα) <

−nα ln(Q1)) = 1− exp[nα ln(Q1)]. But, exp[nα ln(Q1)] = exp
[
ln
(
Qnα

1
)]

= Qnα
1 =(

Qα
1
)n

= {exp[α ln(Q1)]}n =

[
lim

α→0+
Pr(−α ln(Yα) > α ln(Q1))

]n
= [ lim

α→0+
Pr(Yα <

Q1)]
n =

(
1− P(1)

)n
. Hence, PTG(0)

= 1−
(

1− P(1)
)n

= PTp , and TG(0) ≡ Tp.

(ii) From the property of gamma distribution, we know that Gamma(v/2, 2) = χ2
ν, a

chi-square distribution with ν df. However, the sum of n iid χ2
ν is χ2

nν. Hence, let
ν = 1 or α = 0.5, TG(0.5,2) ≡ χ2

n. However, from Proposition 2, TG(0.5,2) ≡ TG(0.5);
therefore, TG(0.5) ≡ χ2

n.
(iii) As in (ii), when ν = 2 and α = 1, Gamma(1, 2) = χ2

2; therefore, TG(1) ≡ TG(1,2) ≡ Fp.
(iv) From the property of gamma distribution, we know that Gamma(α, β)→ N

(
α/β, α/β2)

( α→ ∞) . Hence, for β = 1, Gamma(α, 1)→ N(α, α) , and Gamma(na, 1)→ N(nα, nα) .
If we define T′G(α) =

(
TG(α) − na

)
/
√

na = ∑n
i=1

[
F−1

G(α)
(1− Pi)− a

]
/
√

na, then T′G(α)

→ N(0, 1) ( α→ ∞) . On the other hand, since T′G(α) is a linear transformation of TG(α),
it is easy to show that TG(α) ≡ T′G(α) for any α > 0. Hence, TG(∞) ≡ lim

α→∞
T′G(α) = Zp.

�

Proof of Theorem 2 .
First, we show that fα,c(p) = (1− c)α exp

[
cF−1

G(α)
(1− p)

]
is a PDF. Let y = F−1

G(α)
(1− x),

then x = 1 − FG(α)(y) =
∫ ∞

y tα−1 exp(−t)/Γ(α)dt, and dx = −yα−1 exp(−y)/Γ(α)dy.

Hence,
∫ 1

0 fX(x)dx =
∫ 1

0 (1− c)α exp
[
cF−1

G(α)
(1− x)

]
dx =

∫ ∞
0 (1− c)α exp(cy)yα−1 exp(−y)

/Γ(α)dy = 1 as(1− c)α exp(cy)yα−1 exp(−y)/Γ(α) = (1− c)αyα−1 exp[−(1− c)y]/Γ(α),
the PDF of Gamma(α, 1− c). However, under the global null hypothesis, Pi ∼ U(0, 1), the
log-likelihood ratio under the global null and alternative hypotheses is ∑n

i=1 ln( fα,c(Pi)) =
a(α) + c ∑n

i=1 F−1
G(α)

(1− Pi), where a(α) = −nα ln(1− c), a constant. Therefore, by the
Neyman–Pearson lemma [43], TG(α) is UMP under the specified condition. �

Proof of Theorem 3. Since the unconstrained MLE for c is ĉα0 = 1−nα0/ ∑n
i=1 F−1

G(α0)
(1− pi),

when ĉα0 ≤ 0, TCLRT,α0 = 0. On the other hand, when ĉα0 > 0, i.e., TG(α0)
= ∑n

i=1 F−1
G(α0)

(1− pi)

> nα0, ĉCLRT,α0 = ĉα0 , and TCLRT,α0 = 2nα0ln
(

nα0/ ∑n
i=1 F−1

G(α0)
(1− pi)

)
+ 2 ∑n

i=1 F−1
G(α0)

(1−
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pi) − 2nα0 = 2nα0ln
(

nα0/TG(α0)

)
+ 2TG(α0)

− 2nα0 = 2nα0ln(nα0) − 2nα0ln
(

TG(α0)

)
+

2TG(α0)
− 2nα0. For any t > 0, let A =

{
t
∣∣t < TCLRT,α0

}
; it is easy to show that A ={

t
∣∣t < TCLRT,α0

}
=
{

t
∣∣∣2nα0ln(nα0)− 2nα0ln

(
TG(α0)

)
+ 2TG(α0)

− 2nα0 > t
}
={

t
∣∣∣2(TG(α0)

− nα0

)
> t + 2nα0ln

(
TG(α0)

/nα0

)}
. Let f (x) = x − nα0ln(x)− nα0 − t/2 +

nα0 ln(nα0), then for x > nα0, f ′(x) = 1− nα0/x > 0, and f (x) is an increasing function
of x, but lim

x→(nα0)+
f (x) = −t/2 < 0, and f (knα0) = (k− 1− ln(k))nα0 − t/2 > 0 for large

k. Hence, there must exist a unique x0 ∈ (nα0, ∞) such that f (x0) = 0. Accordingly,
Pr
[
TCLRT,α0 > t

]
= Pr

[
TCLRT,α0 > t, ĉCLRT,α0 > 0

]
= Pr[2nα0ln(nα0)− 2nα0ln

(
TG(α0)

)
+

2TG(α0)
− 2nα0 > t and TG(α0)

> nα0]= Pr[TG(α0)
− nα0ln

(
TG(α0)

)
− nα0 − t/2+

nα0ln(nα0) > 0, TG(α0)
> nα0] = Pr[TG(α0)

> t0], where t0 is the root of f (x), i.e., f (t0) = 0.
This shows that when TG(α0)

> nα0,TCLRT,α0 and TG(α0)
have the same p-value. On the

other hand, when TG(α0)
≤ nα0, TCLRT,α0 = 0; hence, Pr

[
TCLRT,α0 = 0

]
= Pr

[
TG(α0)

< nα0

]
.

�
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