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Abstract: Connectivity parameters have an important role in the study of communication networks.
Wiener index is such a parameter with several applications in networking, facility location, cryptology,
chemistry, and molecular biology, etc. In this paper, we show two notes related to the Wiener index
of a fuzzy graph. First, we argue that Theorem 3.10 in the paper “Wiener index of a fuzzy graph and
application to illegal immigration networks, Fuzzy Sets and Syst. 384 (2020) 132–147” is not correct.
We give a correct statement of Theorem 3.10. Second, by using a new operator on matrix, we propose
a simple and polynomial-time algorithm to compute the Wiener index of a fuzzy graph.
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1. Introduction

In many real world problems we get only partial information about the problem, and
the vagueness in the description and uncertainty has led to the growth of fuzzy graph
theory. A mathematical framework to describe uncertainty in real life situation was first
suggested by A.L. Zadeh [1]. Rosenfeld [2] introduced the notion of fuzzy graph and several
fuzzy analogs of graph theoretic concepts such as paths, cycles and connectedness. Wiener
index of graphs has been studied in the field of mathematics, chemistry, and molecular
biology [3–5].

There are many situations which are modeled by a connected fuzzy graph. Wiener
index is such an accepted index used in various fields like communication networks, facility
location, crytopology, medicine, etcs. Let us start with a basic definition and concepts of
fuzzy graphs; most of them can be found in [6].

Let S be a set. A fuzzy graph G = (σ, µ) is a pair of membership functions on fuzzy
sets σ : S→ [0, 1] and µ : S× S→ [0, 1] such that µ(u, v) ≤ σ(u) ∧ σ(v). Here ∧ represents
the minimum. Throughout the paper, we assume that S is finite and nonempty, µ is
reflexive and symmetric. We denote the underlying crisp graph by G∗ = (σ∗, µ∗) where
σ∗ = {u ∈ V : σ(u) > 0} and µ∗ = {(u, v) ∈ V ×V : µ(u, v) > 0}. We denote an element
(x, y) of µ∗ by xy and call it an edge of G. Elements of σ∗ are called vertices of the fuzzy graph
G. A fuzzy graph H = (τ, ν) is called a partial fuzzy subgraph of G = (σ, µ) if τ(v) = σ(v)
for all vs. ∈ τ∗ and ν(uv) = µ(uv) for all uv ∈ ν∗. Note that G − uv denotes the fuzzy
subgraph of G in which µ(uv) = 0 and G− u is used for the fuzzy subgraph of G in which
σ(u) = 0.

In a fuzzy graph G = (σ, µ), a path P of length n is a sequence of distinct vertices
u0, u1, . . . , un such that µ(ui−1, ui) > 0, i = 1, 2, . . . , n and the degree of membership of a
weakest edge is defined to be the strength of the path P. A path P is called a cycle if u0 = un.

For any two vertices x and y, let d(x, y) denotes the length of the shortest path between
x and y. The diameter of G, denoted by diam(G), is the maximum distance d(x, y) for any
two vertices x, y in G. The strength of connectedness between two vertices x and y is defined

Appl. Sci. 2022, 12, 304. https://doi.org/10.3390/app12010304 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010304
https://doi.org/10.3390/app12010304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12010304
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010304?type=check_update&version=1


Appl. Sci. 2022, 12, 304 2 of 6

as the maximum of the strengths of all paths between x and y and is denoted by ConnG(x, y).
If the strength of a path P is equal to ConnG(x, y), then a path P is called a strongest x− y
path. A fuzzy graph G = (σ, µ) is connected if for every u, v ∈ σ∗, ConnG(u, v) > 0. An
edge xy of a fuzzy graph G = (σ, µ) is called α-strong if µ(xy) > ConnG−xy(x, y). An edge
xy of a fuzzy graph G = (σ, µ) is called β-strong if µ(xy) = ConnG−xy(x, y). An edge xy of
a fuzzy graph G = (σ, µ) is called δ-strong if µ(xy) < ConnG−xy(x, y). An edge is called
strong if it is either α-strong or β-strong. A path P is called a strong path if all of its edges
are strong. Let G = (σ, µ) be a fuzzy graph and x, y ∈ σ∗. A strong path P from x to y
is called geodesic if there is no shorter strong path from x to y. The weight of a geodesic
is the sum of membership values of all edges in the geodesic. Let G = (σ, µ) be a fuzzy
graph. The Wiener index (WI) of G is defined by WI(G) = ∑u,v∈σ∗ σ(u)σ(v)dS(u, v), where
dS(u, v) is the minimum sum of weights of geodesic from u to v. In this paper, it is assumed
that σ(u) = 1 for u ∈ σ∗ in all examples of fuzzy graphs G = (σ, µ), for convenience. The
outline of this paper is organized as follows. In Section 2, it is shown that Theorem 3.10 in
the paper “Wiener index of a fuzzy graph and application to illegal immigration networks,
Fuzzy Sets and Syst. 384 (2020) 132–147” is not correct. A corrected statement of Theorem
3.10 is given. In Section 3, we present a simple algorithm to compute the wiener index of a
fuzzy graph by using a new operator on matrix.

2. Counterexamples and Revision

At first, we recall the Theorem 3.10 of [7] and give two counterexamples to it.

Theorem 1 (Theorem 3.10 of [7]). Let G = (σ, µ) be a fuzzy graph. For s, t ∈ σ∗, let Ps,t denote
the path which has the minimum sum of membership values among all shortest strong paths between
s and t. Let uv ∈ µ∗. If uv is an α or β-strong edge and uv is not a part of any Ps,t for s, t ∈ σ∗

with {s, t} 6= {u, v}, then WI(G− uv) 6= WI(G).

Theorem 3.10 of [7] is not correct as shown in the following two counterexamples. In
the following two graphs, uv is an α-strong edge and β-strong edge, respectively.

Example 1. Let G = (σ, µ) be the fuzzy graph shown in Figure 1 with vertex set {a, b, u, v} and
σ(x) = 1 for any x ∈ σ∗, µ(ua) = 0.1, µ(ab) = 0.4, µ(bv) = 0.1, µ(uv) = 0.6. Then each
edge of the graph G is strong. So dS(u, a) = 0.1, dS(a, b) = 0.4, dS(b, v) = 0.1, dS(u, v) = 0.6,
dS(u, b) = 0.5 and dS(a, v) = 0.5. Therefore, WI(G) = ∑x,y∈σ∗ σ(x)σ(y)dS(x, y) = 2.2. It is
obvious that uv is an α-strong edge and uv is not a part of any Ps,t for s, t ∈ σ∗ with {s, t} 6= {u, v}.
For any two vertices x, y ∈ σ∗, the number dG−uv

S (x, y) in G− uv is equal to the number dS(x, y)
in G. Then WI(G− uv) = ∑x,y∈σ∗ σ(x)σ(y)dG−uv

S (x, y) = 2.2 and WI(G− uv) = WI(G).

0.1

0.4

0.1

0.6
u v

a b

Figure 1. uv is an α-strong edge and WI(G) = WI(G− uv).

Example 2. Let G = (σ, µ) be the fuzzy graph shown in Figure 2 with vertex set {a, b, c, u, v}
and σ(x) = 1 for any x ∈ σ∗, µ(au) = µ(av) = 0.2, µ(uv) = µ(uc) = µ(bv) = µ(bc) = 0.4,
µ(ub) = 0.5, µ(cv) = 0.6. Then each edge of the graph G is strong. So dS(a, u) = dS(a, v) = 0.2,
dS(u, v) = dS(u, c) = dS(b, v) = dS(b, c) = 0.4, dS(u, b) = 0.5, dS(c, v) = 0.6, dS(a, b) = 0.6
and dS(a, c) = 0.6. Therefore, WI(G) = ∑x,y∈σ∗ σ(x)σ(y)dS(x, y) = 4.3. It is obvious that uv
is an β-strong edge and uv is not a part of any Ps,t for s, t ∈ σ∗ with {s, t} 6= {u, v}. For any two
vertices x, y ∈ σ∗, the number dG−uv

S (x, y) in G− uv is equal to the number dS(x, y) in G. So
WI(G− uv) = ∑x,y∈σ∗ σ(x)σ(y)dG−uv

S (x, y) = 4.3 and WI(G− uv) = WI(G).
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Figure 2. uv is an β-strong edge and WI(G) = WI(G− uv).

Therefore, Theorem 3. 10 of [7] can be changed as follows

Theorem 2. Let G = (σ, µ) be a fuzzy graph with each edge being strong. For s, t ∈ σ∗, let Ps,t
denote the path which has the minimum sum of membership values among all shortest strong paths
between s and t. Suppose that uv is not a part of any Ps,t for s, t ∈ σ∗ with {s, t} 6= {u, v}. Then

(1) If dG−uv
S (u, v) > µ(uv), then WI(G− uv) > WI(G).

(2) If dG−uv
S (u, v) = µ(uv), then WI(G− uv) = WI(G).

(3) If dG−uv
S (u, v) < µ(uv), then WI(G− uv) < WI(G).

Proof. Since each edge of G is strong, it follows that each edge in G− uv is also strong edge.
Owing to uv being a strong edge in G, dG

S (u, v) = µ(uv). Let {a, b} 6= {u, v}. Since uv is not
part of any Pa,b, dG−uv

S (a, b) = dG
S (a, b). Thus, WI(G−uv) = ∑x,y∈σ∗ σ(x)σ(y)dG−uv

S (x, y) =

∑x,y∈σ∗ σ(x)σ(y)dG
S (x, y) + (dG−uv

S (u, v) − dG
S (u, v)) = WI(G) + (dG−uv

S (u, v) − µ(uv)).
So, if dG−uv

S (u, v) > µ(uv), then WI(G − uv) > WI(G). If dG−uv
S (u, v) = µ(uv), then

WI(G− uv) = WI(G). If dG−uv
S (u, v) < µ(uv), then WI(G− uv) < WI(G).

Note: The condition “each edge is strong” is necessary in Theorem 2. For example, let
G = (σ, µ) be the fuzzy graph shown in Figure 3 with vertex set {a, b, c, u, v} and σ(x) = 1
for any x ∈ σ∗, µ(uv) = 0.95, µ(au) = µ(ab) = 0.3, µ(cu) = µ(cb) = 0.1, µ(vb) = 0.5,
µ(ub) = 0.4 . Then each edge of the graph G except edge ub is strong. Edge ub is a
weak edge in G. So dS(u, v) = 0.95, dS(a, u) = dS(a, b) = 0.3, dS(c, u) = dS(c, b) = 0.1,
dS(v, b) = 0.5, dS(a, c) = 0.4, dS(a, v) = 0.8, dS(u, b) = 0.2 and dS(c, v) = 0.6. Therefore,
WI(G) = ∑x,y∈σ∗ σ(x)σ(y)dS(x, y) = 4.25. It is obvious that uv is a strong edge and uv
is not a part of any Ps,t for s, t ∈ σ∗ with {s, t} 6= {u, v}. It is obvious that ub is a strong
edge in G− uv. Hence, dG−uv

S (u, v) = 0.9, dG−uv
S (a, u) = dG−uv

S (a, b) = 0.3, dG−uv
S (c, u) =

dG−uv
S (c, b) = 0.1, dG−uv

S (v, b) = 0.5, dG−uv
S (u, b) = 0.4, dG−uv

S (a, c) = 0.4, dG−uv
S (a, v) = 0.8

and dG−uv
S (c, v) = 0.6. So WI(G − uv) = ∑x,y∈σ∗ σ(x)σ(y)dG−uv

S (x, y) = 4.4. Though
dG−uv

S (u, v) < µ(uv), WI(G− uv) > WI(G).

u

a

b

c v

0.95

0.5

0.4

0.3

0.3

0.1

0.1

u

a

b

c v

0.5

0.4

0.3

0.3

0.1

0.1

G
G − u v

Figure 3. Fuzzy graphs G and G− uv.
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3. A New Algorithm to Compute Wiener Index of a Fuzzy Graph

Let G = (σ, µ) be a fuzzy graph with |σ∗| = n. The underlying graph of G = (σ, µ) is de-
noted by G∗ = (σ∗, µ∗), where σ∗ = {v|σ(v) > 0} and µ∗ = {uv|µ(uv) > 0}. M. Binu et al.
in [7] give an Algorithm 1 to compute Wiener index of a fuzzy graph as follows.

Algorithm 1: Computing Wiener index of a fuzzy graph [7].
Step 1. Identify strong edges of G using the algorithm in [8].
Step 2. Let G′ = (σ′, µ′) be the fuzzy subgraph of G obtained by deleting the

δ-edges of G.
Step 3. Use Dijkstra’s algorithm to identify geodesics between u and v in G

′∗, for
each u, v ∈ σ∗. Let P1, P2, · · · , Pk be the geodesics connecting u and v in G

′∗.
Step 4. Calculate Spi for i = 1, 2, · · · , k, where Spi is the sum of membership values
of edges of Pi.

Step 5. Let dS(u, v) = ∧{SPi |i = 1, 2, · · · , k}.
Step 6. Construct an n× n matrix D corresponding to G = (σ, µ) with the

following properties. Each row and column corresponds to vertices in σ∗. If row i
corresponds to vertex u and column j corresponds to vertex v, then dS(u, v) is the
entry corresponds to row i and column j.

Step 7. Calculate WI(G) = ∑u,v∈σ∗ σ(u)σ(v)dS(u, v).

The main drawback of the Algorithm 1 in [7] is as follows.
Dijkstra’s algorithm is only used to identify the length of the shortest path between u

and v in G
′∗. However, it can not be used to identify the number k of the shortest path. For

any big graph, the total number of the shortest path between u and v can be very high. In
such case, it is difficult to perform Step 3 and Step 4.

In order to give a simple algorithm to compute Wiener index of a fuzzy graph
G = (σ, µ), we define an operator ~ on matrix as follows. Let G′ = (σ′, µ′) be the fuzzy
subgraph of G obtained by deleting the δ-edges of G. Let A1 = (a1

ij)n×n be the adjacent

matrix of the fuzzy graph G′, where a1
ii = 0 and a1

ij = µ′(vivj) for i, j ∈ {1, 2, · · · , n}. Let

Ak = (ak
ij)n×n for i = 2, 3, · · · , diam(G

′∗), where diam(G
′∗) denote the diameter of G

′∗.

Define Ak+1 = Ak ~ A1 as follows:

ak+1
ij =


0, if i = j
ak

ij, if i 6= j and ak
ij 6= 0

min1≤t≤n{ak
it + a1

tj|ak
it 6= 0, a1

tj 6= 0}, if i 6= j and ak
ij = 0

Theorem 3. Let G′ = (σ′, µ′) be a fuzzy graph such that every edge is strong edge. If ak
ij = 0 and

ak+1
ij 6= 0, then d(vi, vj) = k + 1 and dS(vi, vj) = ak+1

ij , where d(vi, vj) is the distance between vi

and vj in G
′∗.

Proof. We will prove it by induction on the number k. Suppose k = 1. If a1
ij 6= 0, then

vivj ∈ µ
′

and a1
ij = µ′(vivj). Since every edge in G′ is strong edge, then d(vi, vj) = 1

and dS(vi, vj) = a1
ij. Suppose that a1

ij = 0 and a2
ij 6= 0. Then vivj /∈ µ

′
. Since a2

ij =

min1≤t≤n{a1
it + a1

tj|a1
it 6= 0, a1

tj 6= 0}, it follows that d(vi, vj) = 2 and dS(vi, vj) = a2
ij.

Assume that the theorem holds for k < l. Suppose that al
ij = 0 and al+1

ij 6= 0. By

definition, al+1
ij = min1≤t≤n{al

it + a1
tj|al

it 6= 0, a1
tj 6= 0}. For any al

it 6= 0 and a1
tj 6= 0, if

there exists l′ < l such that al′
it 6= 0, then al′+1

ij 6= 0. Since l′ + 1 ≤ l, it follows that

al
ij 6= 0, which is a contradiction. Hence for any l′ < l, al′

it = 0. That is al−1
it = 0 and

al
it 6= 0. By inductive hypotheses on k, it follows that d(vi, vt) = l and dS(vi, vt) = al

it. Since
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al+1
ij = min1≤t≤n{al

it + a1
tj|al

it 6= 0, a1
tj 6= 0}, there exists t such that al+1

ij = al
it + a1

tj, where

al
it 6= 0 and a1

tj 6= 0. Since d(vi, vt) = l and dS(vi, vt) = al
it, it follows that d(vi, vj) = l + 1

and dS(vi, vj) = al+1
ij .

Corollary 1. Let G′ = (σ′, µ′) be a fuzzy graph such that every edge is strong edge. Let diam(G
′∗)

be the diameter of G
′∗. Then for any two vertices vi, vj ∈ σ′, dS(vi, vj) = adiam(G

′∗)
ij , where

i, j ∈ {1, 2, · · · , n}.

Algorithm 2: A new algorithm to compute Wiener index of a fuzzy graph.
Step 1. Identify strong edges of G using the algorithm in [8].
Step 2. Let G

′
= (σ′, µ′) be the fuzzy subgraph of G obtained by deleting the

δ-edges of G.

Step 3. Calculate A1, A2, · · · , Adiam(G
′∗), where dS(vi, vj) = adiam(G

′∗)
ij for

1 ≤ i < j ≤ n.
Step 4. Calculate WI(G) = ∑u,v∈σ∗ σ(u)σ(v)dS(u, v).

Obviously, it is a polynomial-time algorithm. The correctness of the Algorithm 2
follows from Theorem 3 and Corollary 1. So we have the following:

Theorem 4. Let G = (σ, µ) be a fuzzy graph. Let A1, A2, · · · , Adiam(G
′∗) be defined as in the

Algorithm 2. Then WI(G) = ∑1≤i<j≤n σ(vi)σ(vj)adiam(G
′∗)

ij .

Proof. By Theorem 3, let G′ = (σ′, µ′) be a fuzzy graph such that every edge is strong edge.
If ak

ij = 0 and ak+1
ij 6= 0, then d(vi, vj) = k + 1 and dS(vi, vj) = ak+1

ij . By the definition on

the new operator on matrix, for any two vertices vi, vj ∈ σ′, dS(vi, vj) = adiam(G
′∗)

ij , where

i, j ∈ {1, 2, · · · , n}. So, WI(G) = ∑1≤i<j≤n σ(vi)σ(vj)adiam(G
′∗)

ij .

Example 3. Let G = (σ, µ) be the fuzzy graph shown in Figure 4 with vertex set {a, b, c, d, e}
and σ(v) = 1 for any v ∈ σ∗, µ(ab) = 0.2, µ(ac) = 0.2, µ(bc) = 0.3, µ(cd) = 0.4, µ(de) = 0.5.
Then each edge of the graph G is strong.

a

b

c d e

0.2

0.2

0.3

0.4 0.5

Figure 4. Fuzzy graph G with diam(G
′∗) = 3.

By using Algorithm 2 and diam(G
′∗) = 3, we can compute A1, A2, and A3 as follows:

A1 a b c d e
a 0 0.2 0.2 0 0
b 0.2 0 0.3 0 0
c 0.2 0.3 0 0.4 0
d 0 0 0.4 0 0.5
e 0 0 0 0.5 0

A2 a b c d e
a 0 0.2 0.2 0.6 0
b 0.2 0 0.3 0.7 0
c 0.2 0.3 0 0.4 0.9
d 0.6 0.7 0.4 0 0.5
e 0 0 0.9 0.5 0
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A3 a b c d e
a 0 0.2 0.2 0.6 1.1
b 0.2 0 0.3 0.7 1.2
c 0.2 0.3 0 0.4 0.9
d 0.6 0.7 0.4 0 0.5
e 1.1 1.2 0.9 0.5 0

As membership values of all vertices are one, the sum of all upper triangular entries
of A3 will be the WI of G. Hence WI(G) = 6.1.

4. Conclusions

In this work, we discussed two problems related to the Wiener index of a fuzzy graph.
First, we argued that Theorem 3.10 in the paper “Wiener index of a fuzzy graph and
application to illegal immigration networks, Fuzzy Sets and Syst. 384 (2020) 132–147” is
not correct. We gave a correct statement of Theorem 3.10, where a different result is given
for the same conditions. Second, by using a new operator on matrix, we proposed a simple
algorithm to compute the wiener index of a fuzzy graph. The main contribution of the
proposed algorithm is as follows: First, for a general fuzzy graph, computation of the
Wiener index by hand is possible. At the same time, the algorithm is easily realized in
the computer. Furthermore, the new algorithm is simpler and more efficient, which is a
polynomial-time algorithm. The property on Wiener index can help us to understand the
critical property on the communication network. That is, when some edge is deleted, the
Wiener index in communication network may be changed.
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