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Abstract: Understanding the behavior of suspended pollutants in the atmosphere has become of
paramount importance to determine air quality. For this purpose, a variety of simulation software
packages and a large number of algorithms have been used. Among these techniques, recurrent
deep neural networks (RNN) have been used lately. These are capable of learning to imitate the
chaotic behavior of a set of continuous data over time. In the present work, the results obtained from
implementing three different RNNs working with the same structure are compared. These RNNs are
long-short term memory network (LSTM), a recurrent gated unit (GRU), and the Elman network,
taking as a case study the records of particulate matter PM10 and PM2.5 from 2005 to 2019 of Mexico
City, obtained from the Red Automatica de Monitoreo Ambiental (RAMA) database. The results
were compared for these three topologies in execution time, root mean square error (RMSE), and
correlation coefficient (CC) metrics.

Keywords: recurrent neural network; long short-term memory (LSTM); gate recurrent unit (GRU);
Elman neural network; particle matter; air pollution; time series

1. Introduction

Air quality is one of the main factors determining ecological and human comfort
in a given geographic region [1–3]. For this, it has to be considered that air is made
up of a mixture of various gases, vapors, and dust, whose origins are both natural and
anthropogenic [4,5]. Growing industrial and residential development causes increases
to various atmospheric pollutants (anthropogenic materials), leading to a decrease in air
quality. The World Health Organization (WHO) conducts several studies periodically to
assess air pollution, among other interest factors. For instance, a 2016 study estimated that
more than 91% of the world population lives in places with poor air quality [6].

The behavior of air pollutants varies, as they are affected by various climatic and
geographic variables [1,7–9], in this paper we will limit ourselves to the study of particulate
matter (PM), which is a classification of pollutants that have begun to generate alerts in
growing and overpopulated cities because of their chaotic behavior, which is complicated to
model [6,10]. Algorithms such as artificial neural networks (ANN) have demonstrated their
versatility in modeling the chaotic behavior of several variables, allowing the prediction
of future behaviors with great adaptability to changes in the analysis data [11–18]. Each
algorithm exhibits different characteristics. Their responses may vary despite using the
same set of data.

1.1. Particulate Matter

Particulate matter is a sub-classification of air pollutants, which has different def-
initions depending on the aerospace diameter of the particles that compose it without
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considering their origin [4]. Based on this definition, the acronym PM refers to particulate
matter, and the numbers below correspond to the maximum size of each classification [4,19].
Table 1 shows the size corresponding to each classification and the attributed name.

Table 1. Classification of particulate matter [4].

Representation Particle Size Designation

PM10 ≤10 µm Coarse material
PM2.5 ≤2.5 µm Fine material

The main conditions caused by overexposure to PM include an aggravation of asthma
and increased mortality from cardiovascular disease [7], because these particles are de-
posited in the pulmonary alveoli [20–22]. The problem is to recognize an overexposure
to this type of pollutant. To do so, the first step is to generate a model that describes the
chaotic behavior of PM material that can adapt to changes, with the objective being that
future analysis can determine if conditions that exceed the established limits of pollutants
are present.

To monitor PM concentrations, other pollutants and weather conditions, Mexico has
several monitoring networks, including the Red Automatica de Monitoreo Ambiental
(RAMA) in Mexico City and its surrounding areas. This network generates a database of
continuous records with a determined frequency. The frequency of records is constant over
time and can be referred to as a time series [11,12].

1.2. Deep Neural Network

Deep neural networks are the main technological architecture used in deep learning
models. They are widely used in different fields of research, such as natural language
processing [23], visual and auditory pattern recognition [23,24], signal processing, and time
series processing, among others [15,25–28].

Among the current widely used algorithms for time-series modeling are recurrent neural
networks (RNN), which are a classification of artificial neural networks (ANN) [29–31]. ANNs
are a computational model inspired by biological neurons [28,32]. Warren McCulloch and
Walter Pitts in 1943 were pioneers in proposing the computer model of an artificial neuron,
called the logical threshold [31,33].

The first artificial neural networks were made up of simple neurons called perceptrons,
as proposed by Rosenblatt in 1959 [28,31], which operate as a binary classifier (0 or 1) by
means of Equation (1) [18].

f (x) =

{
1 i f w·x− u > 0
0 all other cases

(1)

where w is a vector of real weights, w·x is the scalar product, ans u is the threshold, which
represents the degree of inhibition of the neuron. The value of f (x) (0 or 1) is used to
classify x in a binary classification problem [28].

Later, different network topologies emerged, such as convolutional neural networks
(CNN) and recurrent neural networks (RNN), each with its own performance characteristics
and therefore with different resulting parameters [28,33]. Lately, RNN topologies have
been widely used to model chaotic behavior in time series [6,12,34].

The RNNs compared in this manuscript were the Elman network, the gate recurrent
unit (GRU), and long short-term memory (LSTM) networks. Sections 2–4 describe their
operation and main characteristics, respectively. Section 5 will explain the methodology
implemented. In Section 6 the results obtained will be shown and a brief discussion will be
conducted. Finally, the conclusions will be presented.
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2. Elman Recurrent Neural Network

Also known as simple recurrent networks (SRN) [13]. An Elman recurrent neural
networks is a two-layer backpropagation network, with feedback from the output of the
hidden layer to the input of the network (Figure 1), which allows the network to detect
time-varying patterns. The feedback contains a delay, allowing the network to retain values
from the previous step for use in the current step, thus allowing the network to learn
nonlinear patterns and predict their behavior. Equations (2) and (3) describe the basic
operation of the Elman network [13,27,35].
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ht = σh(Whxt + Uhht−1 + bh) (2)

yt = σy
(
Wyht + by

)
(3)

where

• xt: input vector.
• ht: hidden layer vector.
• yt: output vector.
• W, U and b: parameter matrices and vector.
• σh and σy: activation functions.

Elman networks with feedback can learn to recognize chaotic behaviors more quickly
than a simple neural network, but at the cost of increased processing time [35]. Despite
increasing the time required, it is smaller in comparison to that required by other recurrent
networks. Widely used in image recognition (signature recognition, element detection in
photographs), a time series in which the non-linearity of the problem is a secondary factor
and processing time are crucial to solving the problem [27].

3. LSTM Recurrent Neural Network

The LSTM recurrent neural network was proposed by Hochreiter and Schmidhuber
(1997) [6,37]. Conventional recurrent neural networks present problems in training because
backpropagated gradients tend to grow large or fade with time. After all, the gradient
depends not only on the present error but also on past errors. The accumulation of errors
causes difficulties in memorizing long-term dependencies [38].

These problems are solved by LSTM networks, which incorporate a series of steps to
decide which information is to be stored and which is to be erased with three gates that
control the way information flows in and out of the unit [37], as shown in Figure 2.
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• Input gates control when new information can enter the memory.
• Forget gates control when part of the information is forgotten, allowing the cell to

discriminate between important and excessive data, thus leaving room for new data.
• Output gates control when it is used as the result of the memories in the cell.

The cell has a weighting optimization mechanism based on the resulting network
output error, which controls each gate. This mechanism is usually implemented with the
training algorithm, BPTT. Equations (4)–(8) describe the basic functioning of LSTM neurons.

it = σ(W| |xi ∗ xt + Whi ∗ ht−1 + Wci ∗ Ct−1 + bi) (4)

ft = σ
(

W| |x f ∗ xt + Wh f ∗ ht−1 + Wc f ∗ Ct−1 + b f

)
(5)

ct = it ∗ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc) + ft ∗ ct−1 (6)

ot = σ(W| |x0 ∗ xt + Wh0 ∗ hh−1 + Wc0 ∗ Ct + b0) (7)

ht = ot ∗ tanh(ct) (8)

where

• xt: input vector.
• ft: forget gate activation vector.
• it: input/update gate activation vector.
• W: matrix weights implemented.
• ot: hidden state vector, better known as the LSTM unit output vector.

4. GRU Recurrent Neural Network

The GRU recurrent neural network was introduced in 2014 by Cho et al. [10,39]. A
GRU neuron is similar to the LSTM neuron but lacks an output gate, thus maintaining
two gates: an update gate and a reset gate, as seen in Figure 3 [10]. The update gate
indicates how much of the previous cell contents to keep, and the reset gate defines how to
incorporate the new input with the earlier cell contents [16,39].

Mainly used in polyphonic music modeling, speech modeling, and natural language
processing, the GRU performs best on sets with a small number of data [16].
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The Equations (9)–(12) describe the operation of a GRU neuron. Initializing t = 0 and
the output vector h0 = 0 [39].

zt = σg(Wxxt + Uzht−1 + bz) (9)

rt = σg(WrXt + Urht−1 + br) (10)

ĥt = φh(Whxt + Uh(rt ∗ ht−1) + bh) (11)

ht = (1− z| |t) ∗ ht−1 + zt ∗ ĥt (12)

where

• xt: input vector.
• ht: output vector.
• ĥt: candidate gate vector.
• rt: reset gate vector.
• zt: update gate vector.
• W, U, and b: parameter matrices and vector.

Activation functions
• σg: sigmoid function.
• φh: hyperbolic tangent.

5. Case Study

In this section, the geographical area studied, characteristics of the database used, and
the hardware characteristics for the analysis are explained.

5.1. Study Area

The study area corresponded to Mexico City and its surroundings (Mexico), where the
RAMA network is located. Figure 4 shows the location of the monitoring stations [40,41].
The stations whose records are analyzed in this work, which are: TLA, MER, and XAL,
belonging to the delegations of Tlalnepantla de Baz (State of Mexico), Venustiano Carranza
(CDMX), and Ecatepec de Morelos (Mexico State), respectively [40], are highlighted in red.
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5.2. PM Data

RAMA allows free access to its online database, which contains records of different
pollutants since 1986 to date. At present, RAMA has 24 monitoring stations whose records
have the following characteristics: they are daily records measured at a frequency of one
hour with positive numerical values and records of atypical data denoted with a −99,
which indicates that the sensor did not perform its correct operation for some external
reason (malfunction, maintenance, etc.) [41]. In this study, the records in the interval from
2005 to 2019 of the particulate matter PM10 and PM2.5 were processed, which means that
131,472 data points were processed per monitoring station.

The behavior of PM is highly nonlinear, as shown in Figure 5, which shows the
behavior of PM2.5 and PM10 for the first 16 days of January, 2019. Both records have a
discontinuous interval, which represents no accurate record at that precise moment, and
the missing values had to be proposed and interpolated to maintain continuity (section
highlighted in orange).
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5.3. Hardware and Software Used

The present work was performed on a personal computer with 6 GB RAM, an NVIDIA
GEFORCE GTX graphics card, and an Intel CORE I7 7th Gen processor, using PYTHON 3.6
software in conjunction with the KERAS library for deep networks.

6. Proposed Methods

The following steps were performed for the implementation of the three different deep
networks, using the methodology shown in Figure 6.
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6.1. Preprocessing Data

Initially, the stations with the least amount of outlier data (measurement losses, dis-
connection due to maintenance, failures in the complete system, etc. [41]) were identified
for both in the PM10 and PM2.5 records, so that the different recurrent neural network
architectures evaluated only the enormous amount of data representing the actual behavior
of particulate matter. Table 2 shows the stations with the smallest percentages of outlier
data between 2005 to 2019, which were located in the Venustiano Carranza (MER) and
Tlalnepantla de Baz (TLA) delegations, being a commercial zone and an industrial zone,
with 131,472 records existing from each station, respectively [40].



Appl. Sci. 2022, 12, 256 8 of 20

Table 2. Percentages of outliers.

PM10 PM2.5

MER TLA MER TLA
11.02% 13.41% 13.33% 14.73%

The next step was to replace these records with approximate values to have continuity
in the data. For this purpose, the multiple imputation by chained equations (MICE)
algorithm was implemented to identify the values before and after the outliers.

MICE makes a correlation between the valid data, performing an iterative series of
predictive models. Each variable specified in the data set was imputed in each iteration
using the other variables in the data set. In other words, the basic idea is to treat each vari-
able with missing values as the dependent variable in a regression, with some or all of the
remaining variables as predictors. This technique uses a procedure called predictive mean
matching (PMM) to generate random draws from the predictive distributions determined
by the fitted models. These lucky draws become the imputed values while maintaining
behavior similar to the valid data [42].

6.2. Construction Model

The three RNNs were evaluated with the same hyperparameter, architecture, training
data, and validation conditions. The architecture assessed consisted of three layers, an
input layer, a hidden layer, and an output layer, which are described below [6]. Each neuron
of the three different layers was configured depending on the evaluated network type,
which varied among Elman, GRU, and LSTM networks.

• Input layer: 50 neurons.
• Hidden layer: 250 neurons.
• Output Layer: 1 neuron.

In Table 3, the number of hyperparameters to vary during each test are listed. This
generated a total of 16 individual runs, which were each repeated ten times to determine
the variability of the results obtained for both the PM10 and PM2.5 particle sizes.

Table 3. Hiperparameters used in this contribution.

Hyperparameters Changes

Bach size 96,128,256,512
Optimizer Adam, Adamax

Number of epochs 12

Hyperparameters refer to the following features:

• Bach size. Defines the number of samples with which the network will work before
modifying its internal parameters. Since the data are continuous records in a time
series, it is necessary to divide them into sections. The network can recognize sections
of the behavior using a smaller amount of memory than would be required to process
all the records in a single iteration [43]. Another point of interest is the execution time,
which with a small batch size tends to increase [44]. It is important to find a balance
point between the execution time and the memory used; in other words, with a small
batch size, the execution time increases but the error obtained is lower when working
with a large batch size and consequently a shorter execution time. The batch size to
be used depends on the amount of data used during the training of the network, so
that the network recognizes sections continuously and is able to model the continuous
behavior to predict a future behavior [43–45]. Essentially, the batch size allows the
network to divide the problem into sections whose output variables are compared with
the expected variables, obtaining an error. From this error, the network is updated and
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the model is improved [46]. Most of the values used corresponded to the parameter of
2n, as shown in the literature [18]. In contrast, 96 corresponds to the multiple of 12 h
represented for the prediction of exceedances exposed in [6,10].

• Optimizer. Methods by which the algorithms are used to readjust their internal
parameters, thus improving the learning of the implemented algorithm. For the
present work, we used the optimizers Adam and Adamax, which are widely used
with time series data, because they employ a stochastic gradient method based on the
adaptive estimation of first and second-order moments [15,31,47].

• Number of epochs. Defines the number of times the algorithm will use the entire
training data set. During each epoch, each data sample will have the opportunity to
update the internal parameters of the network [31,44], in this case, 12 epochs were
used, since by using a more significant number of epochs, the network evaluation
error remains practically constant with only an occasional, slight variation [6].

6.3. Model Evaluation

With its purpose of evaluating the robustness of an algorithm applied in a system with
numerous variables that can affect or generate perturbations in the input parameters, the
total sensitivity model evaluation method was used. Todorov et al. evaluated different
stochastic approaches to evaluate the sensitivity indexes, allowing a comparison to be made
between the input parameters with respect to their influence on the points of interest [48].
To evaluate the results of the time series analysis we used the root mean square error
(RMSE) [49] and the correlation coefficient (CC) [50]. The variable “M” represents the
values of the records modeled by the recurrent networks (Elman, LSTM, and GRU), the
variable “R” is the actual records, and “n” the number of total data.

RMSE represents the difference between the data generated by the network and the
actual data [49].

RMSE =

√
1
n

n

∑
i=1

(Mi − Ri)
2 (13)

CC generates values between −1 and 1, being the closest to one in a positive way
means that the predicted values (M) are closer to the real values (R). In other words, if
the CC is equal to 1, there is no difference between the modeled data and the real data,
while if a negative value is obtained it means that a mirror behavior to the real data was
obtained [50]. Equation (14) shows the sections corresponding to the calculation.

CC =
SMR√
SMSR

(14)

where:

SMR =
∑n

i=1
(

Mi −M
)(

Ri − R
)

n− 1
(15)

SM =
∑n

i=1
(

Mi −M
)

n− 1
(16)

SR =
∑n

i=1
(

Ri − R
)

n− 1
(17)

7. Results and Discussion

Comparison between the behavior of the real data (solid blue line) and the neural
network model (solid orange line) for both PM10 and PM2.5 is shown in Figure 7. This
comparison was made using an LSTM neural network in 2019.
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Figure 7. Behavioral comparison of real data and data modeled by the LSTM network.

Furthermore, Figures 8 and 9 shows the repeatability and the range corresponding to
the CC, obtained with different batch sizes (96,128,256, and 512) and optimizers (Adam and
Adamax), using the three network architectures evaluated for the behavior of the PM2.5
and PM10 particulate material, respectively.

Figure 8 shows the variability of the CC when using the Adam optimizer (on the right)
and the Adamax optimizer (on the left) in PM2.5 particle modeling using the three network
architectures. Figure 8a,b correspond to the results of the Elman network architecture,
where the best results shown were using the Adamax optimizer, especially using a batch
size of 512, with an average CC of 0.757. In contrast, with the use of the Adam optimizer
for a batch size of 96, atypical data were generated, demonstrating that the network had
problems in cases where the behavior of the data was highly chaotic and that for this neural
network, it is better to use the Adamax optimizer.

In the case of the use of the GRU (Figure 8c,d) and LSTM (Figure 8e,f) networks, it
was observed that the behavior was very similar; batch sizes of 96 obtained the best results,
regardless of the optimizer used. Highlighting the following differences, in the use of the
GRU network, errors were observed when the batch sizes were greater than 256, regardless
of the optimizer implemented. The high repeatability obtained by the Adamax optimizer is
notable. In the case of the LSTM network in conjunction with the Adamax optimizer, for
tests with batch sizes of 128 and 256, it was observed that the results obtained are consistent
while maintaining high repeatability with values of approximately 0.76, compared to those
obtained with the use of the Adamax optimizer.
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Figure 8. CC variability obtained from modeling PM2.5 particle. (a) Elman neural network using
Adam optimizer. (b) Elman neural network using Adamax optimizer. (c) GRU neural network using
Adam optimizer. (d) GRU neural network using Adamax optimizer. (e) LSTM neural network using
Adam optimizer. (f) LSTM neural network using Adamax optimizer.

Figure 9 shows the results obtained from the CC of the PM10 particle modeling. The
implemented Elman architecture (Figure 9a,b) presented the least variation in the results
obtained with a batch size of 512 and the Adam optimizer, with a mean of 0.79. Curiously,
highest variation occurred when the Elman architecture was presented with the batch size
of 96. With the Adamax optimizer, there was a greater variation with batch sizes of 128 and
256. The best results came from the batch size of 96, followed by the batch size of 512 with
approximate means of 0.799 and 0.797, respectively. For Figure 9c,d, corresponding to the
GRU architecture, there was a decrease in the CC with an increase to the implemented batch
size, regardless of the optimizer, as is highlighted in the greater compactness of the results
with batch sizes of 256 and 512 with the Adam optimizer, with mean CC values of 0.795 and
0.794, respectively. In the case of the results with the Adamax optimizer a constant reduction
was shown as the batch size increased, maintaining a practically constant amplitude of
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0.002. Finally, items Figure 9e,f, corresponding to the LSTM architecture, show that with
batch sizes of 96, 128, and 256, they had average CC values of 0.79 for both optimizers, with
greater compactness observed with the Adam optimizer, while for a batch size of 512 there
was a considerable difference. In the LSTM architecture, the optimizer does not show a
representative change for this application.
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optimizer. (f) LSTM neural network using Adamax optimizer.

In Figures 10 and 11, the variability obtained from the RMSE is shown. These Figures
show greater variability in the results obtained compared to those obtained from the
correlation coefficient. In Figures 8a and 10a, it is observed that, for the Elman network,
there was an outlier point when using the Adam optimizer and a batch size of 96, indicating
that when the Elman network was modeling the behavior of PM2.5 many of the results were
below the expected performance. Conversely, with the rest of the batch sizes evaluated,
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high repeatability of approximately 9.9 was maintained with a 512 batch size, showing the
best possible results for this topology.
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Adam optimizer. (f) LSTM neural network using Adamax optimizer.
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Regarding the Adamax optimizer (Figures 10b and 11b) with batch sizes of 256 and 512
there was greater variability in the results obtained, and an average of 10.25 was maintained
in both cases. With batch sizes set to 96 and 128, a similar consistency was observed, with a
mean of approximately 9.6. In Figure 10c,d and Figure 11c,d, corresponding to the GRU
architecture, the results present a higher variability, which is more visible with batch sizes
of 256 and 512 for both optimizers. With batch sizes of 96 and 128, the Adamax optimizer
showed higher repeatability in the results than the Adam optimizer. Finally, Figure 10e,f
and Figure 11e,f correspond to the implementation of the LSTM topology. This network
presented different behavior between them; in the case of the application of the Adam
optimizer there was a greater variation in the results with batch size of 256, with an average
of 10.4, but this variation decreased with batch size of 512, obtaining an average of 9.9.

In contrast, with batch sizes of 128 and 96, LTSM topology presented a similar behavior.
In the case of the Adamax optimizer, a more significant variation is found with a batch
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size of 512 and an approximate mean of 10.7 was obtained. For batch sizes of 256 and 96,
similar results were obtained, highlighting an outlier for batch size of 256, with a standard
for both of them of 9.6. Finally, the 128 batch size showed a low variability of the results
obtained after the ten tests performed.

Figure 11a,b corresponds to the results of the Elman network implementation, which
produced a wide variety of possible results with the application of the Adam optimizer
with batch sizes of 96, while larger batch sizes showed higher repeatability and lower
variance. However, for all three cases, outliers are shown which seem larger than the
general average. Despite the high repetitiveness of the results, the Elman network seemed
to have complications modeling the behavior of the particulate matter PM10 using the Adam
optimizer, in the sense that the variance was higher. In the case of the Adamax optimizer
implementation, the results show a comparative improvement, with high repetitiveness
in the 512 batch size, with a mean of 16.6. In the case of smaller batch sizes, the mean
improved as the batch size was reduced, albeit with higher variability.

In Figure 11c,d the GRU network showed different behavior for each optimizer, in
which the optimizer Adam and the batch sizes of 96, 256, and 512 presented a variation
in their results of 0.6 in the RMSE. For the case of the batch size of 128, there was greater
repeatability of the results, but with two outliers, one at each side of the boxplot. Using the
Adamax optimizer for batch sizes of 96 and 128, there was a variation in the results of 0.2
with a mean of 16.3, in contrast to the variation present with higher batch sizes.

Finally, Figure 11e,f indicate that, in the LSTM network, the expected results was
observed. This means that the RMSE increased with larger batch sizes. Also, there is a
difference between using the Adam and the Adamax optimizers, especially in the results
of the batch size of 96. The Adam optimizer obtained results with a mean of 16.1, with a
single outlier. In the case of the batch size of 128, the same low variance was observed, but
without the outlier. With the Adamax optimizer, the results with greater repetitiveness were
presented with the batch size of 256, for the batch size of 128 it had a mean of 16.25 with a
variance of 0.5, which was greater than that present in the batch size of 96 maintaining a
similar mean.

Finally, Figures 12 and 13 show the behaviors of the execution times of each of the
tests in the modeling of PM2.5 and PM10 particulate matter, respectively. In both Figures,
the same behavior is observed regardless of the optimizer implemented. In other words,
the execution time was higher as the batch size decreased. This was especially so with a
batch size of 96, regardless of the topology implemented. However, the execution times
in the modeling of the PM2.5 particles were higher with the Adamax optimizer, with the
slowest execution being that of the LSTM network, followed by the GRU network. The
Elman network was the fastest.

For the PM10 particle modeling, Figure 13 indicates that the behavior recorded was
practically the same, regardless of the optimizer implemented. This is also consistent with
previous results in which the Elman network was the fastest topology, followed by the
GRU network and the LSTM network.

Summarizing the above, Tables 4 and 5 show the best combination of hyperparameters
for each network in the modeling of PM2.5 and PM10 particles, respectively, indicating the
average of the corresponding metrics obtained.

Table 4. Best hyperparameters for PM2.5 particle modeling.

Neural
Network Optimizer Batch Size CC RMSE Times(s)

Elman Adam 512 0.7573 9.6801 224.16
GRU Adamax 96 0.7588 9.6332 4421.91
LSTM Adamax 128 0.7575 9.6449 2056.16
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Figure 12. Processing time variability in modeling particle behavior PM2.5. (a) Elman neural network
using Adam optimizer. (b) Elman neural network using Adamax optimizer. (c) GRU neural network
using Adam optimizer. (d) GRU neural network using Adamax optimizer. (e) LSTM neural network
using Adam optimizer. (f) LSTM neural network using Adamax optimizer.

Table 5. Best hyperparameters for PM10 particle modeling.

Neural
Network Optimizer Batch Size CC RMSE Times(s)

Elman Adam 512 0.7977 16.6869 256.72
GRU Adam 96 0.8004 16.2505 2544.90
LSTM Adamax 128 0.7992 16.2492 2536.40
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8. Conclusions

Evaluating three different recurrent topologies implementing a similar base architec-
ture for PM2.5 and PM10 particle modeling it was observed that factors such as the optimizer
used affect the results obtained. Yhe Adam optimizer showed the best results in general.
At the same time, it showed greater variability in particular instances when implemented
in an Elman network, in contrast with the Adamax optimizer, which maintained a lower
variability in the results obtained, only having the problem of the execution time, which for
a batch size of 96 was close to double that of the Adam optimizer. Mentioning the batch size,
it was observed that the best results in terms of repeatability were those obtained with a
batch size of 256, and in terms of the final results, comparing the CC and RMSE shows that
the appropriate batch size was 128, both producing the mean values in this set of tests. The
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evaluated recurrent networks present great capacity for modeling the behavior of nonlinear
elements such as particulate matter. Through the CC, it was determined that there was no
over-training, the evaluated records from different stations maintaining repeatability in the
results demonstrates the robustness of the topologies presented. Furthermore, execution
times are an important factor to consider. Producing similar results obtained with different
execution times, helps one determine which RNN structure is appropriate for a defined task.
Considering the RMSE and CC results together with the execution time, the best network
topology implemented overall used GRU neurons, but if fast results are required, the Elman
network showed a higher processing capacity in a reduced time. Its only drawback is
the existence of problems in in determining chaotic patterns, which must be investigated
further, but if there is a large quantity of data and the execution time is not an issue to be
tackled, the LSTM network is a great option for maintaining a low variability and high
repeatability in the results obtained.
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