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Abstract: The test object is the grandstand of the Suzhou Industrial Park Stadium. First, the structure
was tested for dynamic characteristics, including natural frequency, mode test, and damping test.
Then, the structure was subjected to a human-induced vibration response test. Lastly, the finite-
element modeling of the structure was carried out, and the simulated and measured values were
compared. The test results of the dynamic characteristics of the structure are consistent with the
calculated values, and the finite-element modeling of the structure was accurate and reasonable. The
natural frequency of structural modal test areas 1 and 2 met the 3 Hz limit vibration specified by
JGJ/T 441-2019, and the second-order resonance frequency was still within the range of pedestrian
load frequency, which may still cause comfort problems. Test results show that the presence of people
increases the damping effect of the structure.

Keywords: damping ratio; dynamic characteristics test; structural mode; human-induced vibration
response

1. Introduction

With the improvement of building material performance and building technology,
the style of building structure is showing increasing diversity. Demand for building
functions has led to the development of building structures towards larger spans and
lighter weight [1–4]. This gives rise to comfort problems, especially for large buildings
(large ballrooms, high-speed railway stations, etc.), long pedestrian bridges, and buildings
with large overhanging spaces [5–12].

When considering the comfort problem caused by vertical vibration, the vertical
vibration mode of the structure should normally be calculated first. When there are
modes with frequencies below or slightly above 3 Hz, and the vertical mass participa-
tion coefficient of this model is large, the simplified or finite-element calculation of the
vibration acceleration response under the crowd load is carried out mainly at this fre-
quency. Modal analysis is the basis of comfort calculation. Multiple crowd load conditions
should be arranged at the large amplitude of the modal vibration pattern [13]. Conditions
should be designed according to the building use requirements and the actual possible
situations [14–17]. The comfort standard should be determined according to building
use requirements [8]. For cases that do not meet the comfort requirements, considera-
tion should be given to changing the structural arrangement to improve the structural
modal frequency or using multiple tuned mass dampers (MTMDs) for vibration damping
control [3,18–20]. For a structure using MTMD, the acceleration response calculation of
the structure before and after damping should be evaluated to reasonably select the tuned
mass damper (TMD) parameters and arrangement position.

Thus, this paper takes the overhanging grandstand of the Suzhou Industrial Park
stadium project as the research object, and the structural vibration response of this large
building cover under random crowd excitation load mode is analyzed. At the same time,
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by calculating the response at the maximal vibration response point of the grandstand
under a specific crowd load, the dynamic characteristics and vibration response of the
stadium were tested on-site. The total construction area of Suzhou Industrial Park Stadium
is 88,770 m2, the eave height of the building is 55 m, the east–west length of the main
grandstand is about 240 m, and the north–south length is about 210 m. Both sides are large
overhanging structures, with maximal overhang length of 10.4 m. After calculation, the
vertical self-oscillation frequency of the first few steps there was in the range of 3–4.5 Hz.
The excitation frequency generated by people walking was 1.5–3.2 Hz, so when intensive
activities of people occur in the stands, it is easy to cause structural resonance.

2. Method
2.1. Floor Dynamic Test

To obtain the dynamic characteristics of the building floor, it was tested. The main
test instruments include vibration pickup (941-B, designed by the Institute of Engineering
Mechanics, China Seismological Bureau; transmission bands were 0.25–80 Hz; measure-
ment resolution was 5 × 10−6 m/s2, weight was 0.875 kg, size was 55 × 55 × 72 mm;
Analyzer System-Instrument (AZ-308, Nanjing Analyzer Software Engineering Co., Ltd.,
Nanjing, China; laptop,China Hewlett-Packard Co., Ltd., Nanjing, China). The main testing
equipment is shown in Figure 1.

(a) (b)

Figure 1. Instrument installation schematic. (a) Vibration pickup; (b) Analyzer System Instrument.

2.2. Natural Frequency, Modal Shape, and Damping Ratio Test

The main methods of structural dynamic property testing are the artificial excitation
method and the environmental random vibration method. Among them, the structural
response signal to environmental excitation can be used to identify the modal parameters
of the system. This method requires the excitation signal to be white noise or an ergodic
process. The excitation signals of actual projects can generally meet the requirements. The
ambient random vibration method is one of the more used methods in building structure
testing, and its biggest advantage is that it does not require artificial excitation and is
especially suitable for measuring the dynamic characteristics of the whole structure [19,21].

The modal test uses dynamic testing under ambient vibration excitation. The test
network was established according to the site conditions and stadium shape and divided
into two regions. There are 66 measurement points in this test, of which each region
is set up with the reference point of measurement point 35. In this building, we only
considered the acceleration comfort in the vertical direction, so vertical acceleration was
used to identify the modal parameters. Dynamic characteristic parameters were tested
using the modal parameter identification method with ambient random excitation, and
the modal parameter identification was performed on the collected time-range data of the
vertical acceleration of the structure surface in each region. Figure 2 shows the two modal
test area measurement points.

Damping testing methods are divided into time- and frequency-domain methods,
such as the logarithmic-reduction, resonance-frequency, transfer-function, and half-power
bandwidth methods. Because the time-domain method has strict requirements on the
waveform, the traditional half-power bandwidth method in the frequency domain method
is the most commonly used in engineering [22–24]. In this test, the natural vibration
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frequency of the structure was determined according to the dynamic characteristic test,
and the force hammer was used to excite the 23 points. Then, the free attenuation signal in
single mode was extracted through the bandpass filter, and the damping ratio of the first
vertical vibration mode of the floor was lastly obtained by using the logarithmic-reduction
method.

(a) (b) (c)

Figure 2. Area and number of dynamic characteristics measurement points. (a) Modal test area;
(b) Area 1; (c) Area 2.

2.3. Crowd Load Response Test

According to the structural design requirements, a vibration test under crowd load
excitation was carried out on the stands. It should be ensured that there is no construction
in the test and surrounding areas, environmental interference is small and can be ignored,
and the actual test results are considered to be true and reliable. The vibration pickup
was fixed on the floor with strong glue (acrylic adhesive, Beijing Chemical Plant Co., Ltd.,
Beijing, China) to ensure testing accuracy and data reliability.

The measurement is carried out in different regions because of the large structure of
the Suzhou Industrial Park Stadium. During the test, the average weight of the walking
experimenter was close to 70 kg. To allow for the participants to have the same walking
frequency, many training sessions were carried out.

The test conditions are shown in Table 1, including jumping and walking frequencies.
The jumping experiment was performed with all the people jumping at the same time.
Normal walking was all 50 people walking in randomly in the structure. Quick stepping
was all 50 people walking at the same step in the same direction in the structure. Two sets
of tests were carried out for each working condition, and measuring points were arranged
into 6 measuring points (see Figure 3).

Table 1. Field test conditions.

Condition Number Condition Type Number of People Frequency (Hz) Test Time (s)

T1 Jumping 50 1.5 32
T2 Normal walking 50 1.5 32
T3 Normal walking 50 1.7 32
T4 Quick stepping 50 1.5 32
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(a)

(b) (c)

Figure 3. Distribution map of measuring points. (a) Area of crowd load response test; (b) Area 1;
(c) Area 2.

3. Results and Analysis
3.1. Natural Frequency, Modal Shape, and Damping Ratio Test Results

Figure 4 shows the shape of the first-order frequency mode of each measurement area
of the modal area. Figure 5 shows the measured power spectrum of the measuring points
in the modal area.

The actual measurement showed that the vertical mode of the two-mode measurement
area of the original structure of the grandstand was 3.75 and 3.95 Hz (Figure 5), which is
likely to cause second-order resonance within the frequency range of a crowd walking.
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(a) (b)

Figure 4. First-order vertical mode shape of (a) Area 1 and (b) Area 2.

(a)

(b)

Figure 5. Self-power spectrum of each modal measurement area. (a) Area 1; (b) Area 2.

Taking the average value as the damping of the structure, Table 2 shows that structural
damping is 1.22%.
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Table 2. Damping test results.

Measuring
Point

Damping
Ratio (%)

Measuring
Point

Damping
Ratio (%)

Measuring
Point

Damping
Ratio (%)

1 0.73 9 1.69 17 0.98
2 1.25 10 2.92 18 1.23
3 0.83 11 1.42 19 0.75
4 1.59 12 1.63 20 1.40
5 0.79 13 0.96 21 1.41
6 1.94 14 1.40 22 0.98
7 0.29 15 1.74 23 0.83
8 1.31 16 1.17 - -

average
value 1.22

3.2. Finite-Element Dynamic Characteristics Analysis

According to the drawings of the structure, SAP2000 was used to analyze the dynamic
characteristics of the structural floor before and after vibration reduction. Calculation results
were analyzed according to the three-dimensional spatial structure, and the structure was
modeled using SAP2000 as shown in Figure 6. The used material properties were according
to the specification [24], and the damping ratio of the structure was taken to be 1.22%
(see in Table 2). According to Technical Standard for Vibration Comfort of Building Floor
Structures JGJ/T441-2019 [13], the elastic modulus of reinforced concrete floor slabs was
enlarged by 1.2 times. The equivalent uniform live load of people in the stands was
1.5 kN/m2. When performing structural modal analysis, the quality source was selected:
1 time (constant load) + 1 time (live load at the stand) + 0.5 times (live load in other areas).
Since the grandstand structure was not fully completed during the test, there was no
decoration surface, no seats, walkways, and low live load. Therefore, the load conditions of
the original calculation model were modified according to actual conditions.

Figure 6. Structure model diagram.

Due to the complex structure, the natural vibration period of the structure is very
dense. The 100-order mode shape was selected to meet the requirements of the specification
for vertical mass parameter coefficients. Table 3 shows the period of the first 30 modes and
their participating masses. Because the problem that affected the comfort of the structure
was the cantilever part of the stand, by observing the shape of each order, the vibration
mode with the larger vertical vibration of the 4th order cantilever part is selected. The
natural frequencies were 3.056, 3.470, 3.747, and 4.215 Hz, and the local mode diagrams are
shown in Figure 7.
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Table 3. First 30 modes and their quality of participation.

Modal Number Frequency (Hz) Z-Direction Mode
Quality of Participation (%)

1 1.854 6.80 × 10−5

2 2.138 3.52 × 10−8

3 2.192 2.15 × 10−7

4 2.429 2.47 × 10−4

5 2.598 1.12 × 10−3

6 2.832 1.09 × 10−7

7 2.873 2.32 × 10−4

8 * 3.056 1.48 × 10−3

9 3.084 3.19 × 10−5

10 3.128 1.14 × 10−3

11 3.272 5.18 × 10−4

12 3.295 1.25 × 10−7

13 3.369 5.07 × 10−8

14 3.392 8.63 × 10−4

15 * 3.470 1.14 × 10−3

16 3.518 6.99 × 10−7

17 3.573 6.00 × 10−4

18 3.627 7.39 × 10−3

19 3.653 8.38 × 10−7

20 * 3.747 1.53 × 10−4

21 3.857 2.65 × 10−4

22 3.968 3.49 × 10−6

23 4.034 3.28 × 10−7

24 4.102 8.23 × 10−9

25 4.119 2.74 × 10−6

26 4.155 2.48 × 10−8

27 4.165 2.54 × 10−4

28 * 4.215 2.07 × 10−3

29 4.229 5.04 × 10−5

30 4.251 2.14 × 10−4

* this is the order and frequency of interest.

(a) (b)

(c) (d)

Figure 7. Local vibration diagram of cantilevered part: (a) 8th mode is 3.056 Hz; (b) 15th mode shape
is 3.470 Hz; (c) 20th mode is 3.747 Hz; (d) 28th mode is 4.215 Hz.

Finite element software showed: the 8th order was the overall vibration in the middle
part of measurement area 1; the 15th order was the wave-shaped local vibration at the outer



Appl. Sci. 2022, 12, 251 8 of 12

edge of measurement area 1; the 20th order was the wave-shaped local vibration at the
edge of measurement area 2; in the 28th order, wave-shaped vibration occurred in both
measurement areas.

We analyzed the modal assurance criteria (MAC) of the finite-element model-calculated
mode shape to check the similarity of each order mode shape. Table 4 and Figure 8, show that,
in the estimation of the mode vector of different modes, the MAC is close to 0, indicating
that the two are mutually independent and orthogonal, and the modal identification results
of each order were clear and reliable.

Table 4. Finite-element calculation of the MAC data of the first 4 main modes in the vertical direction.

Measurement Area MAC Value 8 15 20 28

Area 1 8 1 0.00059 0.06989 0
15 0.00059 1 0.22992 0.00009
20 0.06989 0.22992 1 0.1723
28 0 0.00009 0.1723 1
8 1 0.22701 0.00001 0.03524

Area 2 15 0.22701 1 0.00732 0.00737
20 0.00001 0.00732 1 0.01458
28 0.03524 0.00737 0.01458 1

(a) (b)

Figure 8. MAC of main vertical mode (a) Area 1; (b) Area 2.

3.3. Comparison and Analysis of Dynamic Characteristics

To examine the matching, the MAC value of actual measurement and finite element
calculation was solved.

Figure 9 and Table 5 show that the first-order matching finite-element calculation of
the measured modal in measurement area 1 is the 15th order, and the first-order matching
finite element calculation of the measured modal in measurement area 2 is the 20th order.
It can be considered that they correspond to each other.

(a) (b)

Figure 9. MAC histogram of measured mode and finite-element calculation mode. (a) Area 1;
(b) Area 2.
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Table 5. MAC of actual measurement and finite-element calculation.

Mode Order Calculated by Finite Element

Area 1 (MAC)
Measured mode order 8 15 20 28

1 0.0983 0.8005 0.0063 0.0145
2 0.0001 0.2196 0.0084 0.0124
3 0.0041 0.015 0.0042 0.0311

Area 2 (MAC)
Measured mode order 8 15 20 28

1 0.0436 0.2717 0.7947 0.0231
2 0.0004 0.0256 0.0064 0.0222
3 0.0324 0.001 0.0223 0.0065

Table 6 shows that the maximal error between the theoretical and measured values of
the mode shape was 7.47%, which was within a reasonable range. The measured model had
higher stiffness, which may have been caused by an error between the load of the actual
structure and the load of the calculation model, and there was a certain error between the
measured and theoretical vertical frequencies. Weak rigid support at the outer edge of the
cantilevered end of the structure had a certain impact on the dynamic characteristics of the
structure (see Figure 10).

Table 6. Comparison of calculated and measured values of first-order vertical frequency.

Measurement Area Frequency (Hz)
Finite-Element Calculation Measured Value Error

Area 1 3.470 3.750 7.47%
Area 2 3.747 3.950 5.14%

Figure 10. Radial tilt support around stands at the test site.

3.4. Crowd Load Response Test Results and Analysis

Table 7 shows the test results where the response was the greatest in each group of
tests. Figure 11 shows the acceleration time history curve at the maximal response point of
response measurement area 1 under the 1.5 Hz jump condition.

Test results showed that, under condition T1 (jumping), the maximal response was
374 mm/s2; under condition T2 (walking), the maximal response of the test area was
168 mm/s2; under condition T3 (walking), the maximal response of the testing area was
84.25 mm /s2; under condition T4 (quickstep), the maximal response of the test area was
279.15 mm/s2.
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Table 7. Statistical time-domain results of vertical vibration acceleration.

Condition Number Test Group
Peak Value Root Mean Peak Value Root Mean

(m/s2) Square (m/s2) Square
Area 1 Area 2

Group 1 0.33400 0.06352 0.25267 0.04582T1 Group 2 0.37400 0.05960 0.27900 0.06580
Group 1 0.11379 0.01550 0.16800 0.02510T2 Group 2 0.14000 0.02194 0.15900 0.02695
Group 1 0.08000 0.02051 0.05133 0.01448T3 Group 2 0.08425 0.01813 0.04800 0.01318
Group 1 0.27915 0.03956 0.16235 0.02357T4 Group 2 0.22733 0.03347 0.15112 0.02558

(a) (b)

Figure 11. Area 1, maximal response under condition T1. (a) Test group 1; (b) Test group 2.

The theoretical value was consistent with the actual measured value. The position
where the acceleration response is larger in the field test is similar to the maximum re-
sponse position in the finite element calculation result, and the test value was selected for
comparison with the finite-element calculation value of the response (Table 8).

Table 8. Theoretical value and maximal value of measured value of the response.

Area Number Conditions
Vertical Vibration Acceleration

Theoretical Value of Original Structure Measured Value Difference
(m/s2) (m/s2)

T1 0.42800 0.37400 14.44%
T2 0.13400 0.14000 −4.29%
T3 0.06020 0.07425 −18.92%Area 1

T4 0.31160 0.27915 11.62%
T1 0.26290 0.27900 −5.77%
T2 0.19710 0.16800 17.32%
T3 0.04230 0.05133 −17.59%Area 2

T4 0.19790 0.16235 21.90%

Table 8 shows that, except for the T3 working condition, the error between the theo-
retical and measured values was basically within ±15%. The possible reason is that the
response value itself under T3 working conditions was relatively small, which led to a large
percentage difference due to small changes. Considering the coupling effect of the crowd,
the theoretical value of the crowd load response obtained by the finite-element calculation
was reduced.

The reasons for the impact:

• auxiliary steel is not horizontal and has an inclination angle (Figure 10);
• bending stiffness has a certain effect on vibration;
• end circumferential wall also affects the vibration response of the structure.
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4. Conclusions

In this paper, the dynamic characteristics and crowd load response of the stadium
stands in Suzhou Industrial Park were tested on-site, combined with the numerical cal-
culation of the corresponding finite-element model, and the following conclusions were
obtained:

(1) The test results of the dynamic characteristics of the structure were consistent
with the calculated values, indicating that the finite-element modeling of the structure was
accurate and reasonable.

(2) The measured vertical fundamental frequency of structural modal test area 1 was
3.750 Hz, and that of modal test area 2 was 3.950 Hz, which was greater than the limit of
3 Hz given by Technical standard for human comfort of the floor vibration [7]. However, its
second-order resonance frequency was still within the range of pedestrian load frequency,
which may still cause vibration comfort problems. When the surface layer is added, the
decoration is completed, and when the stadium holds an event, the constant and live load
increase, especially the increase in the crowd load caused by the audience, and the vertical
vibration frequency of the floor structure decreases. Therefore, from the perspective of
vertical vibration frequency, the problem of vibration comfort of the structure should still
be paid attention.

(3) Comparing the structure finite-element model and the obtained acceleration re-
sponse peak with the test results showed that the presence of people increased the damping
effect of the structure.

(4) Experience and data references for the platform construction of large stadiums
should be provided in the future. In design and construction, the structural frequency
should be avoided as far as possible from the pedestrian step frequency and the double
frequency of the step frequency; the measured damping is small, and other methods should
be used to increase the structural damping.
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