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Abstract: In the present paper an improved formulation devoted to the optimal design problem of a
special moment resisting connection device for steel frames is proposed. This innovative device is
called a Limited Resistance Plastic Device (LRPD) and it has been recently proposed and patented by
some of the authors. It is thought to be preferably located at the extremes of the beam, connecting the
beam end cross section with the relevant column. The typical device is a steel element characterized
by symmetry with respect to three orthogonal barycentric planes and constituted by a sequence of
three portions with abrupt cross section changes. The main novelty of the present proposal is related
to the design of special geometry for the optimal device ensuring that it possesses a reduced resistance
with respect to the relevant connected beam element, is characterized by an equivalent bending
stiffness equal to the one of the connected beam elements and exhibits full plastic deformations
avoiding any local instability phenomenon. The optimal design is formulated as a minimum volume
one and is subjected to suitable constraints on the geometry of the device and on its elastic and plastic
behavior. The optimization problem is a strongly non-linear programming one and it is solved by
adopting an interior-point algorithm that is available in the MATLAB Optimization Toolbox. The
numerical simulations are devoted to the most used standard steel profiles (IPE, HE) and the results
prove the great reliability of the proposed device. In addition, the relevant elastic and plastic domains
of the designed devices are defined, and the expected behavior of the device is verified by appropriate
3D finite element models in the ABAQUS environment.

Keywords: moment resisting connections; full plastic deformations; minimum volume design; finite
element models; steel design

1. Introduction

In many countries, especially in Europe, both civil and industrial construction activity
is mainly devoted to the maintenance and restoration of existing constructions. This trend
is more intense in those countries rich in ancient and monumental buildings which often
require adjustment interventions due to functional recovery and/or to structural security
reasons related to standard upgrades.

In this framework the use of steel structures becomes fundamental, due to their strength,
lightness, dimensional variety and adaptability to uncommon shapes which make them as
ideal solution to perform the requested mechanical, functional and aesthetic purposes.

Clearly, a fundamental aspect is related to the possibility of managing the interference
of steel structures with existing ones in the broadest way; that is, to design structures with
both optimal strength and stiffness characteristics. In order to obtain the latter optimal
characteristics, it is essential that they can be chosen independently of each other while,
usually, such independent choice cannot be performed.

In the present paper reference will be made to the most usual steel structures, i.e., the
moment resisting frames (MRFs). From a mechanical point of view and specifically based
on the seismic resistance model, MRFs are characterized by the onset of plastic hinges at
the ends of beams and column bases resulting in an energy dissipation capacity greater
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than that available in shear wall systems and braced frames. Many issues are related to
the formation of plastic hinges in MRF and to the linked structural consequences; for a
discussion on these issues see, e.g., [1–4].

A very important aspect to be considered in MRFs is the problem of connection
performance and many papers address this topic [5–10] starting from the extensive damages
to the beam-to-column connections of the MRFs occurred during the 1994 Northridge and
1995 Kobe earthquakes. Basically, these studies resulted in the development of pre-qualified
connections for use in seismic areas [11], which includes the reduced beam section (RBS)
connections. In fact, the connection between beam and column must ensure the occurring
of plastic curvature in the beam extreme, preventing local buckling phenomena and brittle
rupture of the connection itself. A very large bibliography is available in literature regarding
the connections between beams and columns and related issues, see, e.g., [12–20].

The plastic curvature capacity of the involved cross section preventing local buckling
phenomena can be evaluated making reference to the cross-section classification reported
in the international standards. The role of cross section classification is to identify the extent
to which the resistance and rotation capacity of cross sections is limited by its local buckling
resistance. To properly define such a limit, the international standards [21–24] define four
different classes. Class 1: ductile cross-sections are those possessing rotation capacity able
to develop plastic hinges and wide plastic rotation capacity; Class 2: compact cross-sections
are those that can reach their plastic moment resistance but show limited plastic rotation
capacity; Class 3: semi-compact cross-sections are those that can reach just their limit elastic
moment resistance without any plastic rotation; Class 4: slender cross-sections are those
in which the buckling phenomena strongly influence the limit elastic moment resistance
value. Consequently, plastic analysis can be conducted only for structural members whose
cross-sections belong to Class 1 or 2.

Furthermore, in order to avoid undesired brittle rupture of the beam-column con-
nection, suitable reduced beam section technology can be utilized [12–20]. Unfortunately,
such intervention causes a related reduction of the stiffness of the involved beam element,
contrary to the previously fixed requirement, i.e., to design structures with both optimal
strength and stiffness characteristics.

To overcome these disadvantages, in the recent past, the authors proposed a new
connection device realizing a special moment resisting connection for steel elements called
the Limited Resistance Plastic Device (LRPD) [25–31]. The LRPD satisfies the requirements,
ensuring the independence between strength and stiffness and, as a consequence, allowing
an optimal mechanical performance for the structure that is suitably equipped. In the refer-
enced papers, different versions of the connection have been presented, starting from the
first device representing a simple rigid perfectly plastic hinge described by a concentrated
plasticity model up to the most recent advanced version modeled as a distributed plasticity
device. In the same studies no constraints have been imposed on the class classification of
the device cross sections and reference has been made to the plastic behavior described by
approximate function, as reported in the most common international standards.

The aim of the present paper is to propose an improvement of the LRPD that is
related to its new geometry, to the new design problem formulation and to the more
rigorous description of its real plastic behavior. In particular, the development of full
plastic curvature in the device cross sections, avoiding any local buckling phenomenon, is
obtained by imposing in the new improved optimal design problem that the characteristic
cross section of the device appertains to Class 1. For the optimal device characterized by
improved geometry, the plastic behavior has been described by referring to the real domains
represented by nonlinear functions of axial force and bending moment. Furthermore, a
wide FEM of numerical investigations to check the ability of the LRPD of developing plastic
deformations is performed, confirming the good consistency of the theoretical position of
the problem and the wide reliability of the device.



Appl. Sci. 2022, 12, 202 3 of 21

2. Geometrical and Mechanical Characteristics of LRPD

The device studied in the present paper is an evolution of that reported in other
foregoing papers (see, e.g., [25–31]) and consists of a steel element with suitably assigned
features aimed to substitute a portion of a given standard I-shaped steel profile. In Figure 1,
the typical standard steel profile is sketched and its geometry is reported in Table 1.
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Figure 1. Typical standard I-shaped steel profile.

Table 1. Geometrical characteristics of the standard steel profile.

Adopted Symbol Description

bp flange width
hp total height

tw,p web thickness
t f ,p flange thickness

In Figure 2, a scheme of the device is reported. As it is possible to observe, the overall
device is assumed to be inscribed in a parallelepiped of dimensions `× bp × hp.

The device is made up by three different parts: two outers (equal each other) and one
inner. From a geometrical point of view, the device possesses the following geometrical
features: (i) it is characterized by symmetry with respect to three orthogonal barycentric
planes; (ii) the thickness of flanges of the two outer portions is greater than that of the
inner portion; (iii) the flanges of all portions possess a unique common medium plane;
(iv) the thickness of web is the same in all the portions. It is important to emphasize that
the actual version is an evolution of previous models (see, e.g., [31]) and, in particular, the
main novelties are: (a) the flange width bi of the inner part is assumed as different with
respect to that of the outer portions; (b) the thickness of web is the same in all the portions.

For a complete geometrical representation of the device, in Figure 3 the sketch of both
the outer and inner portions, as well as a lateral view of the device, are reported while in
Table 2 the adopted symbols are described.
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It is worth noting that the imposed overall geometry for the device implies that:
bo = bp, ho = hp (see Figure 2). In addition, as a further novelty, in the present new
device the web thickness is constant for all the portions and equal to one of the original
standard steel I-shaped profiles: i.e., tw,o = tw,i = tw,p. From a mechanical point of view,
the connection with the structural elements is generally thought of as a bolted plate and
back-plate system, hereafter assumed as a perfect rigid joint, as reported in Figure 4, where
bolts are not shown for the sake of simplicity. The analysis of the mechanical behavior of
this connection, together with its influence of the overall behavior of the device, is not faced
in the present paper and it will be treated in future developments.
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Table 2. Geometrical characteristics of the device.

Adopted Symbol Description

Outer portions
bo flange width
ho total height

tw,o web thickness
t f ,o flange thickness
`o length

Inner portion
bi flange width
hi total height

tw,i web thickness
t f ,i flange thickness
`i length

Overall device
` total length
s welding size
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Figure 4. 3D view of the device and of the connection with the beam.

Among the geometrical characteristics of the device reported above, the welding size
s has been introduced (Figure 3). In fact, from a technological point of view, the device is
thought of as being obtained by the welding of steel plates with suitable thicknesses (for
further details see [31]).

For the developments of the paper, it is necessary to define the cross-section area
A, the moment of inertia I, the elastic resistance modulus Wel and the plastic resistance
modulus Wpl , respectively, for each portion of the device. These quantities can be easily
derived from basic geometry definitions and are reported in detail in [30,31].

Plane frames analysis will be adopted in this paper; therefore, the constitutive elements
are generally subjected to an axial force, shear force and bending moment. By neglecting the
influence of the shear force, as for flexural systems, the limit elastic and plastic behavior of
the device will be described, making reference just to the axial force and bending moment.

Respecting the contents of the most recent international structural standards (see,
e.g., [21–24]), referring as previously indicated just to I-shaped Class 1 cross-sections,
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the boundary of the elastic domain (see Figure 5) is simply described by the following
dimensionless conditions: ∣∣∣∣ N

Nel
+

M
Mel

∣∣∣∣ = 1,
∣∣∣∣ N

Nel
− M

Mel

∣∣∣∣ = 1 (1)

where Nel = A fy is the elastic limit value of the axial force (coincident with the plastic limit
one) and Mel = Wel fy the elastic limit value of the bending moment, with fy the material
yield stress.
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The boundary of the plastic domain, always related to I-shaped Class 1 cross-sections
is reported in Figure 6 and, always according with the referenced international structural
standards, is described by the following dimensionless equations:∣∣∣∣∣ N

Npl
+ (1− 0.5a)

M
Mpl

∣∣∣∣∣ = 1,

∣∣∣∣∣ N
Npl
− (1− 0.5a)

M
Mpl

∣∣∣∣∣ = 1 (2)

∣∣∣∣∣ M
Mpl

∣∣∣∣∣ = 1 (3)

where Npl = A fy is the plastic limit value of the axial force, Mpl = Wpl fy is the plastic
limit value of the bending moment and where the parameter a is defined as follows:

a =
(

A− 2bpt f ,p

)
/A ≤ 0.5 (4)
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It is worth noting that the size of the plateau of the domain in Figure 6 is 2n, and,
utilizing Equations (2) and (3), it can be deduced.

n =
N

Npl
= 0.5a (5)

Due to the imposed constraint on parameter a, it always results n = N/Npl ≤ 0.25,
according to the referenced standards.

The dimensionless yield domain sketched in Figure 6, and also reported in the inter-
national standards, represents a good reference from a practical point of view even if the
outline of such a domain is linearized and approximated. The real yield domain boundary
is nonlinear and it can be drawn, as described in the following.

As it can be observed by referring to Figure 7, where the typical yield domain of an
I-shaped cross section is sketched in the N, M plane, its boundary is symmetric with respect
to the coordinate axes and, as a consequence, for its analytical determination reference can
be made just to the first quarter of the plane.
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2
− 𝑡𝑓,𝑝 − 𝑧𝑛 − 𝑟) + 2 𝑟3 𝑠𝑒𝑛

𝜗
2

3
2

𝑟2(𝜗 − 𝑠𝑒𝑛 𝜗)
+

ℎ𝑝

2
− 𝑡𝑓,𝑝 − 𝑧𝑛 − 𝑟] (11) 

for 
ℎ𝑝

2
− 𝑡𝑓,𝑝 ≤ 𝑧𝑛 ≤  

ℎ𝑝

2
  (Figure 8c) 

𝑁 = 𝑓𝑦 [𝐴 − 2𝑏𝑝 (
ℎ𝑝

2
− 𝑧𝑛)] ; (12) 

𝑀 = 𝑏𝑝𝑓𝑦 (
ℎ𝑝

2

4
− 𝑧𝑛

2) (13) 

Figure 8. Standard profile geometry for yield domain: (a) neutral axis crossing the web; (b) neutral
axis crossing the connection between web and flange; (c) neutral axis crossing the flange.
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for 0 ≤ zN ≤
hp
2 − t f ,p − r (Figure 8a)

N = 2 tw,p zn fy;

M = Mpl − tw,p z2
n fy

(6)

for hp
2 − t f ,p − r ≤ zn ≤

hp
2 − t f ,p (Figure 8b)

N = fy

[
A− 2bpt f ,p − 2tw,p

(
hp
2 − t f ,p − zn

)
− 4F1

]
M = fy

{
bpt f ,p

(
hp − t f ,p

)
+ tw,p

[(
hp
2 − t f ,p

)2
− zn

2
]
+ 4F1(zn + F2)

} (7)

where

F1 = r
(

hp

2
− t f ,p − zn

)
− r2

4
(ϑ− sen ϑ) (8)

ϑ = 2 arccos

 zn + t f ,p + r− hp
2

r

 (9)

F2 =
F3

F1
(10)

F3 =
r
2

(
hp

2
− t f ,p − zn

)2

− r2

4
(ϑ− sen ϑ)

 r2sen ϑ
(

hp
2 − t f ,p − zn − r

)
+ 2 r3sen ϑ

2
3
2 r2(ϑ− sen ϑ)

+
hp

2
− t f ,p − zn − r

 (11)

for hp
2 − t f ,p ≤ zn ≤

hp
2 (Figure 8c)

N = fy

[
A− 2bp

(
hp

2
− zn

)]
; (12)

M = bp fy

(
hp

2

4
− z2

n

)
(13)

Now, referring to the proposed device, analogous yield domains can be defined
and, taking into account the special requirements, only the plastic behavior of the inner
portion must be checked. Furthermore, neglecting, as is usual in technical applications,
the mechanical welding contribution, the yield domain boundary can be obtained as
the envelope of the following functions (effective in the range −Npl ≤ N ≤ Npl and
−Mpl ≤ M ≤ Mpl):

for 0 ≤ zN ≤ hi
2 − t f ,i

M =
(

Wpl,i − tw,pz2
n

)
fy = Mpl,i −

N2

4tw,p fy
(14)

for h
2 − t f ≤ zn ≤ h

2

M = fy bi


(

h∗ + t f ,i

)2

4
−
(

N − fy Ai

2bi fy
+

h∗ + t f ,i

2

)2
 (15)

These functions, rewritten in suitable form, will be adopted as bounds on the LRPD
resistance in the optimal design problem which will be presented in the following section.
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3. Optimal Design Formulation

The present section is devoted to the formulation of a new improved version of the
optimal design problem for the proposed device. The essential novelty of the formulation
regards a reduced and more compact form of the design variable vector and the constraint
on the desired Class of the cross section of the inner portion of the device. As previously
reported, the LRPD is constituted by an inner portion of length `i, with geometrical I-
shaped cross section features reported in Section 2, and by two symmetrically placed
outer portions, both of length `o and equal I- shaped cross section with geometrical fea-
tures as described in Section 2. The device volume is chosen as the objective function to
be minimized.

It is worth noting that, to ensure the occurrence of appropriate plastic deformation
fields in the inner portion, the length of the inner part `i must satisfy a suitable lower
bound [28]. In the referenced paper, the length `i is evaluated as a linear function of
the height of the original beam cross section introducing an appropriate scalar factor β:
`i = βhp where 0.5 ≤ β ≤ 1 is suggested.

In Figure 9 all the geometrical characteristics of the device are indicated and, in
particular, the assumed design variables are highlighted in red. In the referenced Figure, as
previously stated, ho = hp, bo = bp and tw,o = tw,i = tw,p have been assumed. Finally, the
distance between the medium planes of the flanges h∗ is considered as a relevant variable:

h∗ = ho − t f ,o = hi − t f ,i (16)
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Figure 9. Device geometry and design variables: (a) cross sections of the inner and outer portions;
(b) lateral view.

As a consequence, the design variable vector is the following one:

dT =
∣∣∣h∗ bi t f ,i t f ,o `o

∣∣∣ (17)

The objective function to be minimized is the following:

f (d) = Ai`i + 2Ao`o =
[
2bit f ,i + tw,p

(
h* − t f ,i

)]
`i + 2

[
2bpt f ,o + tw,p

(
h* − t f ,o

)]
`o

=
[
2 bi t f ,i + tw,p

(
h* − t f ,i

)]
βhp +

[
4bpt f ,o + 2tw,p

(
h* − t f ,o

)]
`o

(18)

i.e., the volume of the searched device.
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The design variables must satisfy appropriately selected bounds, reported in the
following relations:

0 ≤ h∗ ≤ hp − t f ,p (19)

3tw,p ≤ bi ≤ bp (20)

0 ≤ t f ,i ≤ t f ,p (21)

t f ,p ≤ t f ,o ≤
hp
/

2 (22)

0 ≤ `o ≤ ∞ (23)

where t f ,p, as already defined in Section 2, is the flange thickness of the original beam
element cross section.

Furthermore, the device geometry implicates:

h∗ + t f ,o = hp (24)

If the I-shaped cross section of the inner portion is imposed to belong to the relevant
Class 1, the following relation must be satisfied (see [21,24]).

bi − 3tw,p

2t f ,i
≤ 9ε = 9

√
235
fy

→ bi − 18t f ,i

√
235
fy
≤ 3tw,p (25)

In addition, the device is designed to be in a limit resistance condition for assigned
couples of values of the axial force Na and of the bending moment Ma. Therefore, the
following mechanical condition must be respected:

bi t f ,ih∗ + tw,p

(h∗ − t f ,i

2

)2

=
N2

a
4 tw,p fy2 +

Ma

fy
(26)

if the neutral axis crosses through the web cross section, or

Na
2

[
2t f ,i +

tw,p
bi

(
h∗ − t f ,i

)
− Na

2bi fy
−
(

h∗ + t f ,i

)]
+ fy

[
bit f ,i +

tw,p
2

(
h∗ − t f ,i

)][(
h∗ + t f ,i

)
− t f ,i −

tw,p(h∗−t f ,i)
2bi

]
= Ma (27)

if the neutral axis crosses through one of the flanges of the cross section.
Finally, the equivalent bending stiffness of the device with total length ` = `i + 2`o

must be not less than the one characterizing a portion of the original beam element with
the same length. The following inequality must be satisfied (see [26]):

`i
`o
− 2

Ii
Io

(
Io − Ip

Ip − Ii

)
≤ 0 (28)

that, written as function of the design variables, reads:

βhp

`o
−

4bi t3
f ,i + 12bit f ,ih∗2 + 2tw,p

(
h∗ − t f ,i

)3

2bp t3
f ,o + 6bpt f ,oh∗2 + tw,p

(
h∗ − t f ,o

)3

2bp t3
f ,o + 6bpt f ,oh∗2 + tw,p

(
h∗ − t f ,o

)3
− 12Ip

12Ip − 2bi t3
f ,i − 6bit f ,ih∗2 − tw,p

(
h∗ − t f ,i

)3

 ≤ 0 (29)

where Ip is the moment of inertia of the original beam element.
The optimal design problem can be formulated as follows:

min
(d)

f (d) (30)

Subjected to:
dlow ≤ d ≤ dupp (31)

Aeqd = beq (32)
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Aind = bin (33)

Geq(d) = qeq (34)

Gin(d) ≤ qin (35)

In the above reported relations, the adopted scalar functions, vectors and matrices
have the following form:

dT
low =

∣∣∣0 3tw,p 0 t f ,p 0
∣∣∣ (36)

dT
upp =

∣∣∣∣hp − t f ,p bp t f ,p
hp

2
∞
∣∣∣∣ (37)

Aeq = |1 0 0 1 0|; beq = hp (38)

Ain =

∣∣∣∣∣0 1 − 18

√
235
fy

0 0

∣∣∣∣∣, bin = 3tw,p (39)

Geq(d) = bi t f ,ih∗ + tw,p

(h∗ − t f ,i

2

)2

, qeq =
N2

a
4 tw,p fy2 +

Ma

fy
(40)

if the neutral axis cuts through the web cross section,

Geq(d) = Na
2

[
2t f ,i +

tw,p
bi

(
h∗ − t f ,i

)
− Na

2bi fy
−
(

h∗ + t f ,i

)]
+

fy

[
bit f ,i +

tw,p
2

(
h∗ − t f ,i

)][(
h∗ + t f ,i

)
− t f ,i −

tw,p(h∗−t f ,i)
2bi

]
qeq = Ma

(41)

if the neutral axis cuts through one of the flanges cross section,

Gin(d) =
βhp
`o
−

4bi t3
f ,i+12bit f ,ih∗2+2tw,p(h∗−t f ,i)

3

2bp t3
f ,o+6bpt f ,oh∗2+tw,p(h∗−t f ,o)

3(
2bp t3

f ,o+6bpt f ,oh∗2+tw,p(h∗−t f ,o)
3−12Ip

12Ip−2bi t3
f ,i−6bit f ,ih∗2−tw,p(h∗−t f ,i)

3

)
qin = 0

(42)

The above formulated problem is a non-linear programming one and for its solution
a suitable solver is utilized by adopting an interior-point algorithm. In particular, the
“fmincon” solver will be implemented in the application stage by utilizing the MATLAB
Optimization Toolbox.

4. Application

In this section the optimal design for the LRPD described in the foregoing section
is applied to the cases of two I-shaped cross section standard steel (S235) profiles. The
selected profiles are the IPE400 and HEA300 which represent, in the authors’ opinion, two
meaningful examples of a typical beam element that is adopted in building constructions.

The first step in applying the proposed optimal design is to select the values of the
ultimate axial force and bending moment for the device. In order to do this, the elastic and
plastic domains for both the selected profiles have been obtained and reported in Figure 10
by utilizing Equations (1) and (6)–(13).
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Figure 10. Dimensionless elastic (red line) and yield (black line) domains: (a) IPE400; (b) HEA300. Figure 10. Dimensionless elastic (red line) and yield (black line) domains: (a) IPE400; (b) HEA300.

On the basis of the domains reported in Figure 10, for both the selected commercial
profiles two different loading conditions have been selected to perform the optimal design:
the first one is characterized by a high bending moment and a small axial force; in the
second one the situation is reverted with a high axial force and a relatively small bending
moment. Clearly, both situations are such that the mechanical behavior of the standard
profile is always elastic. These situations have been referred to as DP1 and DP2 in the
following and are reported in Figure 11 together with the elastic and yield domains already
reported in the previous figure.
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Figure 11. Dimensionless elastic (red line) and yield (black line) domains with selected design points
(DP1 orange point; DP2 green point): (a) IPE400; (b) HEA300.

The optimal designs of the devices related to the chosen points (DP1 and DP2) are
determined by solving problem (30)–(35). The input values for each problem are reported
in Table 3 and in Table 4 the obtained results are reported.
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Table 3. Input parameters (all dimensions are in mm except for Na, Ma, fy and Ip, whose dimensions
are kN, kNm, MPa and mm4, respectively).

IPE400 HEA300

DP1 DP2 DP1 DP2

bp 180.0 180.0 300.0 300.0
hp 400.0 400.0 290.0 290.0

tw,p 8.6 8.6 8.5 8.5
t f ,p 13.5 13.5 14.0 14.0
Ip 231,300,000 231,300,000 182,600,000 182,600,000
fy 235.0 235.0 235.0 235.0
β 0.5 0.5 1.0 1.0

Na −100.000 −1000.000 −200.000 −1000.000
Ma 215.000 61.400 227.500 81.300

Table 4. Optimal designs (all dimensions are in mm).

IPE400 HEA300

DP1 DP2 DP1 DP2

bi 130.280 165.175 233.957 219.196
t f ,i 13.500 7.743 14.000 10.761
`i 200.000 200.000 290.000 290.000
h∗ 368.835 368.524 262.128 261.655
t f ,o 31.165 31.476 27.872 28.345
`o 120.043 208.876 179.900 362.786

As is easy to recognize by an examination of Table 3, the selected value of β = `i/hp is
different for IPE and HEA profiles. Specifically, it has been assumed as the lower limit of
the suggested interval β = 0.5 (see [28]) for the IPE profile and the upper one β = 1 for the
HEA profile. This choice is due to the remark that the web flexural contribution for IPE
profile is certainly greater than that for HEA profile. Consequently, for the beam with the
IPE cross section the plastic deformations easily spread along the web.

To check the reliability of the proposed optimal design, the elastic and yield domains
of the inner part of the device have been determined by utilizing Equations (14) and (15).
These domains are reported in Figure 12 for the case of the IPE400 profile and in Figure 13
for the case of the HEA300 profile, respectively. An examination of these Figures confirms
that the selected design points belong to the yield domain of the inner part of the device
designed for that assigned point.

The next step consists of checking the mechanical behavior of the designed devices by
means of a suitable FEM analysis performed in an ABAQUS environment. In Figure 14 the
model for the LRPD designed for the IPE400 profile and design point 1 is sketched (models
for the other LRPDs are similar). The model is constituted by four different parts, sketched
in different colors in Figure 14. The central part (sketched in dark green) is the LRPD whose
geometrical characteristics have been obtained by the optimal design. The first and third
parts (sketched in dark white and dark red, respectively) are equal to each other and the
related geometrical characteristics are equal to those of the outer parts of LRPD. The length
of these parts is equal to that of the LRPD so that the overall length of the model, without
the loading plate, is equal to 3`. The last part (sketched in dark blue) is a plate where the
loadings are applied with a thickness of t = 30 mm. Each part has been tied to the next
one to ensure a perfect kinematic compatibility. The overall model is that of a cantilever
beam so that the white part is clamped at its end section while the dark blue part is free.
The adopted mechanical behavior for the material is an elastic-perfectly plastic one with
Young’s modulus equal to 210 GPa, yield stress equal to 235 MPa, ultimate strain equal to
25% and adopted mesh is 5 mm with hexahedral standard 3D stress elements. The loading
plate is constituted by linear elastic material with a stiffness that is much greater than the
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one of the adopted steel (210 TPa), so that any influence of the pressure distribution is
avoided. Two different pressure loads (pink arrows in Figure 14) have been applied to
the plate: the first one is uniform and its resultant represents the axial force acting on the
device; the second one is a linearly varying one (along y-axis) with zero value at barycentric
x-axis of the plate and its resultant is equal to the bending moment acting on the device.
The intensity of each load ranges between zero and the maximum value (corresponding to
the design load of LRPD) and this interval has been divided in 100 steps.
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Figure 13. Dimensionless domains: HEA300 elastic (red line); HEA300 yield (black line); LRPD elastic
(green line); LRPD yield (blue line). (a) design point 1; (b) design point 2.

The evaluation of the mechanical behavior of the proposed LRPD has been performed
by evaluating the yielding level of the inner part when the loads reach their assigned
maximum values. To do this in Figures 15–18, the von Mises’ stress maps obtained by
FEM analysis are reported, for each profile and for each design point. An examination
of these figures immediately reveals that in all the examined cases the inner part of the
LRPD is fully plasticized confirming the validity and the effectiveness of the proposed
optimal design.
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Figure 15. von Mises’ stress map (MPa) for LRPD IPE400 (DP1) at the ultimate loading condition:
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In particular, the LRPD for IPE400 (DP1), Figure 15, shows a perfect plastic behavior
strictly concentrated just in correspondence of the inner portion while the close outer
portions behave in a substantially elastic way. This very good behavior is related to the
special load condition characterized by a high bending moment and small axial force.
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Figure 16. von Mises’ stress map (MPa) for LRPD IPE400 (DP2) at the ultimate loading condition:
(a) perspective view; (b) lateral view.
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Figure 17. von Mises’ stress map (MPa) for LRPD HEA300 (DP1) at the ultimate loading condition:
(a) perspective view; (b) lateral view.

Even the LRPD for IPE400 (DP2), Figure 16, shows the full plastic behavior of the
inner portion but the close outer portions are strongly interested by the spread of the plastic
deformations. However, it is worth noting that the flanges remain in elastic regime so that
the elastic response to the acting moment is ensured. This particular behavior is related to
the special load condition characterized by a high axial force and small bending moment.

The LRPD for HEA300 (DP1), Figure 17, and the LRPD for HEA300 (DP2), Figure 18,
show substantially the same behavior that has been previously commented upon, with the
difference being that the outer portions are less involved in plastic deformation due to the
greater length of the inner portion.
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Figure 18. von Mises’ stress map (MPa) for LRPD HEA300 (DP2) at the ultimate loading condition:
(a) perspective view; (b) lateral view.

Since the LRPD is thought as a device connecting structural elements subjected to
cyclic loadings, such as those arising during earthquakes, it is appropriate to evaluate
the cyclic behavior of the designed device in terms of bending moment vs. bending
curvature. This evaluation is always performed in the ABAQUS environment, referring
to the device designed for the IPE400 profile (design point 1), whose model is sketched
in Figure 19a. As it has been performed in the case of the FEM analyses reported above,
the model is represented by a cantilever beam with a length of 3`, plus the thickness of
the plate, clamped in section A and with a pressure loading applied at free section D
whose intensity varies only along the y-axis. The resultant of the loading is a pure bending
moment with the moment axis coincident with the x geometrical axis. The maximum value
of the resultant bending moment lies in the range (−Ma = −215 kNm, Ma = 215 kNm),
and it constitutes one loading cycle. The reported range is subdivided into 100 steps for
the subsequent evaluation of the curvature of the device. This curvature is obtained as
the ratio between ∆ϕBC and the length ` of the device, where ∆ϕBC is the relative rotation
between sections B and C. In Figure 19b the results in terms of bending moment vs. bending
curvature are reported compared with the corresponding one obtained in the case of the
IPE400 cantilever beam without the LRPD with the same length and loading. As can be
observed, the device, after just one cycle, shows a stationary behaviour (plastic shakedown)
and, therefore, no further loading cycles have been performed since the results will be
superimposable with those already obtained. In Figure 19b the diagram of the IPE400
cantilever beam shows, as was expected (Ma < Mpl), a linear behaviour due to the linear
elastic behaviour of the beam. Further, the analysis of Figure 19b clearly shows that the
proposed device perfectly carries out the role of receiver of plastic deformations; it also
develops a satisfactory plastic dissipation showing an elastic behaviour coincident with
that of the original profile. Analogous analysis has been performed in the case of HEA300
LRPD (design point 1), whose model and results are reported in Figure 20. The examination
of these figures leads to analogous remarks, such as those reported above for the IPE400
LRPD and, therefore, for brevity’s sake they are not reported.
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Figure 19. Cyclic analysis for IPE400 LRPD (DP1): (a) lateral view of the model; (b) bending moment
vs. bending curvature curve.
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5. Conclusions

In the present paper a new formulation of the optimal design problem devoted to
obtaining the minimum volume of a special moment resisting connection device for steel
elements has been proposed. The fundamental novelty is related to the introduction
of suitable constraints which ensure the capability of the device to exhibit a full plastic



Appl. Sci. 2022, 12, 202 20 of 21

curvature in correspondence to the prefixed structural portion, avoiding any local and/or
global buckling phenomenon.

In the application stage reference has been made to the design of devices for the most
used steel profiles, i.e., HEA and IPE elements; for each chosen profile two different me-
chanical conditions are considered, so as to evaluate the sensibility of the chosen numerical
procedure to the presence of the axial force and of the bending moment.

The obtained results allow us to observe:

1. the “fmincon” solver implemented by utilizing the MATLAB Optimization Toolbox
showed good stability and reliability;

2. all of the obtained optimal designs of the devices exhibit the expected features imposed
by the problem constraints. First of all, the full plastic curvature, even if for HEA
profile and IPE profile some different positions must be fixed: β = 1 for HEA and
β = 0.5 for IPE. These values are recommended in practical application, due to the
different web flexural contribution of the referenced profiles;

3. the correctness of the expected behavior of the device has been verified by performing
suitable FEM analyses in ABAQUS environment;

4. further studies are expected, for example regarding a campaign of experimental
analysis, the design of appropriate steel connection with the beam element, the study
of the elastic and plastic behavior of steel frame equipped with the proposed devices,
and the utilization of steel frame equipped with the devices in the restoration of
masonry structure building.
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