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Abstract: Traditional modal testing has difficulty accurately identifying the ultralow-frequency
modes of flexible structures. Ultralow-frequency excitation and vibration signal acquisition are two
main obstacles. Aiming at ultralow-frequency modal identification of flexible structures, a modal
testing method based on Digital Image Correlation method and Eigensystem Realization Algorithm
is proposed. Considering impulse and shaker excitation are difficult to make generate ultralow-
frequency vibration of structures, the initial displacement is applied to the structure for excitation.
The ultralow-frequency accelerometer always has a large mass, which will change the dynamics
performance of the flexible structure, so a structural vibration response was obtained through the
Digital Image Correlation method. After collecting the free-decay vibration signal, the ultralow-
frequency mode of the structure was identified by using the Eigensystem Realization Algorithm.
Ground modal tests were conducted to verify the proposed method. Firstly, a solar wing structure
was adopted, from which it was concluded that the signal acquisition using Digital Image Correlation
method had high feasibility and accuracy. Secondly, an ultralow-frequency flexible cantilever beam
structure which had the theoretical solution was employed to verify the proposed method and the
theoretical fundamental frequency of the structure was 0.185 Hz. Results show that the Digital Image
Correlation method can effectively measure the response signal of the ultralow-frequency flexible
structure, and obtain the dynamics characteristics.

Keywords: flexible structure; ultralow-frequency modal identification; Digital Image Correlation
method; Eigensystem Realization Algorithm

1. Introduction

With the development of aerospace technology, large-scale flexible structures with
ultralow-frequency modal characteristics [1–4], such as solar panels and developable
trusses [5], have been widely applied. In order to determine dynamics behavior of the
ultralow-frequency flexible structure and ensure the safety in the space environment, it is
necessary to conduct modal testing on the structure [6–11].

Modal testing methods are divided into two categories: contact measurement and
non-contact measurement. Traditional modal tests generally use contact measurement
methods, using sensors, etc. to obtain structural response signals. The main problem of
the contact measurement method is that it will bring additional mass and constraints to
the lightweight and flexible structure, which will affect its dynamics performance and
measurement results [12–14]. The influence of the additional quality of the sensors are
always need to eliminate. Cakar et al. [15] proposed a method based on the Sherman–
Morrison identity to eliminate the additional mass of the sensor. This method uses a virtual
mass to eliminate the influence of the additional mass, which can be well applied to the
vibrating test. Zhu [16] and others proposed a one-step elimination method based on the
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Sherman–Morrison–Woodbury formula, which directly eliminates the mass load effect of
the transducer in the modal test.

The non-contact measurement method has become an important research direction
of experimental mechanics, among which the optical detection method is the main one.
The non-contact measurement method does not need to attach the sensor to the test piece,
fundamentally eliminates the influence of additional mass, and has the advantage of high
measurement sensitivity. The main methods of optical measurement methods to measure
strain include moiré method [17,18], holographic interferometry [19] and digital image
correlation method [20].

Digital Image Correlation method (DIC) is an emerging vibration measurement
method in recent years. It has the advantages of not affecting the dynamic performance of
the structure under test and saving the cost of modal measurement. It is an ideal method
for vibration measurement of flexible structures [21–23]. Many scholars have done a lot
of research and application on the DIC method, and have obtained many research results.
Ha, N.S. et al. [24] proposed a method to obtain the modal parameters of the artificial
wings of the beetle’s rear wing by using the discrete cosine transform technique based on
the three-dimensional DIC method. The results obtained are in good agreement with the
finite element analysis. S. Rizo-Patron [25] and others combined the DIC method with the
ITD method for the first time to determine the modal parameters of the helicopter rotor
blades under working conditions. For the vibration test of ultralow-frequency flexible
structures, Trebună et al. [26] used the DIC method to excite the steel fan blades with
white noise signals for modal analysis, and used the frequency domain decomposition
method to determine the mode from the output power spectral density matrix. Regarding
modal parameters; Yang et al. [27] proposed a method that can blindly extract the modal
frequency, damping ratio and full-field mode shape from the vibration video image of the
structure, which improved the problem of difficulty in arranging speckle patterns or targets
in structural modal testing with DIC method.

For the study of spacecraft dynamic parameter identification [28,29], frequency domain
methods were mostly used in the early days, such as Frequency Domain Decomposition [30].
However, this method requires inverse Fourier transform in terms of damping identification,
which is realized by exponential decay method in the time domain, and the accuracy is not
high due to the influence of truncation error. For ultralow-frequency flexible structures,
many classical frequency domain identification methods are not applicable, so the time
domain identification method has gradually become the main method in the identification
of spacecraft dynamics parameters. The Eigensystem Realization Algorithm [31] (ERA)
is convenient to determine the modal order and the recognition speed is faster due to
the short sampling time, high identification accuracy and strong anti-noise ability. At
the same time, it has a strong recognition ability for structures with ultralow-frequency
modal characteristics. Pappalardo et al. [32] proposed a system identification method
of the linear dynamics model of the multi-body mechanical system based on the ERA.
Numerical examples of simple vehicle models are used to verify the effectiveness of the
proposed recognition method. Juang [33] proposed an improved method for the ERA,
usually called the Eigensystem Realization Algorithm using data correlations (ERA/DC).
Compared with the traditional ERA, the modal identification is carried out through the
flexible truss structure, and the data correlation is used to reduce the influence of noise in
the identification of modal parameters.

This paper proposes an ultralow-frequency flexible structure modal identification
method based on the DIC method. Taking the ultralow-frequency flexible structure as
the research object, designing the ultralow-frequency flexible structure excitation system,
and performing initial displacement excitation on the structure. The response signal of
the ultralow-frequency flexible structure is obtained by the DIC method of the camera
array, and the modal frequency is identified using the ERA, in which the first modal
frequency is the ultralow-frequency less than 0.5 Hz. Establish an ultralow-frequency
flexible structure ground test system based on the DIC method. First, carry out the modal
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test and identification of the traditional contact measurement and the DIC method of the
solar wing array to verify the accuracy of the DIC method. Besides, based on the Initial
Displacement Excitation Method and DIC method, the modal identification of the ultralow-
frequency flexible structure of the cantilever beam is carried out. The theoretical results
are compared to verify the feasibility and accuracy requirements of the ground modal test
system for the dynamic characteristics of the flexible structure designed in this paper.

2. Basic Theory
2.1. Initial Displacement Excitation Method

The forced vibration motion equation of a damped multi-degree of freedom system is

M
..
x + C

.
x + Kx = F(t) (1)

where: M is a mass matrix, which is a positive definite matrix; C is a proportional damping
matrix; K is a stiffness matrix, which is a positive definite or semi-positive definite matrix;
F(t) is an external force vector. Through generalized eigenvalue analysis, the first n-order
natural frequencies (ω1, ω2, . . . , ωn) and natural modes (ϕ1, ϕ2, . . . , ϕn) of the multi-
degree-of-freedom system are obtained. The n-order mode vector can form the following
mode matrix φ.

φ = (ϕ1 ϕ2 · · · ϕn) (2)

According to the orthogonality of modes, any n-dimensional vibration of the system
can be uniquely expressed as a linear combination of modes.

x = φz =
n

∑
r=1

ϕrzr (3)

Among them, zr(r = 1, 2, . . . , n) is the generalized coordinate describing the motion of
the system in the modal space, called the principal coordinate, and r represents the modal
order. The array z composed of the principal coordinates of each order is the principal
coordinate array.

z =
(

z1 z2 · · · zn
)T (4)

Substituting the principal coordinates established by the formula into the equation,
and multiplying each item to the left by φ−1 can be obtained.

M
..
z + C

.
z + Kz = 0 (5)

Assuming that C is proportional damping, n independent single-degree of freedom
systems are obtained after modal decomposition.

m
..
zr + c

.
zr + kzr = 0 (6)

Assuming that the initial condition of the structure is an arbitrary overall initial
displacement, namely.

t = 0 : x(0) 6= 0,
.
x(0) = 0 (7)

At this time, the solution of Equation (6) is:

zr(t) =
zr(0)√
1− ξ2

r
e−ξrωrt cos(ωdrt− θr) (8)

Among them, ωr is the undamped natural frequency, ωdr is the natural frequency of
the damping system, and ξr is the damping ratio.
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The initial displacement zr(0) of the modal space can be expressed as:

zr(0) =
ϕT

r Mx(0)
ϕT

r Mφr
(9)

Incorporate formula (8) into formula (3) to get the system response.

x(t) =
n

∑
r=1

ϕr
zr(0)√
1− ξ2

r
e−ξrωrt cos(ωdrt− θr) (10)

In formula (10), cos(ωdrt − θr) is expressed as:

cos(ωdrt− θr) =
ei(ωdrt−θr) + e−i(ωdrt−θr)

2
(11)

Then the system response can be expressed as:

x(t) =
n

∑
r=1

1
2

ϕrzr(0)√
1− ξ2

r
e(−ξrωr+iωdr)te−iθr +

n

∑
r=1

1
2

ϕrzr(0)√
1− ξ2

r
e(−ξrωr−iωdr)teiθr (12)

Under any integral initial displacement condition, the system response has the form
of impulse response function, and the impulse response function is the input condition of
the characteristic system to realize the algorithm.

2.2. Digital Image Correlation Method

The Digital Image Correlation method is based on the binocular vision theory. Its
basic idea is to use two cameras to shoot the same target, and use the straightness and
intersection of the left and right cameras to perform inverse solution to obtain the 3D
space coordinate value of the target. As shown in Figure 1, the three-dimensional space
target point P(xw, yw, zw) respectively forms the point P1(u1, v1) and the point P2(u2, v2)
in the image coordinate system of the left and right cameras. The origins Oc1 and Oc2 are
connected to the point P in the three-dimensional space, and the point P is located on the
two imaging rays of the left and right cameras at the same time. The imaging model of the
camera can be reversely solved.
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Through camera calibration, the projection matrices M1 and M2 of the left and right 
cameras can be obtained. The projection matrix of the camera combines the target point 
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Left camera

Left view Right view 

Right camera
Oc1

yc1

xc1

zc1

P1
(u1,v1)

P2
(u2,v2)

Oc2

yc2

xc2

P(xw,yw,zw) yw

zw
xw

zc2

Figure 1. Principle of three-dimensional coordinate reconstruction algorithm.

Through camera calibration, the projection matrices M1 and M2 of the left and right
cameras can be obtained. The projection matrix of the camera combines the target point
P(xw, yw, zw) in the three-dimensional space with the imaging points P1(u1, v1) and P2(u2,
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v2) in the camera image coordinate system. See formulas (13) and (14) for details. Zc1 and
Zc2 are the magnification coefficients in the camera imaging model and are related to the
internal parameters of the camera.

zc1

 u1
v1
1

 = M1


xw
yw
zw
1

 =

 m1
11 m1

12 m1
13 m1

14

m1
21 m1

22 m1
23 m1

24

m1
31 m1

32 m1
33 m1

34




xw
yw
zw
1

 (13)

zc2

 u2
v2
1

 = M2


xw
yw
zw
1

 =

 m2
11 m2

12 m2
13 m2

14

m2
21 m2

22 m2
23 m2

24

m2
31 m2

32 m2
33 m2

34




xw
yw
zw
1

 (14)

Simultaneous formulas (13) and (14), after eliminating the amplification factor Z, four
equations are obtained, as shown in formula (15), in which there are three unknowns (xw,
yw, zw), and the least square method is used to solve the statically indeterminate equations
to obtain the three-dimensional space coordinate values (xw, yw, zw) of the target point P.

(
u1m1

31 −m1
11
)
xw +

(
u1m1

32 −m1
12
)
yw +

(
u1m1

33 −m1
13
)
zw = m1

14 − u1m1
34(

v1m1
31 −m1

21
)
xw +

(
v1m1

32 −m1
22
)
yw +

(
v1m1

33 −m1
23
)
zw = m1

14 − v1m1
34(

u2m2
31 −m2

11
)
xw +

(
u2m2

32 −m2
12
)
yw +

(
u2m2

33 −m2
13
)
zw = m2

14 − u2m2
34(

v2m2
31 −m2

21
)
xw +

(
v2m2

32 −m2
22
)
yw +

(
v2m2

33 −m2
23
)
zw = m2

14 − v2m2
34

(15)

As shown in Figure 2, select the square image sub-area to be calculated in the digital
image taken by the left camera before deformation. And find the corresponding position in
the digital image taken by the right camera before deformation according to the correlation
matching between the left and right cameras. According to the pre-calibrated internal
and external parameters of the camera, the three-dimensional coordinates (x0, y0, z0) of
the center point of the image subregion. In the same way, taking the picture taken by the
left camera before the deformation as the reference picture, the digital images collected
by the left and right cameras after the deformation are also accurately tracked to the
corresponding position of the calculation area, and the space three-dimensional coordinates
of the deformed point can also be obtained (x1, y1, z1), the difference between the space
coordinates before and after the deformation is the three-dimensional displacement (x, y, z)
of this point.

In engineering applications, the measured object may undergo major deformation
or rotation, and a square reference subregion may no longer be square after deformation.
Therefore, the shape function is introduced to correspond the pixels in the reference subre-
gion and the target subregion. The first order shape function allows translation and rotation
of the target subregion, as well as uniform shearing and stretching deformation, which is
suitable for most situations. Its expression is:

w(ξ, p) =

 1 + ux uy u
vx 1 + vy v
0 0 1

 ∆x
∆y
1

 (16)

The incremental function w = (ξ, ∆p) of the shape function can be expressed as:

w(ξ, ∆p) =

 1 + ∆ux ∆uy ∆u
∆vx 1 + ∆vy ∆v

0 0 1

 ∆x
∆y
1

 (17)
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Use the inverse Newton–Gauss iteration method (IC-GN), and its second order shape
function is shown in formula (18).

x′ = x + u + ux∆x + uy∆y + 1
2 uxx∆x2 + 1

2 uyy∆y2 + uxy∆x∆y

y′ = y + v + vx∆x + vy∆y + 1
2 vxx∆x2 + 1

2 vyy∆y2 + vxy∆x∆y
(18)
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Figure 2. Calculation steps of 3D displacement.

The correlation function is a function that measures the similarity between the refer-
ence subregion and the target subregion. The selection of the correlation function directly
affects the final accuracy of the calculation. When the function takes the minimum value
of 0, it can be considered that there is no difference between the reference subregion and
the target subregion at this time, that is, the best match. However, even under the most
ideal test conditions, the digital images of stationary objects taken at different times are still
different. The reasons can be attributed to camera noise, illumination changes, and surface
changes of the specimen due to deformation, and so on. Therefore, the correlation function
should have a certain degree of stability in addition to quantifying the difference between
the subregions. The zero-mean normalized least square distance correlation function can
effectively avoid the mismatch phenomenon caused by the change of light intensity, and
ensure the stability of the experiment. Its expression is:

CZNSSD = ∑
ζ


f [ψ + w(ξ, ∆p)]√

∑
ς

{
f [ψ + w(ξ, ∆p)]

}2
− g[ψ + w(ξ, p)]√

∑
ς
{g[ψ + w(ξ, ∆p)]}2



2

(19)
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where CZNSSD is the optimization coefficient, p = [u, ux, uy, v, vx, vy] is the deformation
parameter vector, and ∆p = [∆u, ∆ux, ∆uy, ∆v, ∆vx, ∆vy] is its incremental vector, ψ = [x, y,
1] represents the whole pixel coordinates of the selected test point in the subregion of the
image, ξ = [∆x, ∆y, 1]T represents the sub-pixel coordinates corresponding to the whole
pixel coordinate point.

Perform a firstorder ∆p expansion on CZNSSD(∆p), and get:

CZNSSD(∆p) = ∑
ζ


f (ψ + ξ) +∇ f (ψ + ξ)

∂w
∂p√

∑
ς

{
f [ψ + w(ξ, ∆p)]

}2
− g[ψ + w(ξ, p)]√

∑
ς
{g[ψ + w(ξ, ∆p)]}2



2

(20)

where ∇f (ψ + ξ) = [∂f (ψ + ξ)/∂x, ∂f (ψ + ξ)/∂y] represents the gray gradient of the ref-
erence image subregion, and the Jacobian matrix of the shape function is expressed as
∂w
∂p

=

[
1 ∆x ∆y 0 0 0
0 0 0 1 ∆x ∆y

]
. When the reference image subarea is most similar

to the target subarea, CZNSSD(∆p) gets the minimum value, which can be obtained by
∂CZNSSD(∆p)/∂∆p = 0, where H−1 is the inverse of the Hessain matrix.

∆p = H−1

{[
∇ f (ψ + ξ)

∂w
∂p

]T
[

f n
gn

g
[
ψ + w(ξ, p)− f (ψ + ξ)

]]}

H = ∑
ς

{[
∇ f (ψ + ξ)

∂w
∂p

]T[
∇ f (ψ + ξ)

∂w
∂p

]} (21)

2.3. Eigensystem Realization Algorithm

The input condition of the ERA is the impulse response function. By solving the
response of the damped multi-degree of freedom vibration system under arbitrary dis-
placement excitation, it is found that the response solution under the initial displacement
excitation can replace the impulse response function as the input of the ERA.

For a finite, discrete-time linear time-invariant system, the state equation can be
expressed in the following form:{

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(22)

Among them, x ∈ Rn, u ∈ Rm, y ∈ Rp are the state vector, input vector and output
vector, respectively, and A, B, C are the state matrix, input matrix and output matrix of the
system, respectively.

The Hankel matrix is constructed using the response function under arbitrary initial
displacement excitation, namely:

Hrs(k− 1) =


Y(k) Y(k + t1) · · · Y(k + ts−1)

Y(j1 + k) Y(j1 + k + t1) · · · Y(j1 + k + ts−1)

...
...

...

Y(jr−1 + k) Y(jr−1 + k + t1) · · · Y(jr−1 + k + ts−1)

 (23)

where Y(k) ∈ Rl×p is the response function matrix under arbitrary initial displacement
excitation, namely.
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Y(k) =


h11(k) h12(k) · · · h1p(k)

h21(k) h22(k) · · · h2p(k)
...

...
...

hL1(k) hL2(k) · · · hLp(k)


(l×p)

(24)

In the formula, hij(k) is the displacement excitation response function between ex-
citation point j and response point i at time k. Perform singular value decomposition
on Hrs(0) = UVWT; the order determined by singular value decomposition obtains the
minimum realization of the system:

A = V−
1
2 UT Hrs(1)WV−

1
2 (25)

B = V
1
2 WTEm (26)

C = EP
TUV

1
2 (27)

where: Ep
T = [Ip, 0p, . . . , 0p], Em

T = [Im, 0m, . . . , 0m].
Carry out the eigenvalue decomposition of the matrix A to obtain the eigenvalue

matrix G, and then obtain the eigenvector matrix ϕ.

ϕ−1 Aϕ = G, G = diag(g1, g2, · · · , gr) (28)

where: gr is the eigenvalue of matrix A, and r is the modal order.
Determine the modal frequency ωr and modal damping ζr according to the relation-

ship between the eigenvalue gr of the matrix A and the system eigenvalue λr:

λi =
1

∆t
ln gi = λr

R + jλr
I (29)

ωr =

√
(λrR)

2
+ (λr I)

2 (30)

ζr = −
λR

r√
(λR

r )
2
+ (λI

r)
2

(31)

In the formula: λr
R represents the real part of the system eigenvalue λr, λr

I represents
the imaginary part, and r is the modal order.

According to the output matrix C and the eigenvector matrix ϕ, the mode shape matrix
φ can be determined:

φ = Cϕ = EP
TUV

1
2 ϕ (32)

Use the Modal Assurance Criterion (MAC) to check the independence and consistency
between the two modes:

MACuv =

∣∣φu
Tφv

∣∣2
φuTφuφvTφv

(33)

Among them, φu and φv are mode vectors, which are column vectors, and u and v
are modal orders. In the formula, modal displacement needs to be normalized, and its
value ranges from [0, 1]. The MAC value of 1 indicates that the two modes are completely
correlated, while a value of 0 indicates that the two modes are completely unrelated.

The modal identification process of ultralow-frequency flexible structure is shown in
Figure 3:
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3. Case Study
3.1. Modal Test Verification of Low Frequency Flexible Solar Wing

In order to preliminarily verify the proposed ultralow-frequency flexible structure
modal test method based on the Digital Image Correlation method, the ultralow-frequency
flexible solar wing array in the unfolded state is taken as the test object. The flexible solar
wing is composed of two solar wings with exactly the same size. The material properties
are shown in Table 1. The flexible solar wing array is suspended by a suspension rope, and
its size and installation are shown in Figure 4:

Table 1. Solar wing material properties.

Density/(kg/m3) Elastic Modulus/(GPa) Poisson’s Ratio Thickness/(mm)

2700 70 0.33 5
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Figure 4. Dimensional drawing of ultralow-frequency flexible solar wing array with the speckle
pasting position and the camera placement position.
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The equipment used in the test is as follows:

1. DHDAS dynamic signal acquisition and analysis system, the sampling frequency is
25.6 Hz, the sampling point is 512, and the frequency domain resolution is 0.05 Hz;

2. A piezoelectric acceleration sensor, model CA-YD-107 sensitivity 2.73 pC/ms−2;
3. Force hammer, model CL-YD-303, sensitivity 3.99 pC/N;
4. Two SONY FDR-AX40 cameras, the camera frame number is 20 fps, that is, the

sampling frequency is 20 Hz;

Paste the speckle patches on the side of the solar wing mechanism, a total of 7,
numbered from D1 to D7, and the acceleration sensor A1 is arranged at the spot of D2
which are shown in Figure 4.

The test adopts multi-point excitation and single-point measurement, and is carried
out by the hammering method. Seven points such as D1–D7 are selected as excitation
points, and each measurement point is hammered in turn on the back of the solar wing
mechanism, and the structure response is recorded by the DHDAS dynamic signal acqui-
sition and analysis system. At the same time, the image of the solar wing mechanism is
collected through the camera, and the displacement response data of the measuring point
in 0–20 s is calculated by the DIC method, and the modal parameters of the solar wing
mechanism are obtained through modal identification. The traditional contact measure-
ment results are compared with the DIC test results to verify the feasibility and accuracy of
the proposed ultralow-frequency flexible structure modal test based on the Digital Image
Correlation method.

Figure 5 is the amplitude-frequency diagram of DHDAS and DIC method. Table 2
shows the comparison between DHDAS system identification frequency and DIC identi-
fication frequency. From the comparison results, it can be seen that the DHDAS system
identification frequency and the DIC method identification frequency error are small,
the first order frequency error is 2.80%, and the second order frequency error is −1.30%,
indicating that the effective optical test data can be used to obtain a higher-precision struc-
ture. The modal frequency results verify the feasibility and accuracy of the proposed
ultralow-frequency flexible structure modal test method based on the DIC method.
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Table 2. Comparison of modal parameter recognition results.

Modal Order
DHDAS

Identification
Frequency/Hz

DIC Method
Identification
Frequency/Hz

Frequency Error/%

First order (Bending) 1.07 1.10 2.80
Second order (Twisting) 2.29 2.26 −1.30

The results of the DHDAS system’s identification and the DIC method of identification
of the vibration shape are shown in Figure 6 below:
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According to the theory of modal confidence, the MAC value of mode shape of DHDAS
identification is compared with that of the mode shape of DIC method identification. It
can be seen from Figure 7 that the modal shape obtained based on the DIC method is
compared with the modal shape obtained by the DHDAS system. The matching degree is
high, and the MAC value contrast is greater than 0.9, which verifies the feasibility of the
low-frequency flexible structure experimental modal test method based on the DIC method.
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3.2. Structural Modal Identification of Low Frequency Flexible Suspension Beam

For flexible beams with concentrated masses, based on the designed ultralow-frequency
flexible structure dynamic characteristics ground test system, the ultralow-frequency flexi-
ble structure dynamic characteristics ground test research is carried out, the modal parame-
ters of the structure are obtained, and the modal identification results are compared with
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the finite element theory results. Contrast, verify the feasibility and accuracy requirements
of the ultralow-frequency flexible structure dynamic characteristics ground test system
designed in this paper.

The test object is composed of two horizontally suspended slender flexible beams
spliced by a connecting plate. The total length is 3 m, and it is divided into 16 measurements.
Fix concentrated masses at nodes 3~7 and nodes 10~14, as shown in Figure 8.
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Figure 8. Dimension drawing of flexible beam.

The material properties of the suspended fixed flexible beam are shown in Table 3:

Table 3. Material attribute table of suspended fixed flexible beam.

Material Properties Numerical Value

Elastic Modulus/(Pa) 2.1 × 1011

Density/(kg/m3) 7.85 × 103

Poisson’s ratio 0.34
Section size/(m) 0.03 × 0.002

Length/(m) 3

A concentrated mass block is installed on both sides of each node of the flexible beam
and fixed to the flexible beam through threaded holes. The eye hole is used for suspension
and the initial displacement application hole is used for fixing. The initial displacement is
applied to the flexible beam during the test.

The specific dimensions and material properties of the concentrated mass are shown
in Table 4:

Table 4. Concentrated mass size and material attribute table.

Material Properties Numerical Value

Elastic Modulus/(Pa) 2.1 × 1011

Density (kg/m3) 7.85 × 103

Poisson’s ratio 0.34
Size/(m) 0.06 × 0.06 × 0.002

Mass/(kg) 0.565

The target is the target taken by the camera, and each target is a group of speckles.
The speckle detail diagram is shown in the Figure 9. The speckle pattern is pasted onto a
concentrated mass block to form a target.
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Figure 9. Speckle detail diagram.

The test equipment mainly includes:

1. DHDAS dynamic signal acquisition and analysis system, the sampling frequency is
25.6 Hz, the sampling point is 512, and the frequency domain resolution is 0.05 Hz;

2. Piezoelectric acceleration sensor, the model is CA-YD-107, the sensitivity is 2.73 pC/ms−2;
3. 3 XDA-40/25 electromagnets and 1 24 V student power supply;

The 3 m-long flexible beam is suspended using four-stage flying beams, and the
flexible beam nodes 3, 4, 6, 7, 10, 11, 13, and 14 are suspended using rubber ropes, and the
flexible beams are suspended at nodes 4, 6, 8, and 10. A total of six targets are arranged in
12 and 14, the node 1 is fixed by the fixing system, the initial displacement of the node 16 is
respectively applied by the ultralow-frequency flexible structure excitation system, and
they are released synchronously, and the appropriate DIC method is selected to measure
the distance and pixel resolution, Among them, each node shooting camera is shown in
Table 5. Collect the displacement signal of the structure within 0~100 s, the test site is
shown in Figure 10, and the schematic diagram of the test layout is shown in Figure 11.
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Table 5. Camera settings.

Target (Node) 1 (4) 2 (6) 3 (8) 4 (10) 5 (12) 6 (14)

Shooting camera serial number 1, 2 1, 2 3, 4 3, 4 5, 6 5, 6
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The ERA is used to analyze the test data, and the first five order peaks are selected
for analysis and calculation, and the first five order modal frequencies of the structure are
obtained. Figure 12 shows the displacement response diagram obtained by the DIC.
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Figure 12. Displacement response diagram. (a) Displacement response curve of point 1. (b) Dis-
placement response curve of point 2. (c) Displacement response curve of point 3. (d) Displacement
response curve of point 4. (e) Displacement response curve of point 5. (f) Displacement response
curve of point 6.

Figure 13 is the test versus theoretical frequency response diagram. Table 6 is the
frequency error table based on the ground test system identification based on the dynamic
characteristics of the flexible structure and the theory modal frequency. The analysis shows
that the error between the first five-order modal parameters identified and the finite element
theory result is small, the error of the first order frequency is −1.081%, the error of the
second order frequency is 2.661%, the error of the third order frequency is−3.396%, and the
fourth order frequency. The error is 1.221%, and the fifth order frequency error is 4.550%,
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thus verifying the feasibility and accuracy requirements of the designed flexible structure
dynamic characteristics ground test system. The comparison results of the identified mode
shape and the simulated mode shape are shown in Table 7:
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Table 6. Comparison of identification frequency.

Modal Order Identification
Frequency/Hz

Theory
Frequency/Hz Error/%

1 0.183 0.185 −1.081
2 0.463 0.451 2.661
3 1.081 1.119 −3.396
4 2.488 2.458 1.221
5 3.975 3.802 4.550

Table 7. Comparison diagram of identification modes.
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According to the modal confidence theory, the MAC value of the result obtained by the
ERA and the mode shape result obtained by Patran is compared, as shown in Figure 14. The
first five-order experimental modal vibration obtained by the ERA after the random initial
displacement is applied to the structure. The model has a high degree of matching with the
modal shape obtained by theory, and the modal confidence can reach more than 0.9, which
verifies the feasibility and accuracy requirements of the ground modal test system for the
dynamic characteristics of the flexible structure designed in this paper.
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flexible structures. Through the initial displacement excitation of the ultralow-frequency
flexible structure, the DIC method is used to obtain the response signal of the structure,
and the ERA is used to identify the ultralow-frequency mode of the structure. Through the
study of two examples, the following conclusions are obtained:

1. For the modal test of the solar wing array structure, the DIC method and the traditional
contact measurement method were used to identify the modal parameters. The
structure frequency identification error of the two modal identification methods is
below ±3%, which preliminarily verifies the feasibility and accuracy of the ultralow-
frequency flexible structure modal test method based on the DIC method.

2. Aiming at the ultralow-frequency flexible cantilever beam structure, the modal mea-
surement is carried out by using the DIC method. The experimental test results are in
good agreement with the theory results, which proves the accuracy of the modal test
method based on the DIC method proposed in this paper.

Flexible structures have the characteristics of ultra-low frequency and the first mode
frequency can be less than 0.5 Hz. The novelty of this paper is that the low frequency of the
structure is difficult to be excited by the pulse excitation obtained by using a force hammer.
A frequency below 0.5 Hz can be excited by using the Initial Displacement Excitation
Method. It is difficult to identify modal frequencies below 0.5 Hz using accelerometer
measurements. Besides, the contact sensor will cause additional mass to the structure,
which will greatly affect the modal analysis results of flexible structures. The Digital Image
Correlation method can be used to measure ultra-low frequency without additional mass.
This paper proposes a modal identification method based on Digital Image Correlation
method for modal analysis of large ultra-low frequency flexible structures. The proposed
method can identify flexible structures with a modal frequency of 0.183 Hz.
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