
����������
�������

Citation: Lazić, M.; Perišić, A.;

Perišić, B. Residential Buildings

Complex Boundaries Generation

Based on Spatial Grid System. Appl.

Sci. 2022, 12, 165. https://doi.org/

10.3390/app12010165

Academic Editor: Jürgen Reichardt

Received: 7 November 2021

Accepted: 20 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Residential Buildings Complex Boundaries Generation Based
on Spatial Grid System
Marko Lazić 1, Ana Perišić 1,* and Branko Perišić 2

1 Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; lazic.m@uns.ac.rs
2 Center Novi Sad, Singidunum University, 11000 Belgrade, Serbia; bperisic@singidunum.ac.rs
* Correspondence: anaperisic@uns.ac.rs

Abstract: The automatic generation of building boundaries in contemporary research and engineering
projects and practices is dominantly characterized by interior functional constraints. As a basis for
the automated generation of various building boundaries, the solution presented in this paper is a
novel approach that ignores the internal (functional) and focuses only on the external (non-functional)
impacts. The primary orientation on external impacts may be, at any instance, extended by suitable
complementary traditional methodology. The applied research methodology and presented method
rely on a developed extendible rule-based system that simplifies floor plan creation by the recursive
application of a formulated spatial grid generation algorithm. Based on starting parameter values
(mainly the lot and building area spaces) the algorithm tends to create a set of grids that satisfy initial
constraints by marking the individual grid cells as a part of the building or empty. The presented
conceptual framework model served as a foundation for creating a prototype software application
that supports the experimental generation of grid arrays that are transformed into readable images of
residential building boundaries. For the initial validation of the developed methodology, method,
and algorithm, the concrete parametric resolution is set to 1 m. The comparative analysis has shown
that the presented approach overcomes some of the limitations of previous related research that
generate building boundaries in simple rectangular form or with limited variability. The proposed
method, in its current stage, outperforms discussed existing methods concerning complex shape
boundary building plan generation. Besides that, there is a broad space for further enhancement
directions concerning the interoperability with other, independently developed, frameworks, and
software tools.

Keywords: computer graphics image generation; floor plan; rule-based algorithm; complex shape
boundary of buildings

1. Introduction

Designing a floor plan is one of the common tasks performed by architects. For
thousands of years, this process was manually conducted and supported by different
methods that consider the environment around the building, room types and sizes, room
connections, as well as climate, culture, and other influencing rules. In recent years there is
a great need for automation of this process considering the digitalization of this industry.
This trend applies not just in the field of architecture, but also in the media and video game
industries where flexible rule-based rapid model generation is essential.

Rapid generation of city environments consists of repetitive tasks which can be
achieved more efficiently using procedural modeling techniques. These techniques are
based on automatic or semi-automatic systems for procedural modeling such as shape
grammar, cellular automata, L-systems, fractals, etc. These systems are often highly special-
ized for segmented design procedures using a narrow framework for a specific task.

The general specification of any system includes functional and non-functional re-
quirements, where the latter addresses the constraints under which the former have to be

Appl. Sci. 2022, 12, 165. https://doi.org/10.3390/app12010165 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010165
https://doi.org/10.3390/app12010165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9093-9462
https://doi.org/10.3390/app12010165
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010165?type=check_update&version=2

Appl. Sci. 2022, 12, 165 2 of 20

applied. The implementation of non-functional requirements is generally more demanding.
The majority of scientific boundary generators are focused on the functional usage of the
interior spaces usually resulting in simple building boundaries. The form of the building
acts as a container for the interior space but it is not solely defined or influenced by it.

Functionality is not a key component in the digital and video game industry where
residential building simulations mainly create a recognizable style. The contemporary
design in real-world architecture directly influenced the research approach presented in
this article.

In the presented approach, the focus is on the restrictions implied by external non-
functional influencers, like contemporary building design, wind comfort, building-lot
design, or even aesthetic factors and so on, as the driving force for shaping the designed
residential building. This was the main reason why the adopted approach ignores the inte-
rior functionality in order to enable the rapid generation of building boundary variations
that are compliant with the external restrictions, to which the interior functionality impact,
as the other side of the same coin, may be added afterward (on demand).

This paper is focused on residential-type buildings which usually have more complex
borders than other types such as office buildings, factories, supermarkets, schools, etc.
In the verification phase of our methodology, we have used real examples of complex
building boundaries.

The prototyped solution to the problem of automatic residential building border
design by observing its floor plans as a grid system has been achieved by using a simple
rule-based algorithm that accepts the area of the building as an input and generates complex
shapes that represent different versions of residential floor plan border. The developed
algorithm generates floor plans by observing buildings in the form of a two-dimensional
array (grid) with respect to lot area and fixed building boundary size, through successive
transformation steps leading to the completely connected cells model (see Figure 1).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 20

The general specification of any system includes functional and non-functional re-
quirements, where the latter addresses the constraints under which the former have to be
applied. The implementation of non-functional requirements is generally more demand-
ing. The majority of scientific boundary generators are focused on the functional usage of
the interior spaces usually resulting in simple building boundaries. The form of the build-
ing acts as a container for the interior space but it is not solely defined or influenced by it.

Functionality is not a key component in the digital and video game industry where
residential building simulations mainly create a recognizable style. The contemporary de-
sign in real-world architecture directly influenced the research approach presented in this
article.

In the presented approach, the focus is on the restrictions implied by external non-
functional influencers, like contemporary building design, wind comfort, building-lot de-
sign, or even aesthetic factors and so on, as the driving force for shaping the designed
residential building. This was the main reason why the adopted approach ignores the in-
terior functionality in order to enable the rapid generation of building boundary varia-
tions that are compliant with the external restrictions, to which the interior functionality
impact, as the other side of the same coin, may be added afterward (on demand).

This paper is focused on residential-type buildings which usually have more com-
plex borders than other types such as office buildings, factories, supermarkets, schools,
etc. In the verification phase of our methodology, we have used real examples of complex
building boundaries.

The prototyped solution to the problem of automatic residential building border de-
sign by observing its floor plans as a grid system has been achieved by using a simple
rule-based algorithm that accepts the area of the building as an input and generates com-
plex shapes that represent different versions of residential floor plan border. The devel-
oped algorithm generates floor plans by observing buildings in the form of a two-dimen-
sional array (grid) with respect to lot area and fixed building boundary size, through suc-
cessive transformation steps leading to the completely connected cells model (see Figure
1).

Figure 1. The illustration of an algorithm for one particular transformation starting with a 5 by 5
array (matrix), transformed to a 10 by 10 and finally a 20 by 20 array resulting in boundary rendered
in 2D and also illustrated in 3D visual form.

Figure 1. The illustration of an algorithm for one particular transformation starting with a 5 by 5 array
(matrix), transformed to a 10 by 10 and finally a 20 by 20 array resulting in boundary rendered in 2D
and also illustrated in 3D visual form.

The algorithm validity is checked via the application of prototyped software on a
selected set of real residential building examples. The derived results have been used for
algorithm adjustments and code refactoring that were used in order to raise the level of ab-
straction and enable the development of a software framework conceptual model that may

Appl. Sci. 2022, 12, 165 3 of 20

be used in further method, algorithm, and software tool refinements. The rest of the paper
is organized as follows. Section 2 presents a brief survey of different approaches related to
the research topic. In Section 3, a brief overview of methods and goals is presented together
with the conceptual model of extendible software framework intended to serve as an
umbrella for future improvements of methodology implementation refinements. Section 4
contains a detailed description of the algorithm and several representative examples that
illustrate the way the algorithm is developed and refined. In Section 5 the cross-reference
analysis of the proposed method and algorithm performance compared to related work
references are presented. Section 6 addresses the discussion, and the possible directions of
future research are presented in Section 7. The list of referenced literature is presented in
the finishing part of the article.

2. Related Work

In the current literature, there are a number of proposed systems suitable for automatic
building generation based on different geometry concepts. The layout of rectangular floor
plans was introduced by Shekhawat [1]. Kozminski et al. [2] presented an algorithm for
architectural floor plan generation using rectangular planar graphs. Bhasker et al. [3]
proposed a similar approach using triangular planar graphs. This system was further
developed by Wang et al. [4], who introduced an approach to generate floor plans from room
adjacencies obtained from existing plans. All of these methods only generate rectangular
rooms based on predefined (existing) graph structures.

Martin [5] has developed an algorithm to generate residential floor plans using the
Monte Carlo method for room distribution. Flemming et al. [6] have applied an expert
system for solving building layouts, introducing many serious disadvantages. As a conse-
quence of the fact that the completeness and consistency of the system are not known to the
user, it takes an intolerably lot of time to converge resulting in bad response time. Addition-
ally, real building boundaries usually vary in shape and these variations are ignored in both
Martin’s [5] and Flemming et al.’s [6] approach. The boundaries are rectangular because
they are derived from the internal constraints where all of the rooms have s rectangular
shape, (which is not very common in contemporary architectural practice).

Del Rio-Cidoncha et al. [7] based the research approach on an expert system where
optimization is performed through the use of artificial intelligence. Nauata et al. [8]
developed a method for house layout generation using relational generative adversarial
networks. The presented solution satisfies the majority of addressed problem aspects but
generated building boundaries are dominantly simple, due to the fact that rectangular
forms are derived from rectangular rooms in most discussed cases. For the generation
of building layouts within a known boundary, Peng et al. [9] used a linear programming
system of deformable tile templates. The exterior building boundary is the input while the
interior layout is divided into tiles that are labeled as rooms. This is one of the research
works that use the building boundary as an input that drives function within the object
that, in a broader sense, shares a similar idea as the approach presented in this paper.
Wu et al. [10] proposed a solution that automatically generates layout designs based on a
MIQP (mixed integer quadratic programming) formulation.

Nonlinear programming techniques have been used for floor layout problems by
Li et al. [11]. However, the solutions are derived for rectangular shape buildings only.
Harada et al. [12] developed a model for interactive manipulation of layouts by the use of
shape grammar. The results are within the simple form of building boundary and constant
interactive input from a user is required. Wang et al. [13] proposed a framework for the
automatic generation of floor plans using graph grammar formalism. The system can
reproduce good results, but for each deviation from a rectangular building, interactive user
input is required. Duarte [14] presented an interactive system for layout generation based
on discursive grammar incorporating programming grammar and designing grammar.
The described solutions include the 3D aspect and layout of the design space, but, due
to the recognizable architectural style that has been analyzed, only produce rectangular

Appl. Sci. 2022, 12, 165 4 of 20

forms. Some of the researchers found the solution for house layout automation through
the use of genetic algorithms [15–17]. Wu et al. [18] proposed a data-driven method for
generating floor plans for residential buildings. They utilized a dataset of floor plans of real
buildings in order to construct a neural network for layout generation. This research shows
that, with extensive layout database and adequate neural network training, the problem of
automatically generation of building layouts can be solved using existing boundaries as
an input.

Merrel et al. [19] used a Bayesian network trained on real-world data to design an ar-
chitectural program that generates floor plans using stochastic optimization. The described
solution enables the generation of simple and complex building forms, but with low levels
of complexity. The basic approach, described in this paper, is focused on the creation of
very complex forms instead. That is why the former related work reference is used for the
comparative analysis of derived results, presented in detail in Section 5.

Hua [20] proposed a method for automatic construction of irregular floor plans from
the graphical patterns as an input where the accuracy of the input area of the rooms in
the described results is not of great importance. The boundary is derived from the input
image of an object shape. Al Omani [21] used natural graphic images to generate a building
layout plan. Bao et al. [22] developed a method for exploring different building layouts
based on simulated annealing.

Procedurally generating building shapes with grid-based constraints based on the
cellular automata approach is widely adopted in the field of architectural and urban design
based on the cellular automata approach. Patterns generated by cellular automata systems
are used in architectural design for form exploration [23–26]. Several methods have been
developed based on cellular automata systems. Anzalone and Clarke [27] developed a
system for the generation of 3D buildings based on Conway’s Game of Life system [28].
Araghi and Stouffs [29] use cellular automata for the generation of high-density residential
buildings, addressing density, accessibility, and natural light. Some researchers explored
cellular automata generation results as the first step and developed architecture form
enveloping some cells or the entire form [30,31].

However, the application of cellular automata systems in the domain of architectural
design is faced with several limitations. According to [26,32,33], the degree of complexity
for even simple architectural outcomes suggests that generating a complete architectural
design in this manner is resource-demanding and, in general, probably even not possible.
The main challenge is to find the solution that preserves an acceptable balance between
complexity in architectural design and formal rules of cellular automata systems.

Summarizing the current state-of-the-art analysis it is possible to conclude that there
are several approaches used as a foundation to specification, modeling, and design of tools
for automated generation of building boundaries, with emphasis on 2D or 3D building
geometry layout inclusion.

The comparative analysis of related work relevant to this article topics, with respect
to selected key factors (dimensionality, interior layout inclusion, and boundary type) is
presented in Table 1.

The analyzed results, however, show that the prevalent trend mainly focuses on the
simple boundary type forms because either complex forms appeared challenging for the
particular approach or they were not considered at all.

Appl. Sci. 2022, 12, 165 5 of 20

Table 1. The comparative analysis of related work relevant to this article.

Research Method/Problem That Is Addressed Dimensionality Interior Layout Boundary
Type

Shekhawat [1] Spiral based layout generation 2D Yes Rectangular

Kozminski et al. [2] Algorithm for finding a rectangular
dual of a planar triangulated graph 2D Yes Rectangular

Bhasker et al. [3]
Algorithm to construct a rectangular

dual of an
n-vertex planar triangulated graph

2D Yes Rectangular

Wang et al. [4]
Algorithm for floor plan generation
from existing floor plans based on

graph transformations
2D Yes Rectangular

Martin [5]

Algorithm for procedural house
generation based on the Monte Carlo

method (one example without the code
or detailed method description)

2D
Only as a

predefined
rectangular shape

Complex, derived from
rectangular rooms

Flemming et al. [6] Expert system for solving building
layouts based on design grammars 2D

Only as a
predefined

rectangular shape

Complex, derived from
rectangular rooms

Del Rio-Cidoncha et al. [7] Expert system based on route search as
a problem of AI optimization 2D Yes Rectangular

Nauata et al. [8]
Relational generative adversarial

neural network for graph-constrained
house generation

2D Yes Simple, derived from
mostly rectangular rooms

Peng et al. [9] Layout computation using
deformable templates 2D Yes Boundary is an input

Wu et al. [10] Algorithm based on mixed-integer
quadratic programming formulation 2D Yes Simple, but also Boundary

can be an input

Li et al. [11] Nonlinear programming techniques
for floor layout generation 2D Yes Rectangular

Harada et al. [12]
Mixed continuous/discrete models
where user can manipulate objects

within constrains
2D Yes Simple, derived from

mostly rectangular rooms

Wang et al. [13] Algorithm that uses reserved graph
grammar formalism 2D Yes

Simple with required
input for each deviation

from rectangle form

Duarte [14]
Discursive grammar that consists of

programming and a
designing grammar

3D Yes Rectangular, because of
the architectural style

Wu et al. [18]
Data-driven method for generating

floor plans where building boundary is
an input

2D Yes Boundary is an input

Merrel et al. [19] Bayesian network trained on
real-world data 3D Yes Mostly simple, with

limited complexity

Hua [20], AlOmani [21] Irregular architectural layout synthesis
with graphical inputs 2D Yes, with errors in

the output area Irregular, from pattern

Bao et al. [22]

Anzalone and Clarke [27] Complex adaptive systems applied to
architecture form 3D No Mostly simple

Araghi and Stouffs [29] Cellular automata-based algorithm for
3D building generation 3D No

Complex, but with
low resolution

(10 × 10 m cells)

3. Overview

From the methodology point of view, the starting point of the research, presented in
this paper, was to derive the foundations of an extendible rule-based framework model that
may be used to derive either formal procedures or a family of software tools addressing
the problem of building boundary generation.

There are two main framework features that have to be explicitly addressed, extendibil-
ity and persistency.

Extendibility is the most important characteristic of any formal procedure or software
system. It means that new concepts may be introduced at any instance of time without

Appl. Sci. 2022, 12, 165 6 of 20

impact on any previously added (existing) concepts. It is especially important in software
engineering where it is known as an Open/Close quality design principle [34]. In our
case, it is essential to support the extendibility of applied strategy (Inner-Bounded, Outer-
Bounded, or even the combination of them), method (the collections of rules), and algorithm
(rule-based limited set of steps needed to reach an arbitrary problem solution).

The initial conceptual framework model, in the form of an object-oriented diagram, is
presented in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 20

Figure 2. The initial framework conceptual model.

The method used in the proposed solution receives the area of a building as an input
in the form of two-dimensional grid representation (particularly 1 × 1 m cells) and varies
available algorithms in order to, if possible, generate corresponding building boundaries
that satisfy initial constraints (lot and building size) preserving the grid cells interconnec-
tion principle. This approach is chosen to initially simplify the overall shape thereby gen-
erating particular solutions that:
• can be, for verification purposes, easily compared with other methods
• are suitable for further enhancements and development in the domain of building’s

layout design.
Boundary shape can be either rudimentary with a small number of variations, or

quite complex just as is the case in the real examples examination. The primary focus of
the proposed method is the focus on complex building boundaries. As the boundary com-
plexity directly influences algorithm complexity and the time for analytical calculation,
the method is exercised through the application of different spatial grid transformation
algorithms, described in the algorithm section of the article. These variations had a direct
impact on criteria that restricts the number of lines composing the particular floor plan.
This calculated number is used as a metric for comparative analysis and the evaluation of
the proposed method with regards to other published solutions.

0..1

0..*

0..1

0..*

<<bind>>

<<call>>

<<bind>>

0..1

0..1

0..10..1

0..1

0..*

<<call>>

Framework
{abstract}

-
-

FrameworkID
FrameworkName

: int
: int

+
+
+
+
+
+

buildRulles ()
buildAlgorithms ()
buildConfiguration ()
buildStrategy ()
loadModel ()
saveModel ()

: int
: int
: int
: int
: int
: int ConcreteAlgorithm1

+ executeA1 () : int

ConcreteAlgorithm_k

+ executeAk () : int
RulesCollection

{abstract}

RulesStructure

CompositeRule

ElementaryRule
{abstract}

ElementaryRule1 ElementaryRule2 ElementaryRule_n

ConcreteRulesCollection_1

ConcreteRulesCollection k

AlgorithmInterface

+ execute () : int

AlgorithmManager

+ applyAlgorithm () : int

RulesManager

+ buildCollection () : int

StrategyManager
StrategyInterface

+ findAlgorihhm () : int

InnerBoundStrategy OuterBoundStrategy

Figure 2. The initial framework conceptual model.

The Framework is a concept to which the interoperability concerns are allocated. It
delegates the extendible point handling to StrategyManager, AlgorithmManager, and Rules-
Manager components with the extending points: Strategy Interface, Algorithm Interface,
and ElementaryRule fabric respectively (see Figure 2).

The explicit dependency between each ConcreteAlgorithm and corresponding Con-
creteRulesCollection has to be maintained in order to enable the analysis of algorithm-rules
correlation (see Figure 2).

Appl. Sci. 2022, 12, 165 7 of 20

The other essential point of framework specification is the way of preserving concrete
products (generated set of building boundaries) joined with a particular instance of Strategy,
Algorithm, and Parameter combination data.

The initial conceptual framework model from the persistency aspect is presented in
Figure 3 in the form of an object-oriented diagram.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20

The resolution of 1 m of the final image was chosen because in related work research
smaller cells of the system caused the generation of buildings that are too complex com-
pared to real buildings and larger cells composed results that are simple and similar to
related work findings.

This paper method is applied to building boundary generation for a 20 × 20 m lot size
because typical residential buildings are in this category. Expanding the boundaries of the
lot did not improve the algorithm in the experimental phase of this research.

Figure 3. The initial framework conceptual model—persistency aspect.

The rule-based system is chosen because it allows the writing of algorithms that are
reasonably fast for a rapid generation. They are also adjustable to better suit the needs for
the task of creating images that represent building boundaries. Through an extensive trial
and error process, the rules for the proposed method are formulated and described in the
algorithm section of this paper.

The method described in this paper is derived in a way that it can be compared with
the real buildings of complex boundary shape to confirm that there is a need for such a
generator. Next, the method is compared with different results of other methods de-
scribed in the related work section and the discussion section of this article.

4. Algorithm
The general algorithm used to illustrate and refine the proposed method is presented

in Figure 4.

0..1

0..1

0..1

0..*

<<call>>

0..1

0..*

0..1
0..*

<<call>>

<<call>>

<<call>>

Framework
{abstract}

-
-

FrameworkID
FrameworkName

: int
: int

+
+
+
+
+
+

buildRulles ()
buildAlgorithms ()
buildConfiguration ()
buildStrategy ()
loadModel ()
saveModel ()

: int
: int
: int
: int
: int
: int

FrameworkInstanceModel
-
-

initialParameterSet
usedAlgorithms

: Parameter
: ObjectSet

FrameworkInstanceView

+ getInstanceModel () : FrameworkInstanceModel

Persistency

+
+

loadInstance ()
saveInstance ()

: int
: int

FrameworkInstanceController

+
+
+

executeAlgorithm ()
seteInstanceModel ()
notifyInstanceView ()

: void
: void
: int

Parameter
- parameter : String

PersistenLayer_1 PersistentLayer_L

GetModel

+ getModel () : FrameworkInstanceModel

SetModel

+ setModel () : FrameworkInstanceModel

NotifyView

+ notify () : int

Figure 3. The initial framework conceptual model—persistency aspect.

The role of the Framework concept is the same.
The Persistency interface concept enables the extendibility of vide variety of persistent

forms and structure handlers used to store a large volume of data usually created in the
particular processing. It isolates the persistent layer from its dynamic management.

The Framework delegates the internal data structure concerns to the FrameworkInstance-
Model concept. It is loaded and saved through the Persistency interface methods implementation.

The Framework delegates the visualizations concerns of internal data structure to the
FrameworkInstanceView concept and data structure transformation actions concerns to the
FrameworkInstanceControler concept.

The role of GetModel, SetModel, and NotifyView interfaces is to relax dependences
of FrameworkInstanceModel, FrameworkInstanceView, and FrameworkInstanceCon-
troler concepts.

The method used in the proposed solution receives the area of a building as an input
in the form of two-dimensional grid representation (particularly 1 × 1 m cells) and varies
available algorithms in order to, if possible, generate corresponding building boundaries
that satisfy initial constraints (lot and building size) preserving the grid cells interconnection
principle. This approach is chosen to initially simplify the overall shape thereby generating
particular solutions that:

• can be, for verification purposes, easily compared with other methods

Appl. Sci. 2022, 12, 165 8 of 20

• are suitable for further enhancements and development in the domain of building’s
layout design.

Boundary shape can be either rudimentary with a small number of variations, or
quite complex just as is the case in the real examples examination. The primary focus
of the proposed method is the focus on complex building boundaries. As the boundary
complexity directly influences algorithm complexity and the time for analytical calculation,
the method is exercised through the application of different spatial grid transformation
algorithms, described in the algorithm section of the article. These variations had a direct
impact on criteria that restricts the number of lines composing the particular floor plan.
This calculated number is used as a metric for comparative analysis and the evaluation of
the proposed method with regards to other published solutions.

The resolution of 1 m of the final image was chosen because in related work research
smaller cells of the system caused the generation of buildings that are too complex compared
to real buildings and larger cells composed results that are simple and similar to related
work findings.

This paper method is applied to building boundary generation for a 20 × 20 m lot size
because typical residential buildings are in this category. Expanding the boundaries of the
lot did not improve the algorithm in the experimental phase of this research.

The rule-based system is chosen because it allows the writing of algorithms that are
reasonably fast for a rapid generation. They are also adjustable to better suit the needs for
the task of creating images that represent building boundaries. Through an extensive trial
and error process, the rules for the proposed method are formulated and described in the
algorithm section of this paper.

The method described in this paper is derived in a way that it can be compared with
the real buildings of complex boundary shape to confirm that there is a need for such a
generator. Next, the method is compared with different results of other methods described
in the related work section and the discussion section of this article.

4. Algorithm

The general algorithm used to illustrate and refine the proposed method is presented
in Figure 4.

In the rest of the section, there is a detailed explanation of the steps that have been
used in the algorithm and method refinement process.

The shape of a building layout L is defined by the label of the array with 20 columns
and 20 rows. Each cell of the array represents space of 1 m by 1 m that can be either part of
the building—B or part of the empty space around it—E. The number of cells that represent
built space N is the value that corresponds to the desired area of the house. Value N is the
area of the building in square meters. A valid shape should satisfy two constraints first, all
B labels are connected into a single shape; second, there are no E labels inside layout L.

Area(L) = N (1)

The algorithm starts from the simplest case where the floor plan is represented as an
array of five columns and five rows where random values describe the overall shape. Next,
the transformation of the results into a 10 by 10 matrix with specific rules that are applied.
Finally, from previous results, a 20 by 20 array is formed. In this final step sets of rules
are applied.

The algorithm can be applied for generating buildings that are square-shaped and
have a maximum area of 400 square meters. It can give results for houses that are in the
range of 40 to 360 square meters.

Appl. Sci. 2022, 12, 165 9 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 20

Figure 4. The general algorithm.

In the rest of the section, there is a detailed explanation of the steps that have been
used in the algorithm and method refinement process.

The shape of a building layout L is defined by the label of the array with 20 columns
and 20 rows. Each cell of the array represents space of 1 m by 1 m that can be either part
of the building—B or part of the empty space around it—E. The number of cells that rep-
resent built space N is the value that corresponds to the desired area of the house. Value
N is the area of the building in square meters. A valid shape should satisfy two constraints
first, all B labels are connected into a single shape; second, there are no E labels inside
layout L.

Area(L) = N (1)

The algorithm starts from the simplest case where the floor plan is represented as an
array of five columns and five rows where random values describe the overall shape.
Next, the transformation of the results into a 10 by 10 matrix with specific rules that are
applied. Finally, from previous results, a 20 by 20 array is formed. In this final step sets of
rules are applied.

The algorithm can be applied for generating buildings that are square-shaped and
have a maximum area of 400 square meters. It can give results for houses that are in the
range of 40 to 360 square meters.

Figure 4. The general algorithm.

4.1. Generation of 5 by 5 Array

The first stage of the method generates a random array using a random number
generator. The only input into the algorithm is the desired area of the building. In the first
stage, that number is divided into a 5 by 5 array.

In order to get valid results, new rules are applied. Every cell of the 5 by 5 array will
be transformed into 16 cells in the final 20 by 20 solution. The first rule applied states that
any cell cannot have a value greater than 16 or less than 0. If one cell of this array is c(x,y)
then we can use the expression:

0 ≤ ∀c(x,y) ≤ 16 (2)

The next constraint is that the middle cell of the array Lf (2,2) is always 16. This means
that in the final array the middle of the layout is always labeled as part of the building
(expression (3)). 

c(0,0) c(1,0) c(2,0) c(3,0) c(4,0)
c(0,1) c(1,1) c(2,1) c(3,1) c(4,1)
c(0,2) c(1,2) 16 c(3,2) c(4,2)
c(0,3) c(1,3) c(2,3) c(3,3) c(4,3)
c(0,4) c(1,4) c(2,4) c(3,4) c(4,4)

 (3)

Appl. Sci. 2022, 12, 165 10 of 20

As the consequence, in the final 20 by 20 array, not all corners will be labeled as part
of the building. In the 5 by 5 array the corner cells are as C = {C1, C2, C3, C4} and 8 middle
cells as M = {M1, M2, M3, M4} as in showed in expression (2).

C1

∣∣∣∣ · · · · · ·.

∣∣∣∣ M1

∣∣∣∣ · · ·. . .

∣∣∣∣ C2

∣∣∣∣ · · · · · ·.

∣∣∣∣
M2
∣∣ · · · · · · ∣∣ 16 M3

∣∣ · · · · · · ∣∣
C3

∣∣∣∣ · · · · · ·.

∣∣∣∣ M4

∣∣∣∣ · · ·. . .

∣∣∣∣ C4

∣∣∣∣ · · · · · ·.

∣∣∣∣

 (4)

Their corresponding values are Cv for the sum of C1, C2, C3, and C4 and Mv for the
sum of M1, M2, M3, and M4 = Relationship of values of all corner cells Cv and middle cells
Mv is defined by the formulas:

Cv = bN ∗ 0.6− 15c (5)

Mv = N − 16− Cv (6)

where N represents the area of the building. The next step was to get unique random
solutions for the layout. This is solved by the generation of four random real numbers r1,
r2, r3, and r4 where {rn ∈ R | 0 ≤ rn ≤ 1} which is applied in order to get values of cells
in four corners of the array. Cv1, Cv2, Cv3, and Cv4 are values of cells C1, C2, C3, and C4
respectively. Their value is calculated by the formula:

Cvn =

⌊
Cv ∗

rn

∑4
i=1 ri

⌋
| n = {1, 2, 3, 4} (7)

This will determine where the most cells labeled as built are in the final solution. If
Cvn is bigger than 49, then the value is 49 and the difference is added to the other cells. The
next step is to fill Cvn values into corner cells of a 5 by 5 array. This is accomplished by
forming a set of 4 numbers {cvn1, cvn2, cvn3, cvn4} which sum is the value of the cell Cn. They
are calculated by the rules in the equation:

[cvn1, cvn2, cvn3, cvn4] =


[Cvn, 0, 0, 0] i f Cvn ≤ 16

[16, Cvn − 16, 0, 0] i f Cvn ≤ 32
[16, 16, Cvn − 16, 0] i f Cvn ≤ 48
[16, 16, 16, Cvn − 16]otherwise

(8)

This list is then transformed so the biggest values are closest to the middle of the
array, and the lowest is at the corners. The other two cells are randomly placed in the other
two places for Cn values. This is illustrated by the next formula:

.

.

. 16

.

.

→


cv14 (cv12 V cv13) . . . (cv22 V cv23) cv24
(cv12 V cv13) cv11 . . . cv21 (cv22 V cv23)

. 16
(cv32 V cv33) cv31 . . . cv41 (cv42 V cv43)

cv34 (cv32 V cv33) . . . (cv42 V cv43) cv44

 (9)

By these steps, only the middle cells of M are left to be filled. The algorithm was
formulated to firstly fill the middle cells that are surrounded by at least two 16 cells. In that
case, the cell is filled with value 16. Secondly, if the values of the cells orthogonally 1 cell
away are bigger than 32, if other conditions are met, then the cell value is 12. The rest of the
middle cells are filled with the number 8 until the sum of the array is the same as the input
number of built cells N.

There is a possibility that the sum of the array is less than N. The difference is calculated
and represented as D. In that case, the rest of the sum is split into values depending on
the value D and the number of possible cells to be filled. These values are filled in cells

Appl. Sci. 2022, 12, 165 11 of 20

which value is zero. Finally, if the values of the middle cells M that are in the first or the
last column or row m15-i not zero, and the values of the middle cells M that are connected
to them m34-i are not 16, then values of these cells are recalculated by the rule:

m15−i > m34−i →
{

m34−i = 16 and m15−i = 16−m15−i + m34−i i f m15−i + m34−i ≥ 16
m34−i = m15−i + m34−i and m15−i = 0 i f mfl−i + msf−i < 16 (10)

An example is shown in expression (11). Value m15-i = 12 and value m34-i = 5. In this
case, m15-i > m34-i, and therefore new values are recalculated. Without this step, empty cells
would appear inside the borders of the building.

. 12

. 5

.

.

.

→


. 1

. 16

.

.

.

 (11)

By these rules, all problems are solved and the next step is transforming the 5 by
5 array to a 10 by 10 array using different rules.

4.2. Generation of 10 by 10 and 20 by 20 Arrays

This array is the middle step between generating the first sketch and the final array.
Every cell value is split into four values as shown in the array:



c(0,0) →
(

.

.

)
c(1,0) →

(
.
.

)
c(2,0) →

(
.
.

)
c(3,0) →

(
.
.

)
c(4,0) →

(
.
.

)
c(0,1) →

(
.
.

)
c(1,1) →

(
.
.

)
c(2,1) →

(
.
.

)
c(3,1) →

(
.
.

)
c(4,1) →

(
.
.

)
c(0,2) →

(
.
.

)
c(1,2) →

(
.
.

)
c(2,2) →

(
.
.

)
c(3,2) →

(
.
.

)
c(4,2) →

(
.
.

)
c(0,3) →

(
.
.

)
c(1,3) →

(
.
.

)
c(2,3) →

(
.
.

)
c(3,3) →

(
.
.

)
c(4,3) →

(
.
.

)
c(0,4) →

(
.
.

)
c(1,4) →

(
.
.

)
c(2,4) →

(
.
.

)
c(3,4) →

(
.
.

)
c(4,4) →

(
.
.

)


(12)

Isolating one cell from the 5 by 5 array transformation can be presented as:

c(0,0) →
(

cx(0,0) cx(1,0)
cx(0,1) cx(1,1)

)
(13)

In this case value of the cell c(0,0) is equal to the sum of values cx(0,0), cx(1,0), cx(0,1), and
cx(1,1). If the value of the 5 by 5 cell is zero then four values corresponding to this value in a
10 by 10 array are 0. Similarly, if the same value is 16, then all four values are equal to 4.
When the value is between 0 and 16 first step is to split the number with the rule then no 10
by 10 cell can have a value greater than 4. In order to have a solution without empty cells
in the middle of the grid, cells values are preferably 4 or 0. Only one cell out of four per
transformation can have a value that is different than 0 or 4.

A list of four values is then applied in the 10 by 10 array based on the surrounding
cells. If the values of cells around the observed cells are 16 and 0, then minimal values
from the list are positioned close to other 0 values, and maximum values of the list are
positioned close to cells with value 16. An example of this method is presented in Figure 5.

Appl. Sci. 2022, 12, 165 12 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

from the list are positioned close to other 0 values, and maximum values of the list are
positioned close to cells with value 16. An example of this method is presented in Figure
5.

Figure 5. Transformation of the 5 by 5 array into a 10 by 10 array. In this example position of number
7 in the left array dictates the position of a list of numbers [0, 0, 3, 4] in the right array. The position
of number 4 is conditioned by the surrounding cells to be next to the highest surrounding cell.

The next step is the transformation of a 10 by 10 array into a 20 by 20 array by simple
transformation rules. This method for generating the final array has rules similar to the
rules from the previous chapter. Every cell of 10 by 10 array is transformed into 4 cells of
20 by 20 array. A value of 0 means all cells are zero. A value of 4 means that all four cells
have a value of 1. Values between 0 and 4 are written as a list of four numbers that are
either 0 or 1. The sum of the list is equal to the value of the cell from the 10 by 10 array.
Similar to the solution shown in Figure 5, minimum values are placed near adjacent cells
with a value of 0, and maximum values are placed near cells with a value of 4.

The algorithm was designed to validate the final array where solutions that have
empty cells in the middle of the building, solutions that are split in more than one build-
ing, and solutions that have a different sum of the array from the input number are ex-
cluded. The last step is labeling cells with a value of 1 as built and others, with a value of
0, as empty. Solutions are represented as an orthogonal grid of pixels and the image is
created as presented in Figure 6.

Figure 6. Forming the shape of the building from the array. Cells that are labeled 1 are presented as
black squares and cells that are labeled 0 are white squares.

Figure 5. Transformation of the 5 by 5 array into a 10 by 10 array. In this example position of number
7 in the left array dictates the position of a list of numbers [0, 0, 3, 4] in the right array. The position of
number 4 is conditioned by the surrounding cells to be next to the highest surrounding cell.

The next step is the transformation of a 10 by 10 array into a 20 by 20 array by simple
transformation rules. This method for generating the final array has rules similar to the
rules from the previous chapter. Every cell of 10 by 10 array is transformed into 4 cells of 20
by 20 array. A value of 0 means all cells are zero. A value of 4 means that all four cells have
a value of 1. Values between 0 and 4 are written as a list of four numbers that are either
0 or 1. The sum of the list is equal to the value of the cell from the 10 by 10 array. Similar to
the solution shown in Figure 5, minimum values are placed near adjacent cells with a value
of 0, and maximum values are placed near cells with a value of 4.

The algorithm was designed to validate the final array where solutions that have
empty cells in the middle of the building, solutions that are split in more than one building,
and solutions that have a different sum of the array from the input number are excluded.
The last step is labeling cells with a value of 1 as built and others, with a value of 0, as
empty. Solutions are represented as an orthogonal grid of pixels and the image is created
as presented in Figure 6.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

from the list are positioned close to other 0 values, and maximum values of the list are
positioned close to cells with value 16. An example of this method is presented in Figure
5.

Figure 5. Transformation of the 5 by 5 array into a 10 by 10 array. In this example position of number
7 in the left array dictates the position of a list of numbers [0, 0, 3, 4] in the right array. The position
of number 4 is conditioned by the surrounding cells to be next to the highest surrounding cell.

The next step is the transformation of a 10 by 10 array into a 20 by 20 array by simple
transformation rules. This method for generating the final array has rules similar to the
rules from the previous chapter. Every cell of 10 by 10 array is transformed into 4 cells of
20 by 20 array. A value of 0 means all cells are zero. A value of 4 means that all four cells
have a value of 1. Values between 0 and 4 are written as a list of four numbers that are
either 0 or 1. The sum of the list is equal to the value of the cell from the 10 by 10 array.
Similar to the solution shown in Figure 5, minimum values are placed near adjacent cells
with a value of 0, and maximum values are placed near cells with a value of 4.

The algorithm was designed to validate the final array where solutions that have
empty cells in the middle of the building, solutions that are split in more than one build-
ing, and solutions that have a different sum of the array from the input number are ex-
cluded. The last step is labeling cells with a value of 1 as built and others, with a value of
0, as empty. Solutions are represented as an orthogonal grid of pixels and the image is
created as presented in Figure 6.

Figure 6. Forming the shape of the building from the array. Cells that are labeled 1 are presented as
black squares and cells that are labeled 0 are white squares.

Figure 6. Forming the shape of the building from the array. Cells that are labeled 1 are presented as
black squares and cells that are labeled 0 are white squares.

5. Results

The prototype implementation of the algorithm is in Python language. All tests are
done on a 3.1 GHz Intel Core I5 with 8 GB RAM. The inputs to the algorithm are numbers
that represent the area of the building and the number of different generated solutions.
Outputs of the algorithm are images of the layout and arrays exported in text form. In
Figure 7, the results are illustrated by randomly generated layouts from using the method
described in the previous chapter.

Appl. Sci. 2022, 12, 165 13 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20

5. Results
The prototype implementation of the algorithm is in Python language. All tests are

done on a 3.1 GHz Intel Core I5 with 8 GB RAM. The inputs to the algorithm are numbers
that represent the area of the building and the number of different generated solutions.
Outputs of the algorithm are images of the layout and arrays exported in text form. In
Figure 7, the results are illustrated by randomly generated layouts from using the method
described in the previous chapter.

Figure 7. Examples of random shapes of buildings generated by our method. Buildings in this ex-
ample have their floor plan area from 50 square meters (first) to 350 square meters (last).

This method is evaluated by producing 100 different building layout shapes for each
area input. Input numbers that represent the area of the building in square meters are
values from 50 to 350 by increasing the number by 25 for overall 13 different inputs. The
average time for this task is calculated and the results are presented in Figure 8. For most
of the input values, N calculations of 100 valid layouts takes between 2 and 3 s. For the
bordering values of N, the time for calculation is higher.

Figure 8. Performance of the method. The graph presents the correlation between the input param-
eter that represents the area of the building and the average time for generating 100 results. Perfor-
mance is worse for areas that are lesser than 75 or greater than 325.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400

Ti
m

e
fo

r g
en

er
at

in
g

10
0

re
su

lts
 [s

]

Area of the building in square meters

Figure 7. Examples of random shapes of buildings generated by our method. Buildings in this
example have their floor plan area from 50 square meters (first) to 350 square meters (last).

This method is evaluated by producing 100 different building layout shapes for each
area input. Input numbers that represent the area of the building in square meters are
values from 50 to 350 by increasing the number by 25 for overall 13 different inputs. The
average time for this task is calculated and the results are presented in Figure 8. For most
of the input values, N calculations of 100 valid layouts takes between 2 and 3 s. For the
bordering values of N, the time for calculation is higher.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20

5. Results
The prototype implementation of the algorithm is in Python language. All tests are

done on a 3.1 GHz Intel Core I5 with 8 GB RAM. The inputs to the algorithm are numbers
that represent the area of the building and the number of different generated solutions.
Outputs of the algorithm are images of the layout and arrays exported in text form. In
Figure 7, the results are illustrated by randomly generated layouts from using the method
described in the previous chapter.

Figure 7. Examples of random shapes of buildings generated by our method. Buildings in this ex-
ample have their floor plan area from 50 square meters (first) to 350 square meters (last).

This method is evaluated by producing 100 different building layout shapes for each
area input. Input numbers that represent the area of the building in square meters are
values from 50 to 350 by increasing the number by 25 for overall 13 different inputs. The
average time for this task is calculated and the results are presented in Figure 8. For most
of the input values, N calculations of 100 valid layouts takes between 2 and 3 s. For the
bordering values of N, the time for calculation is higher.

Figure 8. Performance of the method. The graph presents the correlation between the input param-
eter that represents the area of the building and the average time for generating 100 results. Perfor-
mance is worse for areas that are lesser than 75 or greater than 325.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400

Ti
m

e
fo

r g
en

er
at

in
g

10
0

re
su

lts
 [s

]

Area of the building in square meters

Figure 8. Performance of the method. The graph presents the correlation between the input parameter
that represents the area of the building and the average time for generating 100 results. Performance
is worse for areas that are lesser than 75 or greater than 325.

Results are measured by the number of edges necessary to draw the border of the
building. Borders of the buildings generated by our method show that the number of
edges can be a minimum of 12 and a maximum of 54. The distribution of the results is
presented in Figure 9. The average values vary corresponding to the input parameter of
the building area.

Appl. Sci. 2022, 12, 165 14 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 20

Results are measured by the number of edges necessary to draw the border of the
building. Borders of the buildings generated by our method show that the number of
edges can be a minimum of 12 and a maximum of 54. The distribution of the results is
presented in Figure 9. The average values vary corresponding to the input parameter of
the building area.

Figure 9. Efficiency of our method based on the number of edges that are necessary to draw the
shape of the building boundary. The minimum value that we generated was for a 50 square meter
building with a value of 12. The maximum value for a 200 square meter building was 54.

The results are compared to the results of other methods [10,13,18,19] and real build-
ings with complex borders by the same criteria. Building floor plans are converted into a
grid of the 1 by 1 m squares through the simple algorithm that is developed in order to
have uniform results. The number of edges before and after conversion is the same except
in some cases the area of the buildings changed no more than 5%, which we considered
tolerable.

First, the described method is compared to the research by Merrell et al. [19]. Only
complete computer-generated solutions are considered. The maximum value of edges is
18 for the house with an area of 152 square meters. Figure 10 shows the distribution of the
results.

Figure 10. Efficiency of the method by Merrell et al. [19], observed based on the number of edges
that are necessary to draw the shape of the building boundary. Values in this research range from
10 to 18.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

maximum minimum average

0

5

10

15

20

25

30

65 115 165 215 265

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

Figure 9. Efficiency of our method based on the number of edges that are necessary to draw the
shape of the building boundary. The minimum value that we generated was for a 50 square meter
building with a value of 12. The maximum value for a 200 square meter building was 54.

The results are compared to the results of other methods [10,13,18,19] and real build-
ings with complex borders by the same criteria. Building floor plans are converted into a
grid of the 1 by 1 m squares through the simple algorithm that is developed in order to have
uniform results. The number of edges before and after conversion is the same except in some
cases the area of the buildings changed no more than 5%, which we considered tolerable.

First, the described method is compared to the research by Merrell et al. [19]. Only
complete computer-generated solutions are considered. The maximum value of edges is
18 for the house with an area of 152 square meters. Figure 10 shows the distribution of
the results.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 20

Results are measured by the number of edges necessary to draw the border of the
building. Borders of the buildings generated by our method show that the number of
edges can be a minimum of 12 and a maximum of 54. The distribution of the results is
presented in Figure 9. The average values vary corresponding to the input parameter of
the building area.

Figure 9. Efficiency of our method based on the number of edges that are necessary to draw the
shape of the building boundary. The minimum value that we generated was for a 50 square meter
building with a value of 12. The maximum value for a 200 square meter building was 54.

The results are compared to the results of other methods [10,13,18,19] and real build-
ings with complex borders by the same criteria. Building floor plans are converted into a
grid of the 1 by 1 m squares through the simple algorithm that is developed in order to
have uniform results. The number of edges before and after conversion is the same except
in some cases the area of the buildings changed no more than 5%, which we considered
tolerable.

First, the described method is compared to the research by Merrell et al. [19]. Only
complete computer-generated solutions are considered. The maximum value of edges is
18 for the house with an area of 152 square meters. Figure 10 shows the distribution of the
results.

Figure 10. Efficiency of the method by Merrell et al. [19], observed based on the number of edges
that are necessary to draw the shape of the building boundary. Values in this research range from
10 to 18.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

maximum minimum average

0

5

10

15

20

25

30

65 115 165 215 265

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

Figure 10. Efficiency of the method by Merrell et al. [19], observed based on the number of edges that
are necessary to draw the shape of the building boundary. Values in this research range from 10 to 18.

Next, the results from the research of Wang et al. [13] are evaluated area of buildings
in this research is between 85 and 155 square meters. The highest number of edges in this
paper is 14 and the average value is 10. Results are presented in Figure 11.

Appl. Sci. 2022, 12, 165 15 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

Next, the results from the research of Wang et al. [13] are evaluated area of buildings
in this research is between 85 and 155 square meters. The highest number of edges in this
paper is 14 and the average value is 10. Results are presented in Figure 11.

Figure 11. Efficiency of the method by Wang et al. [13], observed based on the number of edges that
are necessary to draw the shape of the building boundary. Values in this research range from 4 to
14.

The research of Wu et al. [10,18] can be observed from two aspects. The first aspect is
the analysis of the floor plans from traced from the real world [18] where examples are
shown in area range of 75 to 125 square meters. The maximum value is 20, and the average
is 11.46 edges per building. The second aspect is the analysis of the MIQP-based com-
puter-generated layout [10]. This research presented a similar area range as previously
mentioned, but the maximum value of edges is 16, and the average is 7. Results are shown
in Figure 12.

(a) (b)

Figure 12. Efficiency observed based on the number of edges that are necessary to draw the shape
of the building boundary. (a) Results of real-life buildings in the research paper by Wu et al. [13]
show high variety with 11.46 as the average number of edges. (b) Results of the method by Wu et
al. [13] have a value of 7 for the average number of edges.

Finally, the Internet databases were searched for the real buildings that have complex
border shapes in order to make the comparison with the described algorithm. In this pro-
cess floor plans of buildings with a simple form that can easily be found in different data-
bases were eliminated. The focus was on the buildings in the area range similar to our
research results from better comparison. In Figure 13 examples of real building floor plans
are shown. The range of an area is from 50 to 350 square meters. The maximum value is
34 and the average value is 24.73.

0

5

10

15

20

25

30

65 85 105 125 145 165 185

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

0
5

10
15
20
25
30

40 60 80 100 120 140 160

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

0
5

10
15
20
25
30

40 60 80 100 120 140 160

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

Figure 11. Efficiency of the method by Wang et al. [13], observed based on the number of edges that
are necessary to draw the shape of the building boundary. Values in this research range from 4 to 14.

The research of Wu et al. [10,18] can be observed from two aspects. The first aspect
is the analysis of the floor plans from traced from the real world [18] where examples
are shown in area range of 75 to 125 square meters. The maximum value is 20, and the
average is 11.46 edges per building. The second aspect is the analysis of the MIQP-based
computer-generated layout [10]. This research presented a similar area range as previously
mentioned, but the maximum value of edges is 16, and the average is 7. Results are shown
in Figure 12.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

Next, the results from the research of Wang et al. [13] are evaluated area of buildings
in this research is between 85 and 155 square meters. The highest number of edges in this
paper is 14 and the average value is 10. Results are presented in Figure 11.

Figure 11. Efficiency of the method by Wang et al. [13], observed based on the number of edges that
are necessary to draw the shape of the building boundary. Values in this research range from 4 to
14.

The research of Wu et al. [10,18] can be observed from two aspects. The first aspect is
the analysis of the floor plans from traced from the real world [18] where examples are
shown in area range of 75 to 125 square meters. The maximum value is 20, and the average
is 11.46 edges per building. The second aspect is the analysis of the MIQP-based com-
puter-generated layout [10]. This research presented a similar area range as previously
mentioned, but the maximum value of edges is 16, and the average is 7. Results are shown
in Figure 12.

(a) (b)

Figure 12. Efficiency observed based on the number of edges that are necessary to draw the shape
of the building boundary. (a) Results of real-life buildings in the research paper by Wu et al. [13]
show high variety with 11.46 as the average number of edges. (b) Results of the method by Wu et
al. [13] have a value of 7 for the average number of edges.

Finally, the Internet databases were searched for the real buildings that have complex
border shapes in order to make the comparison with the described algorithm. In this pro-
cess floor plans of buildings with a simple form that can easily be found in different data-
bases were eliminated. The focus was on the buildings in the area range similar to our
research results from better comparison. In Figure 13 examples of real building floor plans
are shown. The range of an area is from 50 to 350 square meters. The maximum value is
34 and the average value is 24.73.

0

5

10

15

20

25

30

65 85 105 125 145 165 185

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

0
5

10
15
20
25
30

40 60 80 100 120 140 160

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

0
5

10
15
20
25
30

40 60 80 100 120 140 160

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

Figure 12. Efficiency observed based on the number of edges that are necessary to draw the shape of
the building boundary. (a) Results of real-life buildings in the research paper by Wu et al. [13] show
high variety with 11.46 as the average number of edges. (b) Results of the method by Wu et al. [13]
have a value of 7 for the average number of edges.

Finally, the Internet databases were searched for the real buildings that have complex
border shapes in order to make the comparison with the described algorithm. In this
process floor plans of buildings with a simple form that can easily be found in different
databases were eliminated. The focus was on the buildings in the area range similar to our
research results from better comparison. In Figure 13 examples of real building floor plans
are shown. The range of an area is from 50 to 350 square meters. The maximum value is 34
and the average value is 24.73.

Appl. Sci. 2022, 12, 165 16 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

Figure 13. Border shapes of our selection of complex real-life buildings.

All the results are compared and presented in Figure 14. Differences in the results of
different method applications can be observed based on the parameter of the number of
edge counts. The overall average of edges per building is 24.73 for selected real buildings,
28.88 for the method described in the paper, and 10.33 for other methods.

Figure 14. Comparison of our method to all methods selected from research [10,13,18,19] and to our
selection of real-life buildings with complex building floor plan borders.

6. Discussion
The problem of building boundary generation is widely addressed in contemporary

research and publications. In the referenced publications discussed methodologies, meth-
ods, algorithms, and more or less automated frameworks and software tools tend to clus-
ter into coherent groups that use the related principles but with different impacts on the
abstraction level and generality of proposed solutions.

0
5

10
15
20
25
30
35
40

0 100 200 300 400

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

Real-life buildings

Our method - average

Our method - minimum

Merrell, et al.

Wang, et al.

Wu, et al.

Figure 13. Border shapes of our selection of complex real-life buildings.

All the results are compared and presented in Figure 14. Differences in the results of
different method applications can be observed based on the parameter of the number of
edge counts. The overall average of edges per building is 24.73 for selected real buildings,
28.88 for the method described in the paper, and 10.33 for other methods.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

Figure 13. Border shapes of our selection of complex real-life buildings.

All the results are compared and presented in Figure 14. Differences in the results of
different method applications can be observed based on the parameter of the number of
edge counts. The overall average of edges per building is 24.73 for selected real buildings,
28.88 for the method described in the paper, and 10.33 for other methods.

Figure 14. Comparison of our method to all methods selected from research [10,13,18,19] and to our
selection of real-life buildings with complex building floor plan borders.

6. Discussion
The problem of building boundary generation is widely addressed in contemporary

research and publications. In the referenced publications discussed methodologies, meth-
ods, algorithms, and more or less automated frameworks and software tools tend to clus-
ter into coherent groups that use the related principles but with different impacts on the
abstraction level and generality of proposed solutions.

0
5

10
15
20
25
30
35
40

0 100 200 300 400

Nu
m

be
r o

f e
dg

es

Area of the building in square meters

Real-life buildings

Our method - average

Our method - minimum

Merrell, et al.

Wang, et al.

Wu, et al.

Figure 14. Comparison of our method to all methods selected from research [10,13,18,19] and to our
selection of real-life buildings with complex building floor plan borders.

6. Discussion

The problem of building boundary generation is widely addressed in contemporary re-
search and publications. In the referenced publications discussed methodologies, methods,
algorithms, and more or less automated frameworks and software tools tend to cluster into
coherent groups that use the related principles but with different impacts on the abstraction
level and generality of proposed solutions.

Appl. Sci. 2022, 12, 165 17 of 20

One cluster is mainly oriented to simple regular building boundaries development
that solely serves as the container of internal. They are usually constrained by the internal
functionality disposition. For this group, the main focus appears to be the building floor
plan layout or the architectural style they analyzed observed is not contemporary or visually
challenging by the form. A few of those researches argue the possibility of combining
simple building boundary shapes to get more complex variations or offer low-resolution
results, but most of them are significantly limited in the number of variations achieved in a
specific time frame. The external constraints are more or less ignored and do not represent
a driving force of the automatic building boundary generation process.

The other cluster, with a significantly lower number of research works, focuses on
relatively complex building boundaries generation that makes them suitable for cross-
reference performance comparison with the approach described in this article. The results
of three research works from this group are compared with regard to the presented novel
approach. They were selected because their algorithms produced results that are more
complex compared to others, listed in Section 2 making them an ideal validation benchmark.

The smallest research cluster uses external boundary constraints as the driving force
of building boundaries generation but different methods used (knowledge-based system)
were the main obstacle in strict comparisons.

There were no research works seriously focusing on the methodology, methods, and
algorithms that support the production of complex boundary shapes in large quantities
within a reasonable time frame.

The results of the research methods of the papers used as benchmarks for valida-
tion [10,13,19] are derived from a maximum of a 174 square meter building area. The
results for larger buildings could not be obtained from the current examples. The algorithm
presented in this paper produces results for buildings up to 350 square meters. The pos-
sibility of other methodologies generating similar results is currently highly unlikely but
may be possible in further development.

The main obstacle of the methodology presented in research papers [10,13,19] was
the heavy internal functionality interrelations and dependencies that are computationally
demanding. That is why the inherent limitation of variations is understandable.

The goal of this paper is to create the building boundaries in the form of constraints
influenced by outer forces but not to completely exclude the premises of interior functional-
ity either. There are research works [9,18] that can produce building layouts if the border
constraint of the building is provided. The expanded version of the methodology applying
grid systems, used in this paper, is also planned to be upgraded for the internal layout
generation in the future.

Figure 11 summarizes the advantages and disadvantages of the benchmark set with
regard to the proposed method and algorithm. Almost all of the compared research
methods produce results that are below the minimum value of the algorithm presented
in this paper. The results clearly show that the novel method, proposed by this paper,
fills in the current research gap in the referenced scientific field. The area of interest is a
specific type of building boundary generator with a capacity for creating numerous design
variations. The uses for these results are numerous in the specific fields of architecture,
gaming, generative design, etc.

For example, the most common of the real-life complex building boundary has borders
with the number of edges that are mostly between the minimal and average results of
our algorithm. The analyzed buildings are not average but rather common examples of
the real-life set mainly because the basic rectangular and simple shape boundaries are
more commonly seen than the complex ones. Although not such common, buildings with
complex boundary shapes are the mainstream of the presented approach.

The internal function-based approach usually results in basic and simple shapes of
boundary layers. On the contrary, contemporary architecture is sometimes strongly influ-
enced by outer factors like adapting to the force of the wind or the increase of daylight

Appl. Sci. 2022, 12, 165 18 of 20

insulation or even dominant visual message making the building a recognizable environ-
mental marker.

Concerning system sciences, the general specification of any system includes func-
tional and non-functional requirements, where the latter addresses the constraints under
which the former have to be applied. The implementation of non-functional requirements
is generally much more demanding. The trend of automatic generation of residential
buildings applies not just in the field of architecture, but also in the media and video game
industries where flexible rule-based rapid model generation is essential. The is that the
functionality is not a key component in the digital and video game industry residential
building simulations. The emphasis is on the recognizable visual style and game narrative.
The form of the building acts as a container for the interior space but it is not solely defined
or influenced by it.

This was the main reason to ignore the interior functionality in the proposed approach
in order to enable the rapid generation of building boundary variations into which the
interior functionality may be included afterward.

7. Conclusions

The automatic generation of complex building boundaries, in contemporary research
and engineering projects and practices, is heavily processing and data volume bounded.
Even with the available processing power and storage capacity of commercial computer
systems nowadays the interactive and reactive design is rather limited. The main challenge
is the rapid generation of a large number of complex building boundaries in a reasonable
time frame.

The other dominant obstacle is that the majority of methods rely on the interior
functional constraints as a driving force dominantly resulting in a low level of variability
and simple rectangular geometry of generated building boundaries.

As a basis for the automated generation of various building boundaries, the solution
presented in this paper introduces a novel approach that ignores the internal (functional)
and focuses only on the external (non-functional) impacts. The primary orientation on
external impacts may be, at any instance, extended by suitable complementary traditional
methodology. The applied research methodology and presented method rely on a devel-
oped extendible rule-based system that simplifies building boundaries creation by recursive
application of formulated spatial grid generation algorithm. Based on starting parameter
values (mainly the lot and building area spaces) the algorithm tends to create a set of grids
that satisfy initial constraints by marking the individual grid cells as part of the building
or empty.

The presented conceptual framework model served as a foundation for creating a
prototype software application that supports the experimental generation of grid arrays
that are transformed into readable images of residential building boundaries. For the initial
validation of the developed methodology, method, and algorithm, the concrete parametric
resolution is set to 1 m.

The comparative analysis has shown that the presented approach overcomes some
of the limitations of previous related research that generate building boundaries in sim-
ple rectangular form or with limited variability. The proposed method, in its current
stage, outperforms discussed existing methods concerning complex building boundary
shape generation.

Author Contributions: Conceptualization, M.L.; methodology, A.P. and B.P.; software, M.L., A.P. and
B.P.; validation, M.L.; investigation, resources, data curation, and visualization, M.L., A.P. and B.P.;
writing—original draft preparation, M.L.; formal analysis, B.P.; writing—review and editing, A.P. and
B.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2022, 12, 165 19 of 20

Informed Consent Statement: Not applicable.

Data Availability Statement: Our Python application is open-source and can be publicly accessed [35].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shekhawat, K. Algorithm for Constructing an Optimally Connected Rectangular Floor Plan. Front. Archit. Res. 2014, 3, 324–330.

[CrossRef]
2. Kozminski, K.; Kinnen, E. An Algorithm for Finding a Rectangular Dual of a Planar Graph for Use in Area Planning for

VLSI Integrated Circuits. In Proceedings of the 21st Design Automation Conference Proceedings, Albuquerque, NM, USA,
25–27 June 1984; pp. 655–656.

3. Bhasker, J.; Sahni, S. A Linear Algorithm to Find a Rectangular Dual of a Planar Triangulated Graph. Algorithmica 1988, 3, 247–278.
[CrossRef]

4. Wang, X.-Y.; Yang, Y.; Zhang, K. Customization and Generation of Floor Plans Based on Graph Transformations. Autom. Constr.
2018, 94, 405–416. [CrossRef]

5. Martin, J. Procedural House Generation: A Method for Dynamically Generating Floor Plans. In Proceedings of the Symposium
on Interactive 3D Graphics and Games, Redwood City, CA, USA, 14–17 March 2006; Volume 2.

6. Flemming, U.; Coyne, R.; Glavin, T.; Rychener, M. A generative expert system for the design of building layouts. In Applications of
Artificial Intelligence in Engineering Problems; Springer: Berlin/Heidelberg, Germany, 1986; pp. 811–821.

7. Del Rio-Cidoncha, G.; Martínez-Palacios, J.; Iglesias, J.E. A Multidisciplinary Model for Floorplan Design. Int. J. Prod. Res. 2007,
45, 3457–3476. [CrossRef]

8. Nauata, N.; Chang, K.-H.; Cheng, C.-Y.; Mori, G.; Furukawa, Y. House-Gan: Relational Generative Adversarial Networks for
Graph-Constrained House Layout Generation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK,
23–28 August 2020; pp. 162–177.

9. Peng, C.-H.; Yang, Y.-L.; Wonka, P. Computing Layouts with Deformable Templates. ACM Trans. Graph. 2014, 33, 99:1–99:11.
[CrossRef]

10. Wu, W.; Fan, L.; Liu, L.; Wonka, P. MIQP-based Layout Design for Building Interiors. Comput. Graph. Forum 2018, 37, 511–521.
[CrossRef]

11. Li, S.-P.; Frazer, J.H.; Tang, M.-X. A Constraint Based Generative System for Floor Layouts. 2000. Available online: http:
//papers.cumincad.org/data/works/att/5b5d.content.pdf (accessed on 6 November 2021).

12. Harada, M.; Witkin, A.; Baraff, D. Interactive Physically-Based Manipulation of Discrete/Continuous Models. In Proceedings
of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995;
pp. 199–208.

13. Wang, X.-Y.; Zhang, K. Generating Layout Designs from High-Level Specifications. Autom. Constr. 2020, 119, 103288. [CrossRef]
14. Duarte, J.P. A Discursive Grammar for Customizing Mass Housing: The Case of Siza’s Houses at Malagueira. Autom. Constr.

2005, 14, 265–275. [CrossRef]
15. Nilkaew, P. Assistant Tool for Architectural Layout Design by Genetic Algorithm. 2006. Available online: http://papers.cumincad.

org/data/works/att/caadria2006_641.content.pdf (accessed on 4 November 2021).
16. Narahara, T.; Terzidis, K. Multiple-Constraint Genetic Algorithm in Housing Design. 2006. Available online: http://papers.

cumincad.org/data/works/att/acadia06_418.content.pdf (accessed on 4 November 2021).
17. Bahrehmand, A.; Batard, T.; Marques, R.; Evans, A.; Blat, J. Optimizing Layout Using Spatial Quality Metrics and User Preferences.

Graph. Models 2017, 93, 25–38. [CrossRef]
18. Wu, W.; Fu, X.-M.; Tang, R.; Wang, Y.; Qi, Y.-H.; Liu, L. Data-Driven Interior Plan Generation for Residential Buildings. ACM

Trans. Graph. TOG 2019, 38, 1–12. [CrossRef]
19. Merrell, P.; Schkufza, E.; Koltun, V. Computer-Generated Residential Building Layouts. ACM Trans. Graph. TOG 2010, 29, 1–12.

[CrossRef]
20. Hua, H. Irregular Architectural Layout Synthesis with Graphical Inputs. Autom. Constr. 2016, 72, 388–396. [CrossRef]
21. AlOmani, A.; El-Rayes, K. Automated Generation of Optimal Thematic Architectural Layouts Using Image Processing. Autom.

Constr. 2020, 117, 103255. [CrossRef]
22. Bao, F.; Yan, D.-M.; Mitra, N.J.; Wonka, P. Generating and Exploring Good Building Layouts. ACM Trans. Graph. TOG 2013,

32, 122. [CrossRef]
23. Cruz, C.; Karakiewicz, J.; Kirley, M. Towards the Implementation of a Composite Cellular Automata Model for the Explo-

ration of Design Space. 2016. Available online: https://www.researchgate.net/publication/299597241_TOWARDS_THE_
IMPLEMENTATION_OF_A_COMPOSITE_CELLULAR_AUTOMATA_MODEL_FOR_THE_EXPLORATION_OF_DESIGN_
SPACE (accessed on 4 November 2021).

24. Krawczyk, R.J. Cellular Automata: Dying to Live Again, Architecture, Art, Design. In Designing Beauty: The Art of Cellular
Automata; Springer: Berlin/Heidelberg, Germany, 2016; pp. 39–52.

25. Petruševski, L.; Devetaković, M.; Mitrović, B. Self-Replicating Systems in Spatial Form Generation: The Concept of Cellular
Automata. Spatium 2009, 8–14. [CrossRef]

http://doi.org/10.1016/j.foar.2013.12.003
http://doi.org/10.1007/BF01762117
http://doi.org/10.1016/j.autcon.2018.07.017
http://doi.org/10.1080/00207540600889550
http://doi.org/10.1145/2601097.2601164
http://doi.org/10.1111/cgf.13380
http://papers.cumincad.org/data/works/att/5b5d.content.pdf
http://papers.cumincad.org/data/works/att/5b5d.content.pdf
http://doi.org/10.1016/j.autcon.2020.103288
http://doi.org/10.1016/j.autcon.2004.07.013
http://papers.cumincad.org/data/works/att/caadria2006_641.content.pdf
http://papers.cumincad.org/data/works/att/caadria2006_641.content.pdf
http://papers.cumincad.org/data/works/att/acadia06_418.content.pdf
http://papers.cumincad.org/data/works/att/acadia06_418.content.pdf
http://doi.org/10.1016/j.gmod.2017.08.003
http://doi.org/10.1145/3355089.3356556
http://doi.org/10.1145/1882261.1866203
http://doi.org/10.1016/j.autcon.2016.09.009
http://doi.org/10.1016/j.autcon.2020.103255
http://doi.org/10.1145/2461912.2461977
https://www.researchgate.net/publication/299597241_TOWARDS_THE_IMPLEMENTATION_OF_A_COMPOSITE_CELLULAR_AUTOMATA_MODEL_FOR_THE_EXPLORATION_OF_DESIGN_SPACE
https://www.researchgate.net/publication/299597241_TOWARDS_THE_IMPLEMENTATION_OF_A_COMPOSITE_CELLULAR_AUTOMATA_MODEL_FOR_THE_EXPLORATION_OF_DESIGN_SPACE
https://www.researchgate.net/publication/299597241_TOWARDS_THE_IMPLEMENTATION_OF_A_COMPOSITE_CELLULAR_AUTOMATA_MODEL_FOR_THE_EXPLORATION_OF_DESIGN_SPACE
http://doi.org/10.2298/SPAT0919008P

Appl. Sci. 2022, 12, 165 20 of 20

26. Herr, C.M.; Kvan, T. Adapting Cellular Automata to Support the Architectural Design Process. Autom. Constr. 2007, 16, 61–69.
[CrossRef]

27. Anzalone, P.; Clarke, C. Architectural Applications of Complex Adaptive Systems. 2003. Available online: http://papers.
cumincad.org/data/works/att/acadia03_042.content.09646.pdf (accessed on 4 November 2021).

28. Gardner, M. Mathematical Games. Sci. Am. 1970, 222, 132–140. [CrossRef]
29. Araghi, S.K.; Stouffs, R. Exploring Cellular Automata for High Density Residential Building Form Generation. Autom. Constr.

2015, 49, 152–162. [CrossRef]
30. Krawczyk, R.J. Architectural Interpretation of Cellular Automata. 2002. Available online: https://mypages.iit.edu/~{}krawczyk/

rjkga02.pdf (accessed on 4 November 2021).
31. Coates, P.; Healy, N.; Lamb, C.; Voon, W.L. The Use of Cellular Automata to Explore Bottom up Architectonic Rules. 1996.

Available online: https://repository.uel.ac.uk/download/d3aedf91a9fe865d5d4863f29c921ad4b4a43b77838fb3ba785cfaa4db9
7b5b9/507983/Coates%2C%20P%20%281996%29%20Eurographics.pdf (accessed on 4 November 2021).

32. Ford, R.C. Think Like Ants, Not Like Gods: A Study of Cellular Automata and Its Validity Within the Architectural Design
Process. Master’s Thesis, Unitec Institute of Technology, Auckland, New Zealand, 2013.

33. Herr, C.M.; Ford, R.C. Cellular Automata in Architectural Design: From Generic Systems to Specific Design Tools. Autom. Constr.
2016, 72, 39–45. [CrossRef]

34. Martin, R.C. Agile Software Development, Principles, Patterns and Practices; Pearson Education Limited: London, UK, 2014.
35. FPgenerator. 2021. Available online: https://github.com/ArchitectureMarko/FPgenerator (accessed on 4 November 2021).

http://doi.org/10.1016/j.autcon.2005.10.005
http://papers.cumincad.org/data/works/att/acadia03_042.content.09646.pdf
http://papers.cumincad.org/data/works/att/acadia03_042.content.09646.pdf
http://doi.org/10.1038/scientificamerican0670-132
http://doi.org/10.1016/j.autcon.2014.10.007
https://mypages.iit.edu/~{}krawczyk/rjkga02.pdf
https://mypages.iit.edu/~{}krawczyk/rjkga02.pdf
https://repository.uel.ac.uk/download/d3aedf91a9fe865d5d4863f29c921ad4b4a43b77838fb3ba785cfaa4db97b5b9/507983/Coates%2C%20P%20%281996%29%20Eurographics.pdf
https://repository.uel.ac.uk/download/d3aedf91a9fe865d5d4863f29c921ad4b4a43b77838fb3ba785cfaa4db97b5b9/507983/Coates%2C%20P%20%281996%29%20Eurographics.pdf
http://doi.org/10.1016/j.autcon.2016.07.005
https://github.com/ArchitectureMarko/FPgenerator

	Introduction
	Related Work
	Overview
	Algorithm
	Generation of 5 by 5 Array
	Generation of 10 by 10 and 20 by 20 Arrays

	Results
	Discussion
	Conclusions
	References

