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Abstract: In practical applications, such as patient brain signals monitoring, a non-invasive recording
system with fewer channels for an easy setup and a wireless connection for remotely monitor physio-
logical signals will be beneficial. In this paper, we investigate the feasibility of using such a system in
a visual perception scenario. We investigate the complexity perception of color natural and synthetic
fractal texture images, by studying the correlations between four types of data: image complexity that
is expressed by computed color entropy and color fractal dimension, human subjective evaluation
by scoring, and the measured brain EEG responses via Event-Related Potentials. We report on the
considerable correlation experimentally observed between the recorded EEG signals and image com-
plexity while considering three complexity levels, as well on the use of an EEG wireless system with
few channels for practical applications, with the corresponding electrodes placement in accordance
with the type of neural activity recorded.

Keywords: wireless Electroencephalography (EEG); Event-Related Potential (ERP); biomedical signal
processing; spatio-chromatic image analysis; color texture complexity; visuo-cognitive interpretation;
behavioral measures; color entropy; color fractal dimension; Pearson correlation

1. Introduction

In the last decades, monitoring human brain activity has shown promising potential
in helping us better understand the functioning of our brain, with implications in human
health by preventing mental disorders and cognitive decline, improving the quality of
life. In such scenarios of clinical environments, ambulatory circumstances and further in
monitoring various everyday activities, the flexible non-invasive surface EEG measure
is predominant for studying the dynamics of the brain, measuring real-life interactions
of humans with their environment. Since human users are the target, it is important to
focus the technology development towards small-scale, wearable, wireless systems thats
provide flexibility, easy use and comfort to the user side, while at the same time maintain
high signal quality. Some important developments have been made in this sense and are
commercially available for several years now, for example: Neurosky’s MindWave and
MindSet (neurosky.com, accessed 8 May 2021), Emotiv Epoc headset (emotiv.com, accessed
8 May 2021) in scenarios, such as stress, attention, meditation, emotion recognition [1,2] are
among few application areas that started to explore the usage of lifestyle EEG solutions and,
however, do not cover a large market yet and are being mostly used in research laboratories
for brain—computer interface (BCI) investigations [2–4] and some other systems limited
in clinical settings [5–7]. Other low cost, portable, and simple brain computer interface
devices are further developing in various laboratories around the world, for example, for
measuring users consciousness states, such as concentration level [8]. Nevertheless, we still
need substantial progress in developing technology for convenient EEG monitoring also for
other neural activities investigations [9]. While waiting for the miniaturized EEG devices
to kick-off, there is still a lot to be learned from noninvasive EEG monitoring [10]. For cases

Appl. Sci. 2021, 11, 4306. https://doi.org/10.3390/app11094306 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9346-8467
https://orcid.org/0000-0002-0803-2918
https://doi.org/10.3390/app11094306
https://doi.org/10.3390/app11094306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
neurosky.com
emotiv.com
https://doi.org/10.3390/app11094306
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11094306?type=check_update&version=1


Appl. Sci. 2021, 11, 4306 2 of 23

where the neural potential activity needs to be remotely scanned, such as in EEG ambula-
tory patient monitoring [11], we investigate the use of a reduced electrode system within a
wireless setting, in order to reduce the preparation time and ease the heaviness and robust-
ness of the EEG cap, while at the same time keeping the gold standard gel-based electrodes
with high amplifiers system, as used in medical and research applications (e.g., Biopac
system—https://www.biopac.com/application/eeg-electroencephalography/, accessed
8 May 2021). So far, the gel-based systems are only used in a limited number of clinical
applications where no alternatives exist, such as: epilepsy detection [12], brain recovery
after injury [13,14], cognitive problems [15], while single channel recordings have been
reported in behavioral science investigations [1]. Therefore, we investigate such wireless
reduced channels EEG gel-based setting in a specific context of perceiving texture com-
plexity, with the corresponding electrodes placement in accordance with the type of neural
activity recorded. Being able to detect fine differences, such as in visual perception [16]
and visuo-cognitive textural interpretation [17] with a reduced channel system, could be
of great importance for any other subtle cognitive processes or behavior actions detection
for medical health, psychiatry, or psychology evaluations [17–19]. Further, capturing brain
functioning does not solely rely on measurement devices and acquisition methods, but
also on the methods of processing, analyzing, and investigating the signals flowing from
the brain. Frequent advances [20,21] are taking steps in this regard to help analyze and
interpret the neural data with progressive precision.

2. Related Works

Measuring texture complexity is useful not only for computer vision applications [22], such
as image segmentation [23], object classification, and medical imaging, but has also implications
in multiple other domains, such as human–computer interaction systems [24,25], neuroscience—
for investigating the mechanisms of recognition, learning, and memory [26,27], or information
security for example for estimating the ability of a classifier to handle adversarial attacks in
response to image complexity [28–30].

Texture complexity can be expressed, for example, by the number of elements com-
prised and their placement in the texture [31], or by the variety of the elements [32] and
further, in a variety of ways. However, what exactly makes the complexity of texture,
complex? Researchers have found various textural properties which contribute to texture
complexity, such as: regularity, roughness, directionality, density [33], the number of re-
gions, chroma variance [34], coarseness, contrast, directionality, and line-likeness [35], but
are they enough for expressing complexity?

In this sense, so far researchers have investigated mathematical and image analysis
measures [36–40], human subjective evaluations of textural complexity [33,34,41] or sep-
arately and seldom, the perception detected within the neural activity [42,43]. Because
humans are the final observers of the textures, it seems mandatory to infer information
from the human evaluation of complexity [34,41,44,45], which may go beyond the textural
image properties. Better understanding human perception of texture complexity could
help not only for characterizing more accurately texture complexity, but also for studying
the neural basis of behavior. In this sense, beyond the common used subjective scoring
method as evaluation measures, closely capturing sub-conscious brain responses would be
more straightforward for human reasoning and perception.

Aiming to assess texture complexity in a broader view extending the understanding
on spatio-chromatic complexity, it is necessay to integrate all the different ways to assess the
complexity of color textured images, further helping the creation of a unique definition of
complexity, which is still to be defined, which includes both the mathematical and human
perception measures. Such investigations, which allow for experimentally comparing
the textural complexity that is expressed by image analysis measures and the human
perception of complexity or sensation induced by the observation of a colored textured
surface image, as expressed by subjective scoring and complemented by neural activity
responses, are less frequent (e.g., [43], and we further present one approach in this research.

https://www.biopac.com/application/eeg-electroencephalography/
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Among the existing mathematical assessments of spatio-chromatic complexity of
textures [36–38,40,46], such as Independent Component Analysis, which incorporates the
sparsity of data in the complexity measure [39], mutual information within regions [47],
and so on, the entropy and fractal dimension analysis are the most commonly used. The
entropy measure is directly correlated to the surface complexity, as given by colors; while
the fractal dimension is associated to the auto-similarity texture property, viewed as a ratio
of the change in detail, in relation to the change in scale.

3. Proposed Methodology

The present work extends the work from [48], where we have compared the image
analysis complexity assessment and brain responses between color natural and color
synthetic fractal textures with a one-color image being used as reference, by means of an
experimental EEG study. The neural responses assessment tends to suggest that fractal
images require more complex thought processes with higher complexity in reasoning, even
though the color fractal dimension (CFD) indicates no complexity difference between the
fractal and natural image groups, also being supported by subjects evaluation who equally
expressed the fractal and natural images as more complex in structural form. More complex
processes for fractal images could relate to the higher number of colors or the irregular
structure of the generated synthetic fractals that does not relate to any known forms, which
makes it harder for the brain to create differentiation rules based on complexity. On the
other hand, natural images involve higher attentional and more intense memory processes,
probably due to their multitude of details and known forms.

Here, we extend the analysis in more depth, by investigating three different levels of
complexity (low, medium, and high) in the two images types—natural and synthetic color
fractal images, and investigate the correlations between the three different perspectives:
image analysis measures, subjective evaluation, and neural activity responses. As image
complexity measures (Section 6), we consider two of the most used mathematical measures,
namely color entropy (CE) and color fractal dimension (CFD), and we correlate each of
them with the subjective scores that are given by participants during a subjective evalua-
tion experiment (Section 7.1) and with the brain responses (Section 7.3). The performance
of these correlations is evaluated in terms of both the Pearson correlation and statistical
testing. While the ability to capture viable discriminations within the brain activity be-
tween different complexity levels, even with few channels, will support the use of a less
informative EEG system for practical monitoring applications, as we will further show in
this study.

With respect to the methods of EEG signals analysis and processing, we consider
analysis over time complemented with the frequency domain based on standard pre-
processing, as described in Section 4.3, on the grounds that simple standardized pipelines
provide the means for rapid and increased development.

4. EEG Experiment and Analysis

In this section, we briefly recall the experiment that we performed, which is detailed
in the first part of the study [48].

4.1. Stimuli and Procedure

During the EEG experimental session, the participants stayed still and visualized, in
form of an ERP experiment, a series of images randomly presented and decided about
the complexity level of each target image presented (on a scale 1 to 3, from low to high
complexity), and disregard the non-target images. Three types of images were used as
visual stimulation (Figure 1), namely: single color (Uni) images, acting as a base reference
(non-targets), natural color textures—Nat targets (https://vismod.media.mit.edu/vismod/
imagery/VisionTexture/vistex.html, accessed 8 May 2021), and synthetic color fractal (Frac)
images (targets), generated with a fractional Brownian motion, as in [49], with similar
initialization parameters in order to obtain the same texture model, but with different

https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
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complexities (from low to high complexity) being given by Hurst exponent variations.
A total of 560 images were presented, with a resolution of 512 × 512 pixels and a ratio
of 65:17:18 % for Uni, Nat, and Frac images. The session lasted for 30 min. and it was
split in three blocks with 5 min. breaks in-between. Covert visualization was requested
during the entire session, where participants focus on the center of the screen and pay
attention without moving the eyes, in order to avoid additional artifacts, e.g., unnecessary
eye movements or blinks. At the end of the experiment, the participants were told to
provide a general overview of their perception and their overall mood and, after a longer
break, they performed a subjective evaluation experiment (see Section 7.1).

(a) Uni (b) Nat (c) Frac

Figure 1. Stimuli images examples: one color image (Uni), natural color texture (Nat) image (VisTex)
and synthetic color fractal texture image (Frac).

4.2. Participants and Materials

Eight electronics engineering students acted as participants, aged between 20 to
30 years old, having little to no experience in imaging, photography, or art. The participants
expressed their consent to take part in the experiment, and gave their permission for brain
signals recording. The data [50] were completely anonymized and the experiments and
data acquisition adhered to the local ethical guidelines.

When considering hardware, three Biopac BioNomadix EEG wireless system module
(https://www.biopac.com/product/bionomadix-2ch-wireless-eeg-amplifier/, accessed
8 May 2021).with six electrodes (P3, T3, Gnd, P4, T4, Fz) were used for signal acquisition,
positioned according to the 10–20 international system and referenced to the ear lobes. We
chose the electrodes placement distributed across the scalp to cover, as much as possible,
all brain areas since different activities could appear, from visual perception (frontal area)
to interpretation and reasoning (parietal area) or even memory activation (temporal area).
The stimulation sequence was presented on a 20” LCD screen with a 16:9 aspect ratio
and 60 Hz refresh rate. When considering software material, SuperLab was used for
stimuli presentation, Acqknowledge for data acquisition, and Matlab together with the
BBCI Matlab Toolbox [51] (https://github.com/bbci/bbci_public, accessed 8 May 2021)
for signal processing.

4.3. EEG Analysis

The signals were low- and high-pass filtered in the range 1–49 Hz, using the Chebyshev
type II filter and FIR filter, and artifactual epochs were rejected based on variance and max-
min criterion, when 20% of the channels have excessive variance or the difference between
the maximum and minimum peak exceeded 150 µV, respectively. Further, segmented
epochs were baseline corrected when considering 100 ms from the fixation period. The
signals were investigated in time (ERPs) and frequency (Power spectral density). The
power spectrum was computed from 3 to 40 Hz, on the trial interval (0–1350 ms), based on
the Fourier transform with Kaiser window and the logarithmic spectral power is presented
as 10 · log10(power). For further details on signal processing, please see [48].

https://www.biopac.com/product/bionomadix-2ch-wireless-eeg-amplifier/
https://github.com/bbci/bbci_public
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5. Subjective Experiment

In addition to the experiment and study presented our previous work [48], we also
conducted a subjective experiment after the EEG measurements. This complementary
experiment aimed at providing details on the complexity perception of each participant.

The subjective evaluation experiment consisted in a scoring experiment, followed
by a memory test. In order to keep the participants engaged during the evaluation, the
participants were informed that a memory test will follow. During the scoring experiment,
participants evaluated the images complexity in three levels: 1—low, 2—medium, and
3—high. At the end of the evaluation, the participants described their thought process and
indicated the criteria used to assess texture complexity that made them decide on the level
of complexity. Next, the memory test consisted in 20 images (10 Nat and 10 Frac), where
the participants had to respond to whether the images were presented or not during the
experiment.

6. Color Image Complexity Measures

As mathematical measures for characterizing complexity, we use color entropy [36,52]
and color fractal dimension [53]. The color space used was RGB, which was consistent
with both the natural and synthetic fractal texture images used in our experiments.

6.1. Color Entropy, CE

The CE measures the disorder in signals [52] (see Equation (1)), relating to the variation
of colors, with no information on pixel spatial arrangement. The same definition of
Shannon is considered in this paper, with an extension to the multidimensional color case,
as described in [36].

H = −
N

∑
i=1

pi · log2(pi) (1)

where pi is the probability of appearance of pixel value i in the image and N the amount of
possible pixel values.

This measure can provide additional information regarding specific rare events or outliers,
which can be useful in practice, for example, for identifying individual lions based on images of
lion’s muzzle, by comparing more detailed whisker spots patterns, as given by higher entropy [54].

In recent years, many different entropy types and optimized versions have arisen
that bring different advantages, like, e.g., multi-scale entropy measuring regularity across
different scales referring more appropriately to structural richness, rather then regularity
(predictability) [55,56], cross entropy [57], fuzzy entropy [58], and many more when consid-
ering the spatial information [46,59], with further applications in the biomedical imaging
domain [57,60].

In this investigation, we have specifically used the classical entropy version in order
to use complementary measures (entropy and fractal dimension), since an entropy variant
considering spatial information would refer to similar image properties as to fractal dimension.

6.2. Color Fractal Dimension, CFD

The most representative measure for expressing fractal geometry of color texture images is
fractal dimension [36,61]. The fractal dimension expresses the variations and irregularities of a
texture [62,63], as a relation to the self-similar regions that were observed across different size
scales. The theoretical fractal dimension is represented by the Hausdorff dimension [64,65], and
it is estimated in practice, for example, based on the probabilistic box-counting approach [66].
We use the same approach here, extended for the assessment of color fractal complexity with
independent color components, as described in [53], which counts the number of pixels that
fall inside a 3-D RGB cube of size L, using the Minkowski infinity norm distance, which is
centered in the current pixel. The estimation of the regression line slope for the evolution of
the total number of boxes needed to cover the image is modified with a weighting function
w(L) = 1/e2(L). The final color fractal dimension is computed as an average of the nine robust fit
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estimations, namely: ‘ols’ (least squares method), ‘andrews’, ‘bisquare’, ‘cauchy’, ‘fair’, ‘huber’,
‘logistic’, ‘talwar’, and ‘welsch’, for a comprehensive estimation.

7. Experimental Results
7.1. Subjective Experiment Analysis

The memory test results comprise about a 65 to 95% success rate, with an average of
84.38%, suggesting that participants were highly attentive during the experiment. The error
rate is explainable, being related to the percentage of highly confoundable images (specifi-
cally, 30% of the images chosen for the test were highly similar and easily confoundable,
such as they visually look alike, with some differences in small details).

The main complexity criteria were extracted from subjective participants responses and
they are presented in Table 1. The most frequent criteria used are represented by the image
properties, such as color, followed by texture distribution characteristics, such as structure
type & forms, positioning, details, repeatability, disorder vs. order, no. of elements, content
type, complemented with effects of visualisation, such as clarity vs. blurry, contrast. Further,
we noted the distinctive criteria used, specific to an extension of the texture content beyond the
image itself represented by impulse, sensations (3D, tactile), or the induced mood, emotions,
memories, and imagination. Up to 50% of participants mentioned criteria relating to their
interpretation, sensations, emotions, ans imagination that cannot be described by mathemati-
cal or image texture analysis measures. Therefore, considering human interpretation when
expressing and analyzing texture is of great importance, since these aspects can drastically
influence the complexity perception, as we will see in the following analysis Section 7.2.

Table 1. Complexity factors.

Complexity Criteria P1 P2 P3 P4 P5 P6 P7 P8 Total (%)

colors x x x x x x x x 100%

type of structure & forms: simple, geometrical, fragmentation,
granularity, rugosity vs. smoothness, homogeneity, uniformity x x x x x x x 87.5%

distribution & positioning: crowdedness, sparsity,
scattering, spreading x x x x x x 75%

details x x x x x x 75%

repeatability, resemblance, similarity vs variety x x x x x x 75%

clarity, sharpness, accentuation, focus, delimited forms vs blurry x x x x x x 75%

disorder, randomness, chaos, mixture, intercalation, twistedness vs.
order, balance x x x x x x 75%

no. of elements, groups, regions x x x x x 62.5%

impulse type: first impression, attraction, captivation, interest x x x x 50%

contrast, luminosity, intensity, darkness vs. shadows, light x x x 37.5%

size: big vs. small, expansion, vastity (beyond the image capture) x x x 37.5%

recognition, understandability, difficulty in recognition and reasoning x x 25%

mood induced: pleasant, relaxing vs. tiring, monotonous x x x 37.5%

sensations: 3D x x 25%

static vs. dynamic x 12.5%

zoom-in/out x 12.5%

tactile x 12.5%

content type: familiar, common/ordinary x 12.5%

human specific capabilities: emotions, memories, imagination x 12.5%

hardness in construction x 12.5%

Primary criteria and significant contributions are highlighted in bold.
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7.2. Image Complexity Measures vs. Subjective Evaluation—Correlation Analysis

The natural images exhibit a complexity measure comprised between 7.33 and 16.37 for
color entropy (Figure 2a), and in the range 1.89–3.98 for color fractal dimension (Figure 2b),
with a Pearson correlation coefficient between CE and CFD of ρ = 0.44, expressing no
significant correlation (also by non-linear measures: Kendall’s Tau τ = 0.27 and Spearman’s
rank ρrg = 0.37), which is confirmed by the disperse distribution of points, as seen in
Figure 3a. The fractal images contain between 16.45 and 17.84 CE values (Figure 4a) and
between 2.03 and 4.12 CFD (Figure 4b), with a significant CE–CFD non-linear correlation
of τ = 0.63 and ρrg = 0.8 (Figure 3b), such as CFD increases, as with an increase of CE,
indicating that more texture colors increases the complexity.

These facts can be easier understood if we look over some texture examples, as, for
example, in Figure 5, the CE and CFD values are gradually increasing together as with a
higher level of complexity for both natural and fractal textures, however this is not a general
rule, as seen in Figure 5d–g, where, for some Nat image structures, when CE increases CFD
varies differently. Therefore, not only the color amount influence complexity, but also the
distribution of the elements, which is an important distinction to note between the random
generated synthetic fractal structures for color fractal images and the natural occurring
structure arrangements for color natural images. On this line, entropy is not a sufficient
measure taken alone when expressing complexity, as also shown in [36]. That being said,
when aiming to complexity by mathematical measures, contributions from both CE and CFD
should be considered with appropriate weighting, depending on the content of the texture.

(a) (b)

Figure 2. Color Entropy Histogram (a) and Color Fractal Dimension (b) for Nat images regarding
complexity levels. Adapted from Ref. [48].

(a) (b)

Figure 3. Color Entropy versus Color Fractal Dimension for (a) Nat and (b) Frac textures in terms of
Pearson, Kendall’s Tau, and Spearman’s rank correlation coefficients.
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(a) (b)

Figure 4. Color Entropy Histogram (a) and Color Fractal Dimension (b) for Frac images regarding
complexity levels. Adapted from Ref. [48].

(a) CE = 10.15, CFD = 2.72 (b) CE = 13.28, CFD = 3.13 (c) CE = 16.16, CFD = 3.6

(d) CE = 11.9, CFD = 3.53 (e) CE = 13.65, CFD = 3.11 (f) CE = 14.11, CFD = 3.41 (g) CE = 16.2, CFD = 3.78

(h) CE = 17.14, CFD = 2.13 (i) CE = 17.79, CFD = 3.09 (j) CE = 17.83, CFD = 3.97

(k) CE = 17.05, CFD = 2.13 (l) CE = 17.55, CFD = 2.42 (m) CE = 17.66, CFD = 2.74 (n) CE = 17.72, CFD = 4.04

Figure 5. Texture complexity examples: natural textures (Nat) on first two rows (a–g) and synthetic
fractal textures (Frac) last two bottom rows (h–n).
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In the following, we investigate the correlations between the CE and CFD levels
versus participants scoring. For significance, we refer to the Pearson Correlation Table of
Critical Values [67], in relation to the respective amount of data points (97 Nat images and
99 Frac images). Therefore, we consider the threshold of ρ = ±0.2 for correlation, with a
significance level of 5%, α = 0.05 [68,69]. For a viable comparison with participants answers
on complexity levels (1—low, 2—medium, 3—high), we consider three levels of complexity
equally divided based on CE values and separately on CFD values for Nat and Frac images,
as shown in the table below (Table 2).

Table 2. CE and CFD levels for Nat and Frac images.

Nat

Complexity level 1: low 2: medium 3: high

CE 7.33–10.34 10.34–13.35 13.35–16.37
CFD 1.89–2.59 2.59–3.28 3.28–3.98

Frac

Complexity level 1: low 2: medium 3: high

CE 16.45–16.9 16.9–17.37 17.37–17.84
CFD 2.03–2.73 2.73–3.42 3.42–4.12

7.2.1. Natural Images

When analysing the percentage of resemblance between the complexity levels ex-
pressed by image analysis measures and individuals as a response to natural textures, only
a few cases are detected as highly significant: CE–P1 (ρ = 0.41), CE–P5 (ρ = 0.47) and
CFD–P3 (ρ = 0.47). While, between participants answers, strong positive correlations are
observed (r > 0.2) in half of the cases (54%), with highest correlations between P1 and P5,
P3 and P4 (Table 3). No significant correlation is observed for P2 in all cases, as explained by
main own subjective evaluation criteria based on sensations (e.g., 3D sensations, including
texture vastness and volume information).

Table 3. CE, CFD levels versus Participants answers—correlation matrix for Nat images. Only
significant Pearson correlation values are presented: r > 0.2 with α = 0.05. Highest values are
highlighted in bold.

P1 P2 P3 P4 P5 P6 P7 P8
CE 0.41 0.35 0.23 0.47 0.34 0.34

CFD 0.33 0.47 0.21 0.27 0.36 0.27
P1 0.26 0.4 0.33 0.35 0.34
P2
P3 0.48 0.3 0.24 0.32
P4 0.23 0.28 0.2
P5 0.23
P6 0.26
P7 0.37
P8

7.2.2. Fractal Images

When considering Frac images, significant correlations were observed (r > 0.2), except
P2 and P7 participants—who considered the textures predominantly as medium complexity.
Almost half of the participants correlate in answers (46%) and further, participants answers
correlate more with the CFD levels, as compared to CE levels (Table 4). For five subjects,
there is a significant resemblance between the participants’ answers and the complexity
levels expressed by CE and CFD: CE–P3 (ρ = 0.35), CE–P4 (ρ = 0.38), CE–P8 (ρ = 0.38),
CFD–P1 (ρ = 0.8), CFD–P4 (ρ = 0.65), and CFD–P6 (ρ = 0.46). Between participants, the
highest correlations are observed between P1 and P3 (ρ = 0.51) and P1 and P4 (ρ = 0.53).
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Significant negative correlations are observed for participant P5 in relation to the computed
measures and other participants, and it is explained by the fact that the participant merely
considered low complexity for the fractal textures, based on personal reasoning, attractive-
ness, emotions, memories, and imagination, which were not felt for participant P5 when
viewing the synthetic fractal textures due to the lack of relation to known forms.

Table 4. CE, CFD levels versus Participants answers—correlation matrix for Frac images. Highest
values are highlighted in bold.

P1 P2 P3 P4 P5 P6 P7 P8
CE 0.6 0.35 0.38 −0.4 0.34 0.38

CFD 0.8 0.4 0.65 −0.23 0.46 0.27
P1 0.51 0.53 −0.39 0.41 0.26
P2
P3 0.31 −0.23 0.3
P4 −0.21
P5 −0.22
P6
P7
P8

These results highlight that the internal reasoning on complexity is subjective for
individuals, and the variations between individuals are higher for Frac images, probably
because the texture contained does not relate to known forms and the decision on complex-
ity involves more imaginatory actions requiring longer time and intense processes, which
may obstruct the observer in its reasoning process. Further, for Frac images, participant
reasoning is closer to the color fractal dimension estimation, then to color entropy, which is
curious to observe since CE and CFD measures are highly correlated, as seen in Figure 4b.
The subjective responses not detected as significantly correlated with the analysis measures,
most probably relate to the other human internal reasoning mechanisms, as described in
Section 7.1, which does not relate to criteria detectable by image texture analysis.

7.3. EEG Experiment Analysis

In the following, we complement the texture complexity evaluation with deep dive
into the neural responses (ERP and power spectrum) and analyze the correlations with the
image complexity measures and subjective evaluation. For the ERP trials, we consider the
complexity levels as labels, as expressed by CE, CFD (Table 2), or participants’ answers
and group the trials separately based on the them.

When considering ERPs, as also observed in our previous work [48], the visual percep-
tion and cognitive reasoning on complexity influenced by the ERP paradigm generates two
discriminative groups of peaks (see e.g., Figure 6). One group is observed from 300 ms after
the stimuli is presented (0 ms) comprising of a P200 potential (appearing at 300–400 ms),
which varies in amplitude according to the level of complexity perception, relating to
the visual perception of the texture and preparation for the cognitive task of complexity
level decision, and it is followed by a P300 potential (400–600 ms) representing reasoning
processes, which also varies in amplitude and extends differently in time on a trial base,
depending on the respective texture complexity reasoning. The second group of peaks
(800–1300 ms) appears at 300 ms after the presentation of the relaxation screen (single grey
image), and it is comprised by a P200 potential that is equal in amplitude for all levels of
textural complexity processing, followed by a P300, which varies in amplitude and it has
a prolongued duration that is influenced by the ongoing neural processes relating to an
extended thought process for complexity decision.
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Figure 6. GA ERP for Nat images corresponding to the 3 complexity levels according to CE, at
channel P4 and the scalp topographies at 300–400 ms, 400–500 ms, 800–900 ms, 900–1000 ms, and
1200–1300 ms.

For the correlation analysis, we investigate whether the amplitude of the N3/N300
(min value from 350–450 ms), P3/P300 (max from 400–500 ms) and second P300b/P3b
(mean from 1250–1350 ms) vary proportionally with the complexity values (CE, CFD) or
participants answers [70].

For power spectrum, we consider the maximum value in the α frequency band
(6–12 Hz) and the mean value within the β band (18–22 Hz). A stronger power of the
signal should be related to a higher level of complexity, if correlated.

We present the significantly correlated cases as a sresponse to Nat and Frac textures in
the table below (Table 5) and discuss them further.
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Table 5. Neural signals versus CE and CFD correlations for Nat and Frac images. The result values on Frac textures are
shown in bold and normal font for Nat. The respective channel is indicated in brackets.

P1 P2 P3 P4 P5 P6 P7 P8 GA

CE–N3 −0.25 (P3) 0.34 (P3)
0.29 (P4)

CE–P3 −0.21 (P3) 0.21 (P3)
−0.26 (P4)

CE–P3b −0.25 (P3) 0.25 (P3)
−0.27 (P4) 0.24 (P4)

CFD–N3 0.34 (P3) 0.23 (P4)
0.26 (P4)

CFD–P3 0.21 (P3)

CFD–P3b 0.27 (P3) 0.2 (P3) 0.2 (P3)
0.22 (P4) 0.26 (P4)

sbj-N3 −0.26 (P3)

sbj-P3 −0.22 (P3) 0.23 (P4)

sbj-P3b −0.24 (P3) −0.21 (P3) 0.22 (P4)

CE–α −0.23 (P3)

CE–β −0.24 (P3)

CFD–α −0.24 (P3) −0.23 (T4) −0.21 (T4)

CFD–β 0.21 (T4) −0.25 (T4) −0.2 (P4)
sbj—subjective evaluation scoring.

7.3.1. Natural Images
ERPs vs. CE

First, it is important to note the CE complexity levels distributions among images: low:
34% of images; medium: 34%; and, high: 32%, which are balanced between classes, so we
can rely on Grand Average ERPs interpretation, since unbalanced classes could influence
the mean in favor of the class with more trials.

The Grand Average (GA) amplitudes of the ERPs at channel P4, as shown in top plot
in Figure 6, is gradually increasing once with an increased level of complexity, as expressed
by CE. The scalp maps likewise show increased activity in the parietal area (P3, P4 channels)
for the P200 peak (300–400 ms), P300 peak (400–500 ms), and second P3b (1200–1300 ms). We
observe that, for a lower level of complexity (low, medium), the neural activity focuses also in
the visual area probably relating to more aspects of attention and visualisation [71,72], while,
dor a complex level, only the parietal area is activated involving a more complex decision and it
is right lateralized, tending to suggest imagery processes [73–76].

However, no significant correlation was detected here in relation to CE levels, which
might probably be due to few high correlations between participants answers and com-
puted measures, as seen in Table 3. In addition, the ERP amplitude varies from trial-to-trial
due to many factors, and a direct proportional connection to the increase in CE values is
therefore hard to detect.

ERPs vs. CFD

The CFD complexity levels distributions: low: 33%; medium: 35%; high: 32%
(balanced).

The ERP responses in time for Nat images according to the CFD levels as shown
in Figure 7 indicate a gradual increase in amplitude, proportional with a higher level
of complexity (low CFD complexity—blue; medium—red; high—orange), visible also
over all channels (Figure A1 in Appendix A); however, only N300 at the P4 channel
correlate significantly (ρ = 0.23) with the CFD values considering the trial averages across
participants. The gradual increase in amplitude and spatial activity can be seen in Figure 7,
with more parietal activity as with a complex level and less frontal activity (only visible for
P3 peak at 400–500 ms).
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Figure 7. GA ERP for Nat images on three complexity levels according to CFD, at channel P4.

ERPs vs. Participants Scoring

First, we note participants’ complexity levels distributions, where, for:

- participant P1: 44.3% images are considered as low complexity, 40.2% as medium:
and 15.5% as high (resulting in unbalanced classes),

- participant P2: low: 18.6%; medium: 67%; high: 14.4% (unbalanced),
- participant P3: low: 0%; medium: 37.1%; high: 62.9% (unbalanced),
- participant P4: low: 20.6%; medium: 13.4%; high: 66% (unbalanced),
- participant P5: low: 27.8%; medium: 43.3%; high: 28.9% (unbalanced),
- participant P6: low: 2%; medium: 25.8%; high: 72.2% (unbalanced),
- participant P7: low: 1%; medium: 22.7%; high: 76.3% (unbalanced),
- participant P8: low: 6.2%; medium: 68%; high: 25.8% (unbalanced).

When grouping the ERPs based on participants levels (Figure 8), the effect of com-
plexity is visible on grand average, with a higher amplitude for P300–400 and a higher
parietal activity, and, for the second P3b, we observe a higher activity for the P4 channel for
a more complex level, and a more negative activity for a lower level. However, since ERP
grand averages can be influenced by unbalanced classes that are given by the subjective re-
sponses, we look further into specific correlations. Analysing for each participant, the effect
is anti-correlated for participant P5 at the P3 channel (N300: ρ = −0.26; P300: ρ = −0.22;
2nd P3b: ρ = −0.24), and, for participant P7, also at P3 channel (2nd P3b: ρ = −0.21),
and correlated for participant P8 at P4 channel, for the P300 and the 2nd P3b peaks with
ρ = 0.23 and ρ = 0.22, respectively.
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Figure 8. GA ERP for Nat images on three complexity levels according to participants subjective
evaluation, at channel P4.

Spectral Activity vs. CE

Now, looking over the GA spectral activity shown in Figure 9 at the P4 channel, we
observe a gradual increase in power after 22 Hz, once with an increased level of processing.
The opposite effect was observed for the P3 channel, being significantly anti-correlated for
participant P8 for the α and β bands (ρ = −0.23, ρ = −0.24). No important difference is
observed when considering scalp activity.

Figure 9. GA Spectrum for Nat images on three complexity levels according to CE, at the T4 channel.



Appl. Sci. 2021, 11, 4306 15 of 23

Spectral Activity vs. CFD

When comparing the power spectrum with the CFD values, correlations and anti-
correlations are observed for half of the participants as shown below:

- participant P2: Ch P3, α band, ρ = −0.24
- participant P3: Ch T4, β band, ρ = 0.21
- participant P6: Ch T4, α band, ρ = −0.23; β band, ρ = −0.25
- participant P7: Ch P4, β band, ρ = −0.2; Ch T4, α band, ρ = −0.21

The correlation effect in the power spectrum as with CFD levels can also be observed
on grand average, in Figure 10, for channel T4.

Figure 10. GA Spectrum for Nat images on 3 complexity levels according to CFD, at T4 channel.

7.3.2. Fractal Images

The effect of complexity over the ERPs, in relation to CE, CFD, and participants scoring
is also observed, in parts, for the Frac images, as shown in the following.

ERPs vs. CE

CE complexity levels distributions: low: 6.1%; medium: 14.1%; and, high: 79.8%
(unbalanced).

Relating with CE values, few cases are detected as significantly anti-/correlated for ERPs:

- participant P1: Ch P3, N300, ρ = −0.25; P300, ρ = −0.21; 2nd P3b ρ = −0.25; Ch
P4, P300, ρ = −0.26; 2nd P3b ρ = −0.27

- participant P4: Ch P3, N300, ρ = 0.34; 2nd P3b ρ = 0.25; Ch P4, P200, ρ = 0.29; 2nd
P3b ρ = 0.24

- participant P6: Ch P3, P300, ρ = 0.21

ERPs vs. CFD

CFD complexity levels: low: 41.4%; medium: 14.1%; high: 44.5% (unbalanced).
In relation with the CFD levels, as shown in Figure 11 for the P3 channel, ERPs are

significantly correlated on grand average for P300 with ρ = 0.21 and 2nd P3b ρ = 0.2, and
for two participants at the P3 and P4 channels, as shown below:

- participant P4: Ch P3, N300, ρ = 0.34; 2nd P3b ρ = 0.27; Ch P4, N300, ρ = 0.26; 2nd
P3b ρ = 0.22

- participant P8: Ch P3, P300, ρ = 0.2; Ch P4, P300, ρ = 0.26

On grand average, the ERPs cannot be easily differentiated, as seen in Figure 11. Here,
the high complexity level only induces a 1 µV higher ERP, as compared to low and medium
classes. The right plot shown in Figure 11 as for P4 channel, can be further seen in extension,
in the top plot of Figure 12 which considers in addition, the spatial activity. Here, spatial
activity shows an interesting phenomena at the 900–1000 ms time point, where the medium
class has higher activation when compared to the high class. However, this effect is not
maintained within the neighboring intervals.
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Figure 11. GA ERP for Frac on 3 complexity levels according to CFD, for P3 and P4 channels.

Figure 12. GA ERP for Frac images on three complexity levels according to CFD. GA ERP temporal
evolution at channel P4 (top plot) and GA ERP spatial evolution at different timings (bottom scalp plots).

Spectral Activity vs. Participants Scoring

participants complexity levels distributions:

- P1: low: 30.3%; medium: 41.4%; high: 28.3% (∼balanced).
- P2: low: 4%; medium: 87.9%; high: 8.1% (unbalanced).
- P3: low: 0%; medium: 63.6%; high: 36.4% (unbalanced).
- P4: low: 25.3%; medium: 30.3%; high: 44.4% (∼balanced).
- P5: low: 81.8%; medium: 10.1%; high: 8.1% (unbalanced).
- P6: low: 61.6%; medium: 25.3%; high: 13.1% (unbalanced).
- P7: low: 0%; medium: 100%; high: 0% (unbalanced).
- P8: low: 1%; medium: 13.1%; high: 85.9% (unbalanced).

Investigating the power spectrum in relation with subjective scoring (Figure 13), we
observe an increase in power with an increased level of complexity from 20 Hz onwards.
However, no significant correlations are observed.
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Figure 13. GA Spectrum for Frac images on three complexity levels according to participants
subjective evaluation, at P3 channel.

Overall, more significant positive correlations were detected for participants in relation
to the Nat textures. Participants P3 and P8 show positive correlations in neural signals
for Nat cases, while P4 and P8 exhibit positive correlations for Frac cases. The highest
correlations detected in relation to CE and, respectively, CFD for participant P4 for the Frac
case are supported by the complexity criteria used in the thought processes that refer solely
to texture characteristics, namely: colors, distribution, and spatial arrangement (disorder
vs. order), which are expressed by CE and, respectively, CFD analysis measures.

For participants P1, P2, P5, P6, P7, and P8, anti-correlation results are detected for
neural signals, which suggests that a different rationale was involved in deciding on the
complexity level, with no direct connection to the amount of colors of texture structure;
a fact that is sustained by the participants’ descriptions during the subjective evaluation,
relying on external criteria as the primary factors for deciding on complexity, such as first
impression, sensations, mood induced, and so on.

In general, we observed that, when considering complexity evaluation, the CFD values
tend to correlate more with the neural responses than with CE. However, we observed
that, there is not a good correlation between the brain responses (ERPs or power spectrum
activity) with the computed measures in all cases, meaning that the neural oscillations
are not proportionate with an increase in texture colors or structure complexity, while
the internal thought processes differ from the known complexity criteria that are based
on texture characteristics. In addition, it is curious that not even the subjective scoring
correlated entirely with the neural responses (ERPs and power). This suggests that some
other factors contribute to the influence in amplitude and power and not necessarily the
complexity levels. In this regard, the duration and latency of the ERPs should be also
considered to evaluate complexity decision.

8. Discussion

The complementary study on the subjective responses in addition to the neural signals
analysis revealed that there is less correlation agreement between participants, and each
interpretation is more or less unique. However, the CE and CFD measures correlate
considerably with the majority of participants’ responses, especially for the low, mid, or
high complexity for natural/synthetic fractals. The EEG analysis showed that various
potential levels or spectral responses are partially in agreement with the three levels of
complexity. This is due to different reasoning processes among individuals who use distinct
complexity criteria for the decision. In addition, the synthetic fractals that look similar
to chaotic structures induces further difficulty and uncertainty on the decision, being
supplemented by the free choice for evaluating complexity, since no formal definition
of complexity was suggested to the participants. This opinion is confirmed by the high
ERP activity, even in the later interval (800–1200 ms) [77], suggesting a complex and a
prolonged continuous background process, while also briefly showing a negative ERP
over the prefrontal cortex for P300 (300–400 ms) in Figure 6 for the high complexity level
suggesting indecisiveness [78]. Furthermore, the images’ textural representations might
be affected by uncertainties or inaccuracies when considering the edges of textural forms.
For these cases, fuzzy image pre-processing [79] can be applied to reduce vagueness and
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enhance PSNR—a technique that has been been shown to be successful for X-ray imagery,
for example [80].

9. Conclusions and Future Developments

This paper is a follow up of the investigations carried out in [48], and it contributes
to the understanding of the relation between visual complexity perception and the com-
putational visual complexity expressed by image analysis and it provides the directions
for multi-scale studies with a higher number of participants and more types of textures.
We have shown that we were able to extract information, even with a less informative five-
channel system with wireless connection and make some neurophysiological interpretation
in this particular context of visual perception and reasoning, highlighting the feasibility
of using such settings for further use in research, clinical, or ambulatory environments
until commercially good quality systems will be available on the market on a large scale.
We have further highlighted that different perceived aspects of an image intervene in the
assessment of image complexity, as previous works agreed [26].

A follow-up study is necessary for complexity evaluations, in order to analyze each
complexity criteria that go beyond the textural properties and how much each factor
contributes to the final decision on complexity. Therefore, we leave open the quest to
further explore the human brain, directly tapping the corresponding relations between
imagination, memory, emotions, and user specific understanding of complexity based on
own background, the stock of knowledge, and previous experiences [81], which influence
the reasoning, perception, and understanding of complexity, and further integrate the
contributing top-down mechanisms in a vast model of complexity assessment. In terms of
image complexity measures, since color entropy and color fractal dimension are not the
only measures for describing texture complexity [82–86], measures, like lacunarity (which
measures the gaps distributions [87]), succolarity (which expresses the degree of filaments
that allow percolation or flow through the texture [88,89]), and artistic complexity derived
from neuroscience [84] could be further used for comparison.

Evaluating further complexity perception of textures could play a role not only in
computer vision applications, and neuroscience, but also by establishing for example a
performance evaluation for complexity reasoning could have an impact also for health
investigations for evaluating cognitive decline.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG Electroencephalography
BCI Brain-Computer Interfaces
ERPs Event-Related Potentials
CFD Color Fractal Dimension
CE Color Entropy
CFD Color Fractal Dimension
Uni one-color image
Nat color natural texture image
Frac color fractal texture image
P1, P2, P3, P4, P5, P6, P7, P8 participants indices
ρ Pearson correlation
τ Kendall’s Tau correlation
ρrg Spearman’s rank correlation
GA Grand Average (mean over all participants and trials)
P200 positive peak of ERP potential appearing 200 ms

after stimulus
P3/P300 ERP (positive peak) appearing 300 ms after stimulus
N3/N300 ERP (negative peak) appearing 300 ms after stimulus
P300b/P3b ERP cognitive component (positive peak)

appearing later >300 ms
α alpha frequency EEG band (6–12 Hz)
β beta frequency EEG band (18–22 Hz)
sbj. subjective evaluation scoring
ex. CE–N3 CE measure versus N3 potential
Ch P3, Ch P4 EEG channels from brain parietal area
Ch T3, Ch T4 EEG channels from brain temporal area
Ch Fz EEG channels from brain frontal area
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Appendix A

Figure A1. Grang Average (GA) ERPs for Nat images on 3 complexity levels according to CFD: low
(blue), medium (red) and high (orange) complexity, for all channels.
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80. Toğaçar, M.; Ergen, B.; Cömert, Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and
structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 2020, 121, 103805. [CrossRef]
[PubMed]

81. Morabito, F.C.; Morabito, G.; Cacciola, M.; Occhiuto, G. The Brain and Creativity. In Springer Handbook of Bio-/Neuroinformatics;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 1099–1109.

82. Keller, J.M.; Chen, S.; Crownover, R.M. Texture description and segmentation through fractal geometry. Comput. Vision Graph.
Image Process. 1989, 45, 150–166. [CrossRef]

83. Ivanovici, M.; Richard, N. A Naive Complexity Measure for Color Texture Images. In Proceedings of the 2017 International
Symposium on Signals, Circuits and Systems (ISSCS), lasi, Romania, 13–14 July 2017; pp. 1–4.

84. Morabito, F.C.; Cacciola, M.; Occhiuto, G. Creative Brain and Abstract Art: A Quantitative Study on Kandinskij paintings.
In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011;
pp. 2387–2394.

85. Guariglia, E. Primality, fractality, and image analysis. Entropy 2019, 21, 304. [CrossRef] [PubMed]
86. Kaur, Y.; Ouyang, G.; Sommer, W.; Weiss, S.; Zhou, C.; Hildebrandt, A. What does temporal brain signal complexity reveal about

verbal creativity? Front. Behav. Neurosci., 2020, 14. [CrossRef]
87. De Melo, R.H.C. Using Fractal Characteristics such as Fractal Dimension, Lacunarity and Succolarity to Characterize Texture Patterns on

Images; Universidade Federal Fluminense: Niteroi, Brazil, 2007.
88. De Melo, R.H.C.; Conci, A. How succolarity could be used as another fractal measure in image analysis. Telecommun. Syst. 2013,

52, 1643–1655. [CrossRef]
89. Cojocaru J.I.R.; Popescu D.; Nicolae I.E. Texture Classification Based on Succolarity. In Proceedings of the 21st Telecommunications

Forum Telfor (TELFOR), Belgrade, Serbia, 26–28 November 2013; pp. 498–501.

http://dx.doi.org/10.1007/s40815-020-01030-5
http://dx.doi.org/10.1016/j.compbiomed.2020.103805
http://www.ncbi.nlm.nih.gov/pubmed/32568679
http://dx.doi.org/10.1016/0734-189X(89)90130-8
http://dx.doi.org/10.3390/e21030304
http://www.ncbi.nlm.nih.gov/pubmed/33267019
http://dx.doi.org/10.3389/fnbeh.2020.00146
http://dx.doi.org/10.1007/s11235-011-9657-3

	Introduction
	Related Works
	Proposed Methodology
	EEG Experiment and Analysis
	Stimuli and Procedure
	Participants and Materials
	EEG Analysis

	Subjective Experiment
	Color Image Complexity Measures
	Color Entropy, CE
	Color Fractal Dimension, CFD

	Experimental Results
	Subjective Experiment Analysis
	Image Complexity Measures vs. Subjective Evaluation—Correlation Analysis
	Natural Images
	Fractal Images

	EEG Experiment Analysis
	Natural Images
	Fractal Images


	Discussion
	Conclusions and Future Developments
	
	References

