
applied
sciences

Article

Constructing 3D Underwater Sensor Networks without Sensing
Holes Utilizing Heterogeneous Underwater Robots

Jonghoek Kim

����������
�������

Citation: Kim, J. Constructing 3D

Underwater Sensor Networks

without Sensing Holes Utilizing

Heterogeneous Underwater Robots.

Appl. Sci. 2021, 11, 4293. https://

doi.org/10.3390/app11094293

Academic Editor: Manuel Armada

Received: 22 April 2021

Accepted: 7 May 2021

Published: 10 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Electronic and Electrical Convergence Department, Hongik University, Sejong 2639, Korea;
jonghoek@hongik.ac.kr

Abstract: This article handles building underwater sensor networks autonomously using multiple
surface ships. For building underwater sensor networks in 3D workspace with many obstacles, this
article considers surface ships dropping underwater robots into the underwater workspace. We
assume that every robot is heterogeneous, such that each robot can have a distinct sensing range
while moving with a distinct speed. The proposed strategy works by moving a single robot at a time
to spread out the underwater networks until the 3D cluttered workspace is fully covered by sensors
of the robots, such that no sensing hole remains. As far as we know, this article is novel in enabling
multiple heterogeneous robots to build underwater sensor networks in a 3D cluttered environment,
while satisfying the following conditions: (1) Remove all sensing holes. (2) Network connectivity is
maintained. (3) Localize all underwater robots. In addition, we address how to handle the case where
a robot is broken, and we discuss how to estimate the number of robots required, considering the
case where an obstacle inside the workspace is not known a priori. Utilizing MATLAB simulations,
we demonstrate the effectiveness of the proposed network construction methods.

Keywords: sensor network; coverage control; network delay; localization; obstacle avoidance;
network connectivity; heterogeneous robot; cluttered workspace

1. Introduction

Sensor networks can perform various autonomous tasks in dangerous and harsh
environments. In the case where each sensor has mobility, sensor network can perform
environmental monitoring [1–3], area coverage [4–7], formation control [8–10], target
tracking [11,12], or intruder detection [13–16].

This article solves the coverage problem using multiple mobile sensors in an underwa-
ter cluttered environment. A mobile sensor needs to avoid underwater obstacles while it
moves, since we consider 3D underwater environments with many obstacles. Underwater
mobile sensors are deployed in the workspace, to perform collaborative monitoring and
data collection tasks. For complete monitoring of the cluttered workspace, it is required to
build sensor networks such that no sensing hole exists in the workspace.

In underwater environments, optic, electromagnetic, or acoustic sensors have been
used for wireless communication [17,18]. But, building sensor networks in underwater
environments is difficult, since communication range is rather short [19–21].

As a method to build underwater sensor networks autonomously, this article considers
surface ships dropping underwater robots into the underwater 3D workspace. Here,
each robot can move and has sensing/communication abilities. Since Global Positioning
Systems (GPS) cannot be used to localize an underwater robot, this article introduces
network building approaches to generate underwater sensor networks, while localizing
every robots in the networks.

As a ship arrives at the sea surface of the designated workspace, it begins dropping
underwater robots while not moving at the site. Once multiple robots are dropped, they
autonomously move into the unknown 3D cluttered workspace until no sensing hole exists

Appl. Sci. 2021, 11, 4293. https://doi.org/10.3390/app11094293 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7565-068X
https://doi.org/10.3390/app11094293
https://doi.org/10.3390/app11094293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11094293
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11094293?type=check_update&version=1

Appl. Sci. 2021, 11, 4293 2 of 15

in the workspace. As a robot moves in a cluttered workspace, it needs to avoid obstacles
while maintaining the network connectivity with other robots.

Many papers handled how to make multiple robots perform area coverage in 2D
environments [4,5,8,22,23]. To build a sensor network in an unknown 2D workspace, the
reference [2] made a single robot explore the workspace while deploying static sensor nodes.
One restriction of this approach is that the robot must be large enough to carry all sensor
nodes. Also, the robot must have enough power to explore the 2D workspace completely,
since a sensor node has no mobility. the references [6,7] used Voronoi tessellations to make
all robots spread in order to increase network coverage based on distributed information
from their neighbors. The authors of [8] considered deploying a swarm of robots into an
unknown 2D environment to remove all sensing holes in the environment. The authors
of [8] handled the case where each robot has bearing-only sensors measuring the bearing
to its neighbor in its local coordinate frame. Cluttered environments were not considered
in the papers addressed in this paragraph.

Our paper is distinct from other papers addressed in the previous paragraph, since
our paper considers the coverage problem in 3D workspace with many obstacles. Since
a robot moves in a cluttered workspace, it needs to avoid obstacles while building the
sensor network.

As far as we know, only a few papers handled coverage path planning for 3D space.
In [24], different deployment strategies for 2D and 3D communication architectures for
UnderWater Acoustic Sensor Networks (UW-ASNs) were proposed. For deploying under-
water sensors, the reference [24] introduced a sensor which is anchored to the sea bottom
and is equipped with a floating buoy that can be inflated by a pump. The buoy pulls the
sensor towards the ocean surface. The depth of the sensor can then be regulated by adjust-
ing the length of the wire that connects the sensor to the anchor. However, this deployment
approach cannot be used for covering a deep sea. Also, collection of these sensors is not
trivial, since a sensor is anchored to the sea bottom. Moreover, the deployment strategy
in [24] does not assure that all coverage holes are removed after the deployment.

In this paper, we consider a robot which can freely move in 3D underwater environ-
ments. Under the proposed deployment strategy, all robots are deployed so that no sensing
holes exist in the workspace. Suppose that a coverage mission of the underwater network
is done. In this case, we need to gather the robots, so that they can be deployed for coverage
of another space. By controlling the buoyancy of each robot, we can easily make each robot
move to the sea surface. Then, a ship can collect the robots easily.

The references [25,26] handled 3D coverage path planning (i.e., path planning process
for enabling full coverage of a given 3D space by one or multiple robots). The goal of
such planning is to provide nearly full coverage, minimizing the occurrence of visiting
an identical area multiple times. However, the references [25,26] did not address how
to deploy autonomous sensors, so that the 3D workspace is continuously monitored by
the deployed sensors. In our paper, we develop coverage control so that once the robots
are located at their designated target positions, then the 3D workspace is continuously
monitored by the deployed robots.

In practice, a robot may not be identical to another robot. For instance, some robots
may not move as fast as other robots, since their hardware systems are partially broken
during their operations. Hence, we assume that every robot moves with a distinct speed.
Moreover, a robot may have a distinct sensing range with another robot. Hence, this article
assumes that every robot is heterogeneous, such that each robot can have a distinct sensing
range while moving with a distinct speed. This article thus handles a scenario where
heterogeneous robots are deployed in unknown underwater environments.

Since obstacles can block the communication link between robots, each robot is con-
trolled while maintaining the network connectivity in obstacle-rich environments. The
proposed coverage methods work by moving a single robot at a time to spread out the 3D
sensor network, until the 3D workspace is fully covered without sensing holes.

Appl. Sci. 2021, 11, 4293 3 of 15

The surface ships dropping robots can use GPS to localize themselves. However,
GPS cannot be used for localization of a robot. This article assumes that a robot can
calculate the relative location of its neighboring robot using local sonar sensors. In under-
water environments, sonar sensors are preferred, since sonar signal can travel a longer
distance, compared to electromagnetic wave [18]. The proposed coverage methods result
in underwater sensor networks without sensing holes, while localizing all robots.

As far as we know, this article is novel in enabling multiple heterogeneous robots
to build underwater sensor networks in a 3D cluttered environment, while satisfying the
following conditions:

1. remove all sensing holes.
2. network connectivity is maintained.
3. localize all underwater robots.

This paper further addresses how to handle the case where a robot is broken. Also,
we address how to conjecture the number of robots required, considering the case where
an obstacle inside the 3D workspace is unknown a priori. Utilizing MATLAB simulations,
we demonstrate the effectiveness of the proposed coverage methods.

The article is organized as follows: Section 2 introduces the preliminary information of
this article. Section 3 introduces the 3D coverage methods utilizing multiple heterogeneous
robots. Section 4 shows the MATLAB simulations of the proposed 3D coverage methods.
Section 5 presents the discussion on the paper. Section 6 discusses conclusions.

2. Preliminary Information
2.1. Problem Statement

This article solves the space coverage problem using multiple robots in underwater
environments. For complete monitoring of the given 3D workspace, it is required to build
sensor networks such that no sensing hole exists in the given workspace.

Initially, all robots are carried by surface ships. Here, each robot has both sensing and
communication abilities. As a ship arrives at the sea surface of the workspace, it begins
dropping robots while not moving at the site.

The dropped robots move autonomously until the 3D workspace is fully covered by
sensors of the robots. The obstacles in the workspace are unknown to each robot, and every
robot moves based on local interaction with its neighboring robot. Our coverage methods
result in underwater sensor networks without sensing holes, while localizing all robots.
Section 3 discusses the 3D coverage methods using multiple robots.

2.2. Assumptions and Notations

Using the notations in graph theory [27], a weighted directed graph G is a set G =
(V(G), E(G)), in which V(G) is the node set and E(G) is the directed edge set. The weight
of every directed edge, say e ∈ E(G), is w(e) : e → Z+. A directed path is a sequence of
directed edges.

Suppose that we have S surface ships in total. Let ps denote the s-th surface ship
where s ∈ {1, 2, . . . , S}. Each surface ship ps carries Ns robots in total.

As a ship arrives at the sea surface of the workspace, it begins dropping robots while
not moving at the site. Let ns

i denote the i-th robot dropped by ps. Since ps carries Ns

robots, we have i ∈ {1, 2, . . . , Ns}. The ship ps drops robots in the following order :
ns

1 → ns
2 · · · → ns

Ns .
Suppose that each robot has both Ultra-Short BaseLine acoustic positioning (USBL)

and depth sensors. USBL sensors can be used to derive both the range and the azimuth
of a signal source. USBL sensors can also be used for mutual communication, i.e., a
transmitter can send data to a receiver. Each USBL sensor can work as a transmitter as well
as a receiver. For instance, one can access the information on commercial USBL sensors
in the following website: https://www.ixblue.com/products/usbl-positionning-system
(accessed on 10 May 2021).

https://www.ixblue.com/products/usbl-positionning-system

Appl. Sci. 2021, 11, 4293 4 of 15

Let rd
i represent the detection (sensing) range of ns

i . Also, let rc
i represent the commu-

nication range of ns
i . Let detect-communicate range rdc

i be defined as

rdc
i = min(rd

i , rc
i). (1)

Let Spheredc of a robot ns
i define a sphere with radius rdc

i , whose center is located at ns
i .

Let Boundarydc of a robot indicate the boundary of the Spheredc of the robot.
Let ns

i denote the 3D coordinates of ns
i where i ∈ {1, 2, . . . , Ns}. If ‖ns

i − ns
j‖ < rdc

i ,
then ns

i can sense ns
j . Also, ns

i can send a communication signal to ns
j .

On the Boundarydc of a robot ns
i , Q points are evenly generated. These points represent

the points where the sensing ray of ns
i can reach.

As an example, we discuss generating Q = 18 ∗ 18 points on a Boundarydc of a robot.
(This generation method is utilized in Section 4.) Let us rotate one vector [rdc

i , 0, 0]T by
φ ∈ [π/9, 2 ∗ π/9, 3 ∗ π/9 . . . , 2π] about the z-axis. The matrix presenting the rotation is

R(ψ) =

 c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

. (2)

Thereafter, we rotate R(θ)[rdc
i , 0, 0]T by θ ∈ [π/9, 2 ∗ π/9, 3 ∗ π/9, . . . , 2π] about the

y-axis. The matrix presenting the rotation is

R(θ) =

 c(θ) 0 s(θ)
0 1 0
−s(θ) 0 c(θ)

. (3)

The resulting vector after two rotations is

fp(ψ, θ) = R(ψ)R(θ)[rdc
i , 0, 0]T . (4)

The vector fp(ψ, θ) represents the relative position of a point on the Boundarydc of ns
i ,

with respect to ns
i . As we add ns

i to fp(ψ, θ), we obtain the 3D coordinates of a point on
the Boundarydc of ns

i . Note that ψ and θ are chosen from 18 values, respectively. Therefore,
Q = 18 ∗ 18 points are derived on Boundarydc of ns

i .
Let L(n, m) denote a straight line segment connecting two robots n and m. We say

that L(n, m) is safe once it does not intersect an obstacle. This implies that a robot avoids
colliding with an obstacle, as it travels along L(n, m).

A freePoint of ns
i denotes a point among Q points of ns

i , such that a straight line segment
connecting ns

i and the point does not intersect obstacles. In practice, freePoints can be
detected by active sonar sensors. A robot has active sonars, which can detect an obstacle
close to the robot [28].

The authors of [28] considered the case where the active sonars are positioned, so that
the viewing angle of the sonars is 200 degrees. In our paper, we need to install active sonars
surrounding the robot. In this way, the sonars can cover the space surrounding the robot.
As a sonar ray does not meet an obstacle, the ray is associated to a freePoint of the robot.

A frontierPoint f (ns
i) of a robot ns

i denotes a freePoint of ns
i , which is outside the

Spheredc of any other robot. As Q→ ∞, one obtains dense frontierPoints on a Boundarydc.
Let frontierSurface denote the set of frontierPoints as Q→ ∞.

A frontierSurface is on the border between a space covered by all Spheredcs and a space
covered by no Spheredc. If every robot has no frontierSurface, then all robots’ Spheredcs
cover the open space completely.

Recall that ns
i denotes the i-th robot which is dropped by the ship ps (s ∈ {1, 2, . . . , S}).

Each robot ns
i stores and expands the traversible graph, say Is = (V(Is), E(Is)). Each

vertex in V(Is) indicates a deployed robot. Every directed edge, say {ns
i , ns

j} ∈ E(Is), is
established as the following conditions are met:

Appl. Sci. 2021, 11, 4293 5 of 15

1. L(ns
i , ns

j) is safe.

2. ‖ns
i − ns

j‖ ≤ rdc
i .

Using the above definition, {ns
i , ns

j} ∈ E(Is) implies that ns
i can detect ns

j . Also, ns
i can

send a communication signal to ns
j . ‖ns

i − ns
j‖ is accessible using USBL sensors.

Suppose that a new robot, say ns
i , is deployed in Is, so that this new robot and a robot,

say ns′
j , in Is′ (s′ 6= s) satisfy the following two conditions for establishing a directed edge.

1. L(ns
i , ns′

j) is safe.

2. ‖ns
i − ns′

j ‖ ≤ rdc
i .

In this case, a new directed edge is established from ns
i to ns′

j . Then, Is and Is′ merge

to generate the bigger graph Is ⋃ Is′ . In this way, Is can expand to contain a robot ns′
j which

is dropped by a ship ps′ where s′ 6= s.
In the case where Is is not connected to Is′ (s′ 6= s), Is and Is expand independently to

each other. Once Is is connected to Is′ , they merge to generate the bigger graph Is ⋃ Is′ .
Utilizing the notation of E(Is), ns

i avoids collision while traversing an edge in E(Is).
This implies that Is is a safe topological map for ns

i .
The weight of every directed edge, say e ∈ E(Is), is w(e). ‖ns

i − ns
j‖ is accessible using

USBL sensors and is set as w({ns
i , ns

j}). The weight of every edge in Is is used to let ns
i find

the path in Is.
We say that two robots ns

i and ns
j are neighbors in the case where ‖ns

i − ns
j‖ < rdc

i + rdc
j .

Let N (ns
i) denote a neighbor of ns

i .
We assume that a ship dropping robots can localize itself using GPS. In summary,

every robot satisfies the below assumptions:

(A1) Using the local sonar sensor of a robot n, n is able to calculate the relative location of
its neighbor robot N (n).

(A2) A robot n is able to access rdc, the detect-communicate range, of its neighbor robot
N (n).

(A3) A robot n is able to calculate the relative location of a frontierPoint in f (n).

2.3. Each Robot Uses USBL and Depth Sensors to Enable Assumptions (A1) and (A2)

Suppose that a robot n transmits a signal to another robot, say m ∈ N (n). The bearing
of the signal is measured by the USBL of m. The signal bearing is measured by the USBL of
m, which contains an array of transducers. The transceiver head normally contains three
or more transducers separated by a baseline of 10 cm or less. A method called “phase-
differencing” within this transducer array is used to calculate the signal direction. The
equation for bearing measurement is

brg = atan2(nm[2], nm[1]) + Nb. (5)

Here, nm = n−m. Furthermore, nm[j] indicates the j-th element in nm. In (5), Nb
indicates the bearing measurement noise. In (5), atan2(y, x) define the angle of a complex
number, say x + iy.

Suppose that a robot n transmits a signal to another robot, say m ∈ N (n). Then, m
replies with its own acoustic pulse. This return pulse is detected by n. The time from the
transmission of the initial acoustic pulse until the reply is detected is measured by the
USBL system of n and is converted into a range. This is feasible, since n has the reference
system to measure the signal speed in underwater environments. This range estimation is
then shared by both n and m.

The equation for range measurement between n and m is

rng = ‖nm‖+ Nr. (6)

Appl. Sci. 2021, 11, 4293 6 of 15

Here, Nr indicates the range measurement noise.
Note that m has depth sensors to measure its depth. The depth of m is measured using

d(m) = m[3] + Nd. (7)

Here, Nd indicates the depth measurement noise. Also, m[3] indicates the third
element in m. We define

rngp =
√
‖rng2 − (d(m)− d(n))2‖. (8)

Then, the relative position of n with respect to m is

relPos = [rngp ∗ cos(brg), rngp ∗ sin(brg), d(n)− d(m)]. (9)

USBL sensors can be used to transmit information from a transmitter to a receiver.
Hence, the relative position information in (9) can be shared by both m and n. Moreover,
rdc information of m and n can be shared by two robots. Thus, Assumptions (A1) and
(A2) hold.

We next calculate the number of communication pings required, so that two neighbor-
ing robots m and n can share the relative position information. The bearing measurement
in (5) requires a single communication ping from n to m. The range measurement in (6)
further requires a return pulse from m to n. Then, the calculated range measurement is
sent from n to m. Also, the bearing measurement in (5) is sent from m to n. In total, four
communication pings are required, so that two neighboring robots m and n can share the
relative position information.

2.4. Each Robot Uses Active Sonars to Enable Assumption (A3)

Recall that a frontierPoint f (n) of a robot n denotes a freePoint of n, which is outside
the Spheredc of any other robot. A robot n can detect an obstacle close to it using its local
active sonar sensors. A robot has active sonars, which can sense an obstacle close to the
robot [28]. Thus, a robot can calculate the relative location of its freePoint.

Moreover, n can derive the relative location of its neighbor robot using Assumption
(A1). Note that n has ‖N (n)‖ neighbors. Hence, 4 ∗ ‖N (n)‖ communication pings are
required, so that n and every robot in N (n) can share the relative position information.

Furthermore, using Assumption (A2), n can access the detect-communicate range
of its neighbor in N (n). ‖N (n)‖ communication pings are required for this access. In
summary, 5 ∗ ‖N (n)‖ communication pings are required, so that n can access both the
relative position and the detect-communicate range of its every neighbor in N (n).

Thus, n can find a freePoint, which is outside the Spheredc of any other robot. In other
words, n is able to calculate the relative location of a frontierPoint in f (n). Hence, Assump-
tion (A3) is derived. Note that 5 ∗ ‖N (n)‖ communication pings are required to calculate
the relative location of a frontierPoint in f (n).

3. Coverage Methods Utilizing Multiple Heterogeneous Robots

This section handles the following problem: Consider surface ships dropping multi-
ple heterogeneous robots. Build 3D sensor networks without sensing holes, while localizing all
robots. While each robot moves, it satisfies the following aspects: obstacle avoidance, and network
connectivity are preserved.

To solve the above problem, this article proposes the coverage methods (Algorithm 1)
as follows. Initially, all robots are dropped by a surface ship on the sea surface of the 3D
workspace. Then, every robot is controlled one after one sequentially, such that as we
locate more robots at their designated target positions, an unsensed open space reduces
gradually. The proposed coverage algorithm works by moving a single robot at a time to
spread out the sensor network, starting from an initial site and spreading out to cover the
workspace completely.

Appl. Sci. 2021, 11, 4293 7 of 15

Suppose a robot reaches its designated target position (see Algorithm 1). Thereafter,
the robot activates its local sonar sensors to sense its surroundings. To build a connected
network, a robot ns

i moves into an unsensed open space within rdc
i distance units. As a

robot ns
i reaches its designated target position fns

i
, the robot activates its local sonar sensors

with range rdc
i .

Algorithm 1 Coverage methods using a ship ps.

1: Initially, all robots are stored in ps on the sea surface of the 3D workspace;
2: One robot, say ns

1, is dropped by the ship for the first time;
3: Localize ns

1 using the 3D coordinates of ps;
4: The robot ns

1 activates its local sonar sensors with range rdc
1 ;

5: FrontierPoints of ns
1 are generated;

6: i = 2;
7: repeat
8: One robot, say ns

i , is dropped by the ship;
9: By applying the directed breadth-first search on Is, ns

i finds the nearest robot, say m,
with a frontierPoint;

10: One frontierPoint on m is chosen as the target position, say fns
i
, of ns

i ;
11: Based on the directed breadth-first search, ns

i travels along the directed path to reach
m;

12: ns
i moves to fns

i
;

13: if ns
i reaches fns

i
then

14: ns
i activates its local sonar sensors with range rdc

i ;
15: Localize ns

i using the 3D coordinates of fns
i
;

16: ns
i transmits a signal to the ship via multi-hop communication using USBL, so that

the ship can deploy the next robot;
17: end if
18: i = i + 1;
19: until i == Ns or Is finds no frontierPoint;

In Algorithm 1, every robot is controlled one after one sequentially. Initially, ns
1

activates its active sonar sensors to sense an obstacle close to the robot. Thus, ns
1 can

calculate the relative location of its freePoint. Thereafter, frontierPoints of ns
1 are generated.

Since ns
1 is the robot which is deployed for the first time, it has no neighbors when it

generates frontierPoints. Therefore, no communication pings are required to calculate the
relative location of a frontierPoint in f (ns

1).
Whenever a new robot, say n, is dropped by a ship, n moves until arriving at the near-

est frontierPoint. The robot n then activates its local sonar sensors to sense its surroundings.
FrontierPoints of n are generated accordingly. Note that 5 ∗ ‖N (n)‖ communication pings
are required to calculate the relative location of a frontierPoint in f (n). Repeat this until
every robot is positioned at its designated target position.

Recall that robots are dropped in the following order: ns
1 → ns

2 → · · · → ns
Ns . Consider

the case where ns
i−1 just activated its local sonar sensors to sense its surroundings. The

robot ns
i finds the nearest robot, say m, with a frontierPoint. The directed breadth-first

search can be used for finding m. The time complexity of the directed breadth-first search
is O(‖E(Is)‖), since every edge will be explored in the worst case.

One frontierPoint on m is then chosen as fns
i
. Based on the directed breadth-first search,

ns
i travels along a directed path, say P, in Is to arrive at m. Recalling the notation of Is, P is

a safe path for ns
i . Furthermore, the length of every straight line segment of P is shorter

than rdc
i .

As ns
i arrives at a robot in the path P, ns

i can move towards the next robot in the path
P under Assumption (A1). GPS is not required for this local maneuver. In order to traverse
the path P, ns

i utilizes local interaction with a robot in P. As ns
i arrives at a robot, say

Appl. Sci. 2021, 11, 4293 8 of 15

ns
l , in P, ns

l lets ns
i access the next robot in P. This information sharing is possible under

Assumption (A1).
As ns

i arrives at the last robot in the path P, ns
i can move towards fns

i
under Assumption

(A3). After ns
i arrives at fns

i
, ns

i activates its local sonar sensors to sense its surroundings.
Once ns

i activates its local sonar sensors, several frontierPoints inside the Spheredc of
ns

i are deleted. This deletion is possible based on local interaction of ns
i .

We explain the deletion process in detail. Suppose that a point in f (ns
j) is inside the

Spheredc of ns
i . Since the relative distance between ns

j and a point in f (ns
j) is rdc

j , ns
j is a

neighbor to ns
i . Under Assumption (A1), ns

i calculates the relative location of ns
j .

Suppose that ns
i calculates the relative location of ns

j . The relative vector from ns
i to a

point in f (ns
j) is derived by adding the below two vectors, which are available based on

Assumptions (A1) and (A3):

1 the vector from ns
j to the point in f (ns

j).

2 the vector from ns
i to ns

j .

As ns
i activates its local sonar sensors, several frontierPoints inside the Spheredc of ns

i
are deleted. Recall that 5 ∗ ‖N (ns

i)‖ communication pings are required to calculate the
relative location of a frontierPoint in f (ns

i).
Then, ns

i broadcasts the deletion of frontierPoints to every other robot which can
communicate with ns

i using multi-hop communication. Here, multi-hop communication is
feasible using USBL of each robot.

This broadcast of ns
i requires ‖V(Is)‖ communication pings, since there are ‖V(Is)‖

nodes in Is. Using Algorithm 1, ‖V(Is)‖ increases from 1 to ∑S
s=1 Ns. Therefore, the number

of broadcast pings is 1 + 2 + · · ·+ ∑S
s=1 Ns.

Also, ns
i transmits a signal to the ship via multi-hop communication using USBL, so

that the ship can deploy the next robot ns
i+1. ns

i+1 finds the nearest frontierPoint. Then,
ns

i+1 travels along Is until arriving at the frontierPoint. This repeats until i == Ns in
Algorithm 1.

Figure 1 illustrates the case where ns
i heads towards fns

i
. In this figure, ns

i is illustrated
as a sphere. ns

i travels along a narrow passage in Figure 1. Red curves indicate the obstacle
boundaries, and the path of ns

i is illustrated with yellow line segments. The large dots
indicate the robots which are already at their target positions. Spheredc of every robot is
illustrated as a sphere. FrontierPoints are depicted as points on one robot’s Boundarydc.

nsi

Figure 1. ns
i heads towards fns

i
. Red curves indicate obstacle boundaries, and the path of ns

i is
illustrated with yellow line segments. The large dots indicate the robots which are already at their
target positions. FrontierPoints are depicted as points on one robot’s Boundarydc.

3.1. Analysis

Algorithm 1 ends when i == Ns or Is finds no frontierPoint. If i == Ns, then there is
no remaining robot in the ship ps. Acknowledge that all sensing holes disappear only when
∑S

s=1 Ns is sufficiently large. Based on simulations, Section 4.1 presents how to estimate
the number of robots required for covering a 3D workspace, considering the case where an
obstacle inside the workspace is not known a priori.

In Algorithm 1, a robot ns
i travels along a directed path in Is until arriving at fns

i
. The

next theorem proves that ns
i can find at least one directed path from ns

1 to fns
i
. Recall that ns

1
is the first robot dropped by the ship ps.

Appl. Sci. 2021, 11, 4293 9 of 15

Theorem 1. Consider the situation where all robots move under Algorithm 1. A robot ns
i can find

at least one directed path from ns
1 to fns

i
.

Proof. In Algorithm 1, ns
i finds the nearest robot, say m, with a frontierPoint by applying

the directed breadth-first search on Is. Then, one frontierPoint on m is chosen as the target
position, say fns

i
, of ns

i .
Since fns

i
is a frontierPoint, it exists on Boundarydc of m. Since m is found by applying

the directed breadth-first search, there exists a directed path from ns
1 to m.

We next prove that there exists a directed path from m to fns
i
. Since a frontierPoint is a

freePoint, the straight line segment connecting m and fns
i

is safe. fns
i

exists on Boundarydc

of m. Hence, there exists a directed edge from ns
j to fns

i
.

We proved that there exists a directed path from ns
1 to ns

j . Also, we proved that there
exists a directed path from ns

j to fns
i
. Thus, there exists a directed path from ns

1 to fns
i
, such

that the path contains ns
j . We proved that there exists a directed path from ns

1 to fns
i
.

The next theorem proves that fns
i

and all robots along the directed path are localized.
While ns

i travels along the path, it is connected to ns
1. In addition, ns

i avoids collision during
the maneuver.

Theorem 2. Consider the situation where all robots move under Algorithm 1. While a robot ns
i

moves along the directed path in Is until meeting fns
i
, ns

i is connected to ns
1. During the maneuver,

ns
i avoids collision with obstacles. Also, fns

i
and all robots along the directed path are localized.

Proof. ns
i travels along the directed path in Is until arriving at fns

i
. Let {m1 → m2 → · · · →

mend} define the order of robots along the path until arriving at fns
i
. Here, m1 is ns

1, since
ns

1 is the first robot dropped by the ship ps. After ns
i arrives at mj (j ≤ end− 1), ns

i moves
toward mj+1. In addition, after ns

i arrives at mend, ns
i moves toward fns

i
.

While ns
i travels along an edge from mk to mk+1, ns

i avoids collision, since Is is safe
for a robot. In addition, ns

i is connected to mk utilizing the notation of Is. Furthermore, mk
is connected to m1 = ns

1, since the directed path is found using the directed breadth-first
method. Hence, ns

i is connected to ns
1 during the maneuver.

Recall that every frontierPoint is a freePoint. Thus, while ns
i travels along an edge

from mend to fns
i
, ns

i avoids collision. Furthermore, ns
i is connected to mend. Utilizing the

similar argument as in the previous paragraph, ns
i is connected to ns

1 during the maneuver.
We discuss how to localize all robots {m1 → m2 → · · · → mend} using Assumption (A1).

m1 is ns
1, since ns

1 is the first robot dropped by the ship ps. Thus, we localize m1 using ns
1.

Also, the 3D coordinates of mj+1 are the sum of the following two coordinates:

1 the 3D coordinates of mj.
2 the relative position of mj+1 with respect to mj.

Here, the relative position of mj+1 with respect to mj is available using Assumption (A1).
Using deduction, we localize mj for all j ≤ end.

We next address how to localize fns
i
. The 3D coordinates of fns

i
are the sum of the

following two coordinates:

1 the 3D coordinates of mend.
2 the relative position of fns

i
, with respect to mend.

Here, the relative position of fns
i

with respect to mend is available using Assumption (A3).
This theorem is proved.

In Theorem 3, it is proved that after Algorithm 1 is done, Is contains all robots dropped
by the ship ps. Also, all robots in Is are localized.

Theorem 3. Consider the situation where all robots move under Algorithm 1. After Algorithm 1
is done, Is contains all robots dropped by ps. Also, all robots in Is are localized.

Appl. Sci. 2021, 11, 4293 10 of 15

Proof. Utilizing Theorem 2, ns
i is connected to ns

1, while ns
i travels along the directed path

to fns
i
. As ns

i arrives at fns
i
, ns

i is connected to ns
1. Note that ns

1 doesn’t move at all under
Algorithm 1.

Utilizing deduction, all robots ns
2, ns

3, . . . ns
i−1 are connected to ns

1. As i varies from 1 to
Ns under Algorithm 1, all robots dropped by ps are located at their target positions and Is

contains all these robots.
We next prove that all robots in Is are localized. On contrary, suppose that a robot, say

ns
c, is not localized. Since Is contains all robots dropped by ps, there exists a directed path

from ns
1 to ns

c using Theorem 1. Using the similar arguments as in the last two paragraphs
of proof for Theorem 2, all robots along the path are localized. Thus, ns

c is localized. We
proved that all robots in Is are localized.

Theorem 4 proves that if one can’t find a frontierSurface, then the obstacle-free space
is covered by all Spheredcs completely, such that no coverage hole exists.

Theorem 4. If we can’t find a frontierSurface, then all Spheredc cover the obstacle-free space
completely, such that no coverage hole exists.

Proof. Using the transposition rule, the below statement is proved: if an obstacle-free
space, which is outside a Spheredc, exists, then we can find a frontierSurface.

Suppose that an obstacle-free space, which is outside a Spheredc, exists. Let O indicate
this uncovered obstacle-free space. Then, at least one robot, say ns

i , has a frontierSurface
intersecting O. Using Theorem 3, Is contains ns

i under Algorithm 1. Hence, we can find
this frontierSurface using Is.

Theorem 4 proved that once the 3D network is completely generated using Algorithm 1,
then no sensing hole remains.

In Algorithm 1, ns
i moves along the directed path in Is until meeting fns

i
. Let {m1 →

m2 → · · · → mend} represent the robots on the path. Here, m1 is ns
1. After ns

i arrives at mj
(j ≤ end− 1), ns

i heads towards mj+1. In addition, after ns
i arrives at mend, ns

i heads towards
fns

i
.

A robot ns
i needs to follow the path {m1 → m2 → · · · → mend}. In practice, ns

i can
be an Autonomous Underwater Vehicle (AUV) with acceleration constraints. An AUV ns

i
can follow the path using path following controls in [29–32]. Note that designing path
following controls for a robot is not within the scope of this paper.

3.2. Handling Broken Robot or Network Delay

After the network is completely built, a robot may be broken. In this case, sensing
holes may appear due to the broken robot. In this case, a frontierPoint of a robot, say an,
can be detected using its local sensor. Suppose that a new robot, say nN , is deployed from
a ship to replace the broken robot. Based on Assumption (A3), each frontierPoint of an
can be located using the local sensor of an. One frontierPoint on an is then chosen as a
target position, say fnN . Based on Is, nN travels along the directed path to reach the target
position. In this way, nN replaces the broken robot.

Algorithm 1 does not require synchronization among the robots. Suppose that a
robot, say ns

j , reached its target position. It then transmits a signal to the ship via multi-
hop communication using USBL, so that the ship can deploy the next robot, say ns

i . It is
inevitable that network delay occurs in multi-hop communications.

This article assumes that a robot can communicate with other robots via multi-hop
communication using USBL. However, using multi-hop communication, time delay may
occur during data transfer.

Algorithm 1 is robust to network delay due to data transfer. Suppose that it takes δ
seconds until ns

i finds the directed path to the nearest frontierPoint based on Is. The robot
ns

i begins moving only after it finds a directed path to the found frontierPoint. In addition,

Appl. Sci. 2021, 11, 4293 11 of 15

no robot moves while ns
i moves. Hence, Algorithm 1 works regardless of how long the

delay δ is.
Note that while a robot ns

i travels along the path to the nearest frontierPoint, other
robots stand still. Hence, the speed of a moving robot doesn’t make effects on Algorithm 1.
In the case where a robot moves slower than other robots, it may take longer to make the
robot reach its associated frontierPoint. Since only a single robot moves at a time, a robot’s
speed doesn’t disturb the process of Algorithm 1.

It can be argued that the proposed coverage methods run slow, since we make a single
robot move at a time. However, we can speed up the coverage process by increasing the
speed of each robot. This speed up is possible, since the speed of a moving robot doesn’t
make effects on Algorithm 1. Moreover, we can speed up the network building process by
letting multiple surface ships drop multiple robots simultaneously.

4. MATLAB Simulation Results

We verify the performance of Algorithm 1 with MATLAB simulations. The sampling
interval is dt = 1 second. We use Q = 36 ∗ 36, and consider a given workspace with a
known size [0, 200] ∗ [0, 200] ∗ [0, 200] in meters. This implies that the workspace has [0, 200]
as its x-coordinate range, y-coordinate range, or z-coordinate range. Note that obstacles are
unknown a priori.

In Algorithm 1, a robot ns
i moves along a directed path to reach its target position.

Designing path following controls is not within the scope of this paper. In simulations,
the dynamics of ns

i are given by

ns
i (k + 1) = ns

i (k) + us
i (k)dt, (10)

where dt presents the sampling interval in discrete-time systems. Also, us
i (k) presents the

velocity of ns
i at sample-step k. The dynamic model in (10) is commonly used in multi-robot

systems [10,33,34]. Let Us
i = maxk‖us

i (k)‖ denote the maximum speed of ns
i . Considering

heterogeneous robots, Us
i 6= Us

j is possible.
The controllers for ns

i are designed in discrete-time systems. Let W indicate the next
waypoint that ns

i will encounter as ns
i travels along the directed path to its target position

fns
i
. Let W indicate the coordinates of W.

Let g = W− ns
i (k). ns

i is controlled to move towards W. If ‖g‖ > Us
i dt, then (10) is set

as

ns
i (k + 1) = ns

i (k) + Us
i

g
‖g‖dt. (11)

If ‖g‖ ≤ Us
i dt and W 6= fns

i
, then ns

i heads towards the next waypoint after W. If
W == fns

i
and ‖g‖ ≤ Us

i dt, then (10) is set as

ns
i (k + 1) = ns

i (k) + (
‖g‖
dt

)
g
‖g‖dt. (12)

This leads to

ns
i (k + 1) = W. (13)

We consider two ships in total, i.e., S = 2. Using the simulation in the workspace
without obstacles (Section 4.1), we can estimate the number of required robots as 32. Hence,
we conjecture that 5, 10, 20 robots are not sufficient to cover the workspace. We hence use
50 robots in the Simulation section.

Each ship contains 25 robots in total. The position of one ship carrying N1 = 25 robots
is (30, 30, 0) in meters. In other words, n1

1, n1
2, . . . , n1

25 are located at (30, 30, 0) initially. The
position of another ship carrying N2 = 25 robots is (150, 150, 0) in meters. In other words,
n2

1, n2
2, . . . , n2

25 are located at (150, 150, 0) initially.

Appl. Sci. 2021, 11, 4293 12 of 15

We consider heterogeneous robots as follows. Each robot may move with distinct
speed, while having distinct USBL sensors. In the case where i mod 3 is zero, rdc

i is 100 m,
and the maximum speed is Us

i = 5 m/s. In the case where i mod 3 is one, rdc
i is 50 m,

and the maximum speed is Us
i = 3 m/s. In the case where i mod 3 is two, rdc

i is 75 m,
and the maximum speed is Us

i = 2 m/s.
In practice, there exists sonar sensing noise and external disturbance. Considering

these practical aspects, a robot may not be located at its target position accurately. As we
localize ns

i using the 3D coordinates of fns
i

(Algorithm 1), we added a Gaussian noise with
mean 0 and standard deviation 1 m to each element in the 3D coordinates of fns

i
. In this

way, ns
i is not accurately located at fns

i
.

Figure 2 shows the final sensor configuration after the robots are deployed to cover
the 3D workspace with a known size 200 ∗ 200 ∗ 200 in meters. 966 s are spent to cover the
workspace completely. Using MATLAB simulations, 7 s are spent to build the complete
network without sensing holes. Among 50 robots, 18 robots move to cover the workspace.
Yellow diamonds indicate robot positions dropped from p1, and blue diamonds indicate
robot positions dropped from p2. The position of a ship is marked with a circle. In the
figure, spheres indicate obstacles in the environment.

−50

0

50

100

150

0

50

100

150

0

50

100

150

200

250

Figure 2. The final sensor configuration after the robots are deployed to cover the 3D workspace.
Among 50 robots, 18 robots move to cover the workspace. Yellow diamonds indicate robot positions
dropped from p1, and blue diamonds indicate robot positions dropped from p2. The ship position is
marked with a circle. Spheres indicate obstacles in the environment.

Considering the scenario in Figure 2, Figure 3 shows the sensor network that is built
utilizing our 3D coverage methods. In Figure 3, the path of a robot that is dropped from the
ship at (30, 30, 0) is marked with yellow asterisks. Also, the path of a robot that is dropped
from the ship at (150, 150, 0) is marked with blue asterisks.

Appl. Sci. 2021, 11, 4293 13 of 15

−100

0

100

200

−100

0

100

200

0

50

100

150

200

250

300

Figure 3. Considering the scenario in Figure 2, this figure shows the sensor network that is built
under our 3D coverage methods. The path of a robot that is dropped from the ship at (30, 30, 0) is
marked with yellow asterisks. Furthermore, the path of a robot that is dropped from the ship at
(150, 150, 0) is marked with blue asterisks.

4.1. Estimate the Number of Robots Required

Next, we address how to estimate the number of robots required for covering a 3D
workspace, considering the case where an obstacle inside the workspace is not known
a priori. To estimate the number of robots, we simulate Algorithm 1, while setting no
obstacles in the environment. We set no obstacles in the simulation, since we estimate the
number of robots, in the case where an obstacle inside the workspace is not known a priori.

Figure 4 shows the sensor configuration, as Algorithm 1 is used to simulate the robot
maneuvers for covering the 3D workspace with a known size [0, 200] ∗ [0, 200] ∗ [0, 200] in
meters. See that there is no obstacle in the simulated environment.

−50

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

250

Figure 4. The sensor configuration after the robots are simulated to cover the 3D workspace without
obstacles. 32 robots are dropped in total, and the position of a robot is depicted with a green circle.
The path of a robot that is dropped from the ship at (30, 30, 0) is marked with yellow asterisks. Also,
the path of a robot that is dropped from the ship at (150, 150, 0) is marked with blue asterisks. Using
the simulation in the workspace without obstacles, we can estimate the number of required robots
as 32.

In Figure 4, the path of a robot that is dropped from the ship at (30, 30, 0) is marked
with yellow asterisks. Also, the path of a robot that is dropped from the ship at (150, 150, 0)
is marked with blue asterisks. Using MATLAB simulations, 14 s are spent to build the
complete network without sensing holes.

32 robots are dropped in the simulations, and the position of a robot is depicted with
a green circle in Figure 4. Using the simulation in the workspace without obstacles, we can
estimate the number of required robots as 32.

Appl. Sci. 2021, 11, 4293 14 of 15

5. Discussions

In Algorithm 1, a robot moves along a directed path to reach its target position.
A robot, which can be an AUV with acceleration constraints, can follow the path using path
following controls in [29–32]. As a robot moves along a path, it must avoid collision with
moving obstacles, such as other vehicles or animals. Various reactive collision avoidance
methods [35–37] can be integrated with the proposed path planner, so that a robot can
avoid collision with abrupt obstacles.

6. Conclusions

As a method to build underwater sensor networks in a cluttered underwater envi-
ronment, this article considers surface ships dropping robots into the sea. Multiple robots
move autonomously to build 3D sensor networks, while avoiding collision with unknown
obstacles. The 3D coverage algorithm works by deploying a single robot at a time to
spread out networks, until the open space is fully covered. Moreover, this article discusses
how to handle broken robots, as well as how to estimate the number of robots required,
considering the case where an obstacle inside the workspace is not known a priori.

Utilizing MATLAB simulations, we demonstrate the effectiveness of the proposed
network construction methods. As our future works, we will do experiments to verify the
proposed methods utilizing real underwater robots.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2019R1F1A1063151).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun. Mag. 2002, 40, 102–114.

[CrossRef]
2. Batalin, M.A.; Sukhatme, G.S. Coverage, exploration and deployment by a mobile robot and communication network. IEEE

Commun. Mag. 2004, 26, 181–196. [CrossRef]
3. Felemban, E.; Shaikh, F.K.; Qureshi, U.M.; Sheikh, A.A.; Qaisar, S.B. Underwater Sensor Network Applications: A Comprehensive

Survey. Int. J. Distrib. Sens. Netw. 2015, 11, 896832. [CrossRef]
4. Smith, B.; Howard, A.; McNew, J.; Egerstedt, M. Multi-Robot Deployment and Coordination with Embedded Graph Grammars.

Auton. Robot. 2009, 26, 79–98. [CrossRef]
5. Cortés, J.; Martínez, S.; Karatas, T.; Bullo, F. Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 2004,

20, 243–255. [CrossRef]
6. Siligardi, L.; Panerati, J.; Kaufmann, M.; Minelli, M.; Ghedini, C.; Beltrame, G.; Sabattini, L. Robust Area Coverage with

Connectivity Maintenance. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada, 20–24 May 2019; pp. 2202–2208.

7. Stergiopoulos, Y.; Kantaros, Y.; Tzes, A. Connectivity-aware coordination of robotic networks for area coverage optimization. In
Proceedings of the 2012 IEEE International Conference on Industrial Technology, Athens, Greece, 19–21 March 2012; pp. 31–35.

8. Ramaithitima, R.; Whitzer, M.; Bhattacharya, S.; Kumar, V. Sensor coverage robot swarms using local sensing without metric
information. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA,
26–30 May 2015; pp. 3408–3415.

9. Franchi, A.; Masone, C.; Grabe, V.; Ryll, M.; Bülthoff, H.H.; Giordano, P.R. Modeling and Control of UAV Bearing Formations
with Bilateral High-level Steering. Int. J. Robot. Res. 2012, 31, 1504–1525. [CrossRef]

10. Luo, S.; Kim, J.; Parasuraman, R.; Bae, J.H.; Matson, E.T.; Min, B.C. Multi-robot rendezvous based on bearing-aided hierarchical
tracking of network topology. Ad Hoc Netw. 2019, 86, 131–143. [CrossRef]

11. Dehnavi, S.M.; Ayati, M.; Zakerzadeh, M.R. Three dimensional target tracking via Underwater Acoustic Wireless Sensor Network.
In Proceedings of the 2017 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 9 April 2017; pp. 153–157.

12. Kim, J. Three-dimensional multi-robot control to chase a target while not being observed. Int. J. Adv. Robot. Syst. 2019,
16, 1729881419829667. [CrossRef]

13. Kim, J. Cooperative Exploration and Protection of a Workspace Assisted by Information Networks. Ann. Math. Artif. Intell. 2014,
70, 203–220. [CrossRef]

14. Kim, J. Capturing intruders based on Voronoi diagrams assisted by information networks. Int. J. Adv. Robot. Syst. 2017, 14, 1–8.
[CrossRef]

http://doi.org/10.1109/MCOM.2002.1024422
http://dx.doi.org/10.1023/B:TELS.0000029038.31947.d1
http://dx.doi.org/10.1155/2015/896832
http://dx.doi.org/10.1007/s10514-008-9107-6
http://dx.doi.org/10.1109/TRA.2004.824698
http://dx.doi.org/10.1177/0278364912462493
http://dx.doi.org/10.1016/j.adhoc.2018.11.004
http://dx.doi.org/10.1177/1729881419829667
http://dx.doi.org/10.1007/s10472-013-9383-5
http://dx.doi.org/10.1177/1729881416682693

Appl. Sci. 2021, 11, 4293 15 of 15

15. Kim, J.; Maxon, S.; Egerstedt, M.; Zhang, F. Intruder Capturing Game on a Topological Map Assisted by Information Networks.
In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA,
12–15 December 2011; pp. 6266–6271.

16. Kim, J. Intruder capture algorithms considering visible intruders. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419846739. [CrossRef]
17. Spagnolo, G.S.; Cozzella, L.; Leccese, F. Underwater Optical Wireless Communications: Overview. Sensors 2020, 20, 2261.

[CrossRef] [PubMed]
18. Wu, T.C.; Chi, Y.C.; Wang, H.Y.; Tsai, C.T.; Lin, G.R. Blue Laser Diode Enables Underwater Communication at 12.4 Gbps. Sci. Rep.

2017, 7, 1–10.
19. Liu, J.; Wang, Z.; Cui, J.H.; Zhou, S.; Yang, B. A Joint Time Synchronization and Localization Design for Mobile Underwater

Sensor Networks. IEEE Trans. Mob. Comput. 2016, 15, 530–543. [CrossRef]
20. Misra, S.; Ojha, T.; Mondal, A. Game-Theoretic Topology Control for Opportunistic Localization in Sparse Underwater Sensor

Networks. IEEE Trans. Mob. Comput. 2015, 14, 990–1003. [CrossRef]
21. Han, G.; Zhang, C.; Shu, L.; Rodrigues, J.J.P.C. Impacts of Deployment Strategies on Localization Performance in Underwater

Acoustic Sensor Networks. IEEE Trans. Ind. Electron. 2015, 62, 1725–1733. [CrossRef]
22. Jadbabaie, A.; Lin, J.; Morse, A.S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans.

Autom. Control 2003, 48, 349–368.
23. McNew, J.M.; Klavins, E. Locally interacting hybrid systems with embedded graph grammars. In Proceedings of the 45th IEEE

Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 6080–6087.
24. Pompili, D.; Melodia, T.; Akyildiz, I.F. Three-dimensional and two-dimensional deployment analysis for underwater acoustic

sensor networks. Ad Hoc Netw. 2009, 7, 778–790. [CrossRef]
25. Lin, Y.; Ni, C.; Lei, N.; David Gu, X.; Gao, J. Robot Coverage Path planning for general surfaces using quadratic differentials. In

Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 5005–5011.

26. Galceran, E.; Carreras, M. Planning coverage paths on bathymetric maps for in-detail inspection of the ocean floor. In Proceedings
of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 4159–4164.

27. Douglas, B.W. Introduction to Graph Theory, 2nd ed.; Prentice Hall: Chicago, IL, USA, 2001.
28. Calado, P.; Gomes, R.; Nogueira, M.B.; Cardoso, J.; Teixeira, P.; Sujit, P.B.; Sousa, J.B. Obstacle avoidance using echo sounder

sonar. In Proceedings of the OCEANS 2011 IEEE, Santander, Spain, 6–9 June 2011; pp. 1–6.
29. Peng, Z.; Wang, J.; Wang, J. Constrained Control of Autonomous Underwater Vehicles Based on Command Optimization and

Disturbance Estimation. IEEE Trans. Ind. Electron. 2019, 66, 3627–3635. [CrossRef]
30. Peng, Z.; Wang, J.; Han, Q. Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints

via Neurodynamic Optimization. IEEE Trans. Ind. Electron. 2019, 66, 8724–8732. [CrossRef]
31. Shen, C.; Shi, Y.; Buckham, B. Path-Following Control of an AUV: A Multiobjective Model Predictive Control Approach. IEEE

Trans. Control Syst. Technol. 2019, 27, 1334–1342. [CrossRef]
32. Suarez Fernandez, R.A.; Parra R.E.A.; Milosevic, Z.; Dominguez, S.; Rossi, C. Nonlinear Attitude Control of a Spherical

Underwater Vehicle. Sensors 2019, 19, 1445. [CrossRef]
33. Ji, M.; Egerstedt, M. Distributed Coordination Control of Multi-Agent Systems While Preserving Connectedness. IEEE Trans.

Robot. 2007, 23, 693–703. [CrossRef]
34. Kim, J.; Kim, S. Motion control of multiple autonomous ships to approach a target without being detected. Int. J. Adv. Robot. Syst.

2018, 15, 1–8. [CrossRef]
35. Chakravarthy, A.; Ghose, D. Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Trans. Syst. Man

Cybern. 1998, 28, 562–574. [CrossRef]
36. Van den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-Body Collision Avoidance. Robot. Res. Springer Tracts Adv. Robot.

2011, 70, 3–19.
37. Kim, J. Control laws to avoid collision with three dimensional obstacles using sensors. Ocean Eng. 2019, 172, 342–349. [CrossRef]

http://dx.doi.org/10.1177/1729881419846739
http://dx.doi.org/10.3390/s20082261
http://www.ncbi.nlm.nih.gov/pubmed/32316218
http://dx.doi.org/10.1109/TMC.2015.2410777
http://dx.doi.org/10.1109/TMC.2014.2338293
http://dx.doi.org/10.1109/TIE.2014.2362731
http://dx.doi.org/10.1016/j.adhoc.2008.07.010
http://dx.doi.org/10.1109/TIE.2018.2856180
http://dx.doi.org/10.1109/TIE.2018.2885726
http://dx.doi.org/10.1109/TCST.2018.2789440
http://dx.doi.org/10.3390/s19061445
http://dx.doi.org/10.1109/TRO.2007.900638
http://dx.doi.org/10.1177/1729881418763184
http://dx.doi.org/10.1109/3468.709600
http://dx.doi.org/10.1016/j.oceaneng.2018.11.035

	Introduction
	Preliminary Information
	Problem Statement
	 Assumptions and Notations
	 Each Robot Uses USBL and Depth Sensors to Enable Assumptions (A1) and (A2)
	Each Robot Uses Active Sonars to Enable Assumption (A3)

	Coverage Methods Utilizing Multiple Heterogeneous Robots
	Analysis
	Handling Broken Robot or Network Delay

	MATLAB Simulation Results
	Estimate the Number of Robots Required

	Discussions
	Conclusions
	References

