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Abstract: In ultrasonic non-destructive testing, array and matrix transducers are being employed for
applications that require in-field steerability or which benefit from a higher number of insonification
angles. Having many transmit channels, on the other hand, increases the measurement time and
renders the use of array transducers unfeasible for many applications. In the literature, methods for
reducing the number of required channels compared to the full matrix capture scheme have been
proposed. Conventionally, these are based on choosing the aperture that is as wide as possible. In
this publication, we investigate a scenario from the field of pipe inspection, where cracks have to be
detected in specific areas near the weld. Consequently, the width of the aperture has to be chosen
according to the region of interest at hand. On the basis of ray-tracing simulations which incorporate
a model of the transducer directivity and beam spread at the interface, we derive application specific
measures of the energy distribution over the array configuration for given regions of interest. These
are used to determine feasible subsampling schemes. For the given scenario, the validity/quality of
the derived subsampling schemes are compared on the basis of reconstructions using the conventional
total focusing method as well as sparsity driven-reconstructions using the Fast Iterative Shrinkage-
Thresholding Algorithm. The results can be used to effectively improve the measurement time for
the given application without notable loss in defect detectability.

Keywords: total focusing method; compressive sensing; FISTA; full matrix capture; NDT methods;
signal reconstruction; defects

1. Introduction

Multi-channel ultrasound measurements allow a high level of flexibility in the data
acquisition of imaging and defect recognition. A common acquisition scheme is the full
matrix capture (FMC), which denotes consecutively transmitting with one transducer
element after another, while all elements receive on each cycle. This acquisition scheme
is then commonly paired with the Total Focusing Method (TFM) [1], which is an imaging
algorithm applied in post-processing.

When being applied for inline inspection, where speed is crucial, FMC measurements
suffer from a higher acquisition time compared to, e.g., a transmit-focused beam, as each
measurement cycle requires sending with each array element. The purpose of this study
is to derive a simple heuristic for choosing only a subset of the elements for transmission
to improve the acquisition speed while preserving the achievable imaging quality. The
algorithm takes a priori knowledge of the problem geometry, i.e., a forward model, into
account. Furthermore, only a specific region of interest is considered, limiting the width of
the usable aperture.
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In the literature, reducing the number of transmit or receive channels of a FMC
acquisition has been studied both in the light of reducing acquisition as well as processing
times and hardware cost. The design of such sparse ultrasound arrays is extensively being
studied for medical applications, where the most common optimization criteria are side
lobe levels and point spread functions over the full aperture. In non-destructive testing,
transmit subsampling is being investigated in [2], where the authors show that using two
or four elements near the end of the array for excitation is to be favored over transmitting
with all elements as one. In [3,4], equispaced element choices as well as using only the
outer elements are being investigated, with the conclusion that using fewer elements can
be an application-dependent choice to improve measurement speed. In [5], sparse arrays
are designed using a combination of almost different sets and a genetic algorithm using
attributes of the point spread function as the fitness measure. In [6], using fewer receivers
is investigated for near surface defects. In [7], particle swarm optimization is performed
to reduce the computation time of FMC by using fewer elements. In [8], a Compressive
Sensing (CS)-based approach is used for reducing the data both in receive as well as in
frequency based on Cramer Rao Bounds.

All aforementioned publications deal with the optimization of the patterns in terms of
the full aperture width. In contrast, we consider a scenario where, due to the limited extent
of the region of interest, only a subset of the full width of the aperture is of relevance. Similar
investigations were carried out in [9] for acoustic source localization using microphones,
prioritizing certain regions in the image. In the same spirit, we derive a simpler heuristic.
In contrast, our approach is based on a more sophisticated forward model, including effects
such as refraction and beam patterns, for an application in non-destructive testing.

We investigate a scenario where a bowed transducer array is positioned over a moving
pipe in production. While the transducer encloses a section of the pipe to ensure recording
echoes from a large variety of angles, as well as to enable in-field adjustability, the region
where defects are expected is limited to the weld. This also limits the usable aperture,
posing the question of how to choose the active array elements.

Consequently, we derive a scheme where the transmit elements are chosen on the basis
of the a priori knowledge of the problem geometry and area of interest. The reconstruction
as well as the array element selection are performed on the basis of a linearized forward
model, which, calculated by a raycasting scheme, incorporates effects as transducer di-
rectivity and refraction at the pipe boundary. The reconstruction is performed by TFM.
We additionally also compare to the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [10] for reconstruction and tailor a forward model-based weighting scheme for the
scenario at hand that benefits both algorithms.

2. Materials and Methods
2.1. Forward Model

The post-processing algorithms considered in this publication combine data from
multiple observations for imaging. The bowed linear array transducer that is used for the
measurements is assumed to be stationary during each cycle of transmit and receive events.
The data acquisition is performed such that one transducer element shoots at a time and
multiple transducer elements record the echoes [1]. The data from all transmit and receive
events at one location is then fused in post-processing.

We consider each observation to be a superposition of multiple time shifted echoes as

gmtx ,mrx (t) = <
{

∑
d

∑
p

αmtx ,mrx ,p,dh(a)
(

t− τmtx ,mrx ,p,d

)}
+ n(t), (1)

where g(t) is an A-scan and mtx and mrx index a transmitter and receiver, respectively. The
analytic signal of the transmit pulse is given by h(a)(t), <{.} takes the real part. Each A-
scan consists of a superposition of echoes from multiple defects d. The ultrasonic wave can
have taken different propagation paths and modes from transmitter to defect to receiver,
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which are indexed by p (see also [11,12]). The complex factor α models the amplitude and
phase change on the path, constructed from the transducer directivity, the interfaces, and
the interaction with the defect itself. The time-shift τ indicates the propagation time on the
path. The variable n(t) indicates zero-mean additive white Gaussian noise.

2.2. Total Focusing Method

The Total Focusing Method (TFM) allows the estimation of the reflectivity of the
specimen at arbitrary points of interest r ∈ R2 with r = [x, y]T . Starting from the model
given in Equation (1), we assume a perfect point scatterer to be located at r. The reflectivity
is then given by correlating the measurement data with the estimated point scatterer
response. Repeating this procedure for a set of points of interest yields an image of the
reflectivity of the medium.

For the calculation of the reconstruction, we limit ourselves to longitudinal prop-
agation, as responses including transversal propagation can be omitted from the data.
Furthermore, multi-view data fusion is an open research topic [11] and out of the scope
of this publication. Amplitude changes that are due to interfaces have been shown to
be neglectable for the investigated scenario; furthermore, the influence of attenuation is
considered to be small enough to be neglected as well, which is in accordance with the
literature [11].

The TFM reconstruction at a point r is then given by [1]

I(r) =

∣∣∣∣∣∑mtx
∑
mrx

αmtx ,mrx (r)g(a)
mtx ,mrx (τmtx ,mrx (r))

∣∣∣∣∣, (2)

where αmtx ,mrx (r) = αmtx (r)αmrx (r) is a real weighting factor constructed from the trans-
ducer directivities αmtx (r) and αmrx (r) at the transmitter element and the receiver element,

respectively. We consider directivities to follow a Gaussian shape as α(r) = exp
(

−φ(r)
2·(0.5φmax)

2

)
here, where φ(r) is the angle of the according propagation path at the transducer el-
ement, which can be calculated once the path from the transducer element to r has
been determined.

2.2.1. Matrix Formulation

For brevity of notation we now limit ourselves to reconstructions which are performed
on an equispaced grid, i.e., to r = r(nz, nx) = [nzdz + z0, nxdx + x0]

T where nz and nx
are integers in the half-open intervals [0, Nz] and [0, Nx], respectively, dz and dx denote the
sampling intervals and z0 and x0 a start point in the according directions. Furthermore, we
denote the number of transducer elements as Nel and, in the case of using fewer transmit
cycles, the number of transmit cycles Ntx. The A-scans are considered to be time-discrete
equivalents of the continuous definition used before, holding Nt samples acquired at a
sampling frequency fS.

Equation (2) can be rewritten as matrix-vector product [8,13,14]

it f m = |Mg|, (3)

where g =

[
g(a)T

0,0 , g(a)T

0,1 , . . . , g(a)
0,Nel−1

T
, g(a)T

1,0 , . . . , g(a)
Ntx−1,Nel−1

T
]T
∈ CNtx Nel Nt are the stacked

analytic representations of the measurement data with g(a)
mtx ,mrx ∈ RNt being a single A-scan,

it f m = [I(
[
z0, x0]

T), I(
[
z0 + dz, x0]

T), . . . , I(
[
z0, x0 + dx]T

)
, . . .]T ∈ RNz Nx is the vectorized

image on the equispaced grid, M ∈ RNz Nx×Ntx Nel Nt is the model matrix, and |.| denotes the
elementwise absolute value.
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The matrix is constructed from blocks M(nz ,nx),(mtx ,mrx) ∈ R1,Nt as

M =



M(0,0),(0,0) M(0,0),(0,1) . . . M(0,0),(1,0) . . . M(0,0),(Ntx−1,Nel−1)
M(1,0),(0,0) . . .

. . .
M(0,1),(0,0)

. . .
M(Nz−1,Nx−1),(0,0)


, (4)

with each block being defined as[
M(nz ,nx),(mtx ,mrx)

]
mt

=

{
αmtx ,mrx (r(nz, nx)) ifb fSτmtx ,mrx (r(nz, nx))c = mt

0 otherwise
, (5)

where mt ∈ [0, Nt] denotes an integer index, [.]m denotes access to the particular element
of the column vector, and b.c is the floor operation. In contrast to the state of the art TFM
formulations e.g., in [1,11] the times of flights are rounded to the temporal sampling grid
here. Formulating the problem this way allows for an efficient precalculation of the matrix,
reducing the reconstruction to a simple matrix vector multiplication [14] and opening the
door for the application of algorithms like FISTA.

The model matrix M can be calculated for different transmit schemes. In the remainder
of the paper, we assume that M was calculated according to the given transmit pattern,
furthermore, as a special case, we denote M f mc with Ntx = Nel as the matrix that
corresponds to the reconstruction of a FMC dataset. Reducing the size of the matrix also
consequently reduces the computation time of the reconstruction, which is a simple matrix
vector product here.

2.2.2. Weighting

In the given scenario, the number of A-scans contributing to each reconstruction voxel
varies strongly. This is due to the limited insonification angle of each transducer element,
the influence of the specimen geometry and refraction, as well as the reconstruction being
performed on a cartesian grid, whereas the measurement setup is laid out in a circular
pattern. In [15], a weighting to counter the effects of transducer directivity and beamspread
was applied. In a similar spirit, we introduce a weighting that corrects for the influence of
the refracting boundary in combination with the directivity of our transducer elements.

A measure of the visibility of a reconstruction voxel from each active transducer is
given by the number of nonzero elements in its corresponding row in M. Summing over
these elements further includes the effect of the directivity of the transducers. The vector
e ∈ RNz Nx captures this measure for all voxels and can be computed by:

e = M f mc 1. (6)

The weight matrix to scale the reconstruction can then be constructed as the inverse of
a diagonal matrix constructed from e

W = (diag(e))−1, (7)

yielding the weighted TFM reconstruction as

iwt f m = |W M g|. (8)

2.3. FISTA

The task of recovering the point scatterer locations from the measurements using a
linear model of the reflectivity of the medium can also be considered as a sparse recovery
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problem, when the number of point scatterers is small. The reconstruction can therefore
also be obtained by approximating a solution to

min
iFISTA

||g−MHWHiFISTA||22 + λ||iFISTA||1, (9)

where iFISTA ∈ CNz Nx is the sparse representation, which is equivalent to an image of
the reflectivity of the medium, ||.||n denotes the n-norm, λ is a regularization parameter
controlling the sparsity of the result, and .H denotes the Hermitian transpose. Such
problems can be approximated by the FISTA algorithm [10], yielding a regularized image
of the reflectivity according to M for our usecase. The matrix W serves as a normalization
to the dictionary M. Note that this is common practice in the Simultaneous Algebraic
Reconstruction Technique (SART) [16].

We use the implementation of the algorithm provided in the fastmat package for
python [17]. Following [18], the regularization parameter is chosen as

λ = β||WMg||∞ (10)

with 0 ≤ β ≤ 1 .

2.4. Raycasting

All the above formulations require the ray paths to be known for the calculation of M.
In the literature, two approaches to determine the propagation paths between transmitters,
receivers (which are interchangeable due to acoustic reciprocity), and r are prevalent. In
many publications, iterative schemes for finding a propagation path that fulfils Fermats
principle given one or multiple surfaces are used [11,12,19,20]. On the other hand, e.g.,
in [21], the Eikonal equations are solved directly to determine the propagation times.

In contrast, we use a scheme where a set of rays is shot for each transmit and receive
event. The rays are propagated through the medium and refracted and reflected at each
surface on their path. The propagation times and amplitudes are extrapolated to the
grid of points of interest on each step using an adaption of the Bresenham line tracing
algorithm [22], expanded by a linear interpolation of the amplitudes and propagation times
along the line. A sketch that outlines the procedure is given in Figure 1. The rays are traced
on a map that represents the time of flights and amplitudes from which the model is built.
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tracing algorithm.

2.5. Transmit Subsampling Strategy

By using fewer transmit cycles, the measurement time can be improved. Our goal is
to use the information derived from the raycasting procedure and forward modelling to
get an optimal choice of transmit elements for imaging a region of interest. The steps of
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the algorithm are also summarized in Figure 2. The model in Equation (3) can be used to
derive the linear forward model. The following equation

^
g = MH

f mc
^
ı (11)

yields a synthetic dataset
^
g given by a superposition of all point scatterer responses modeled

by MH
f mc

^
ı. We now choose

^
ı such that all entries corresponding to voxels in our region of

interest have value 1 and 0 elsewhere. In consequence,
^
g now holds data which, though

following a simplified model, reflects a scenario where the full region of interest is reflecting.
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We can now sum these theoretical responses to get a measure of how much the
excitation of each transducer element contributes to imaging the region of interest as

[c]mtx = ∑
mrx

∑
mt

|[^gmtx ,mrx
]mt | (12)

with c ∈ RNel . We assume here that the elements indexed by mtx are ordered such that
for adjacent transducer elements the contributions are given by [c]i and [c]i+1. In order to
get the best trade off between collecting the maximum energy from the region of interest
(choosing only the center elements) and using an as wide as possible aperture (using only
the outer elements) we use the following heuristic. We divide c into Ntx sections where
each section has the same area under curve. We then use the center transducer element
corresponding to the center index of each section as transmitter. This can be expressed by
the following computation steps. We first compute the cumulative sum c(c) ∈ RNel of the
elements of c, [

c(c)
]

mtx
=

1
1Tc

mtx

∑
i = 0

[c]i (13)

normalized such that the maximum is 1. We then find our k-th transmitter element index
[p]k with p ∈ NNtx

pk = min
ξ

ξ s.t.
[
c(c)
]

ξ
≥ 1

Ntx

(
1
2
+ k
)

(14)

which is the smallest index for which c(c) exceeds the given threshold.

3. Results
3.1. Simulation Scenario

Simulations are performed in CIVA 2020 from EXTENDE [23]. The scenario is depicted
in Figure 3. A summary of the simulation parameters is given in Table 1. The simulation
mimics an inline inspection application where a circular array is used to monitor a pipe
in production. Water is used as an acoustic couplant between transducer and pipe. The
weld region is configured to behave like the surrounding material, except for defects being
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placed in that region, as the main focus of the publication is the investigation of the transmit
pattern choice rather than thoroughly modelling a weld.
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Table 1. Simulation scenario parameters.

Parameter Value

transducer radius
transducer element count
transducer element width

pitch
outer pipe radius
inner pipe radius

pipe material
coupling material

35 mm
128

0.3 mm
0.05 mm
16.5 mm
11.7 mm

Steel
Water

For each simulation, one inclusion is modelled by a 0.5 mm diameter circular defect.
Simulations with the defect being placed at radius 13 mm and 15 mm are performed. The
defect is placed centered with respect to the transducer in the angular domain.

Furthermore, 0 dB zero-mean white Gaussian noise is added to the simulated mea-
surement data to account for imperfections in the electronics and measurement. The term
0 dB refers here to the noise variance being equal to the energy of the first echo from the
defect at the center transducer element in pulse echo mode.

3.2. Transmit Subsampling
3.2.1. Impact of the Region of Interest Selection

In order to optimize our subsampling, we choose a region of interest which overlays
the weld. The variation of the visibility of the region of interest over the transducer elements
is displayed in Figure 4. When choosing a map that reflects a region near the front wall, as
given by (b), only the center transducer elements contribute to the imaging. Vice versa, a
region near the inner pipe radius (c) can be imaged using a much wider aperture.
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Consequently, since imaging with the widest possible aperture is beneficial, as defects
like cracks can show very direction-specific reflection patterns, the width of the subsampled
aperture needs to be chosen carefully. For the remainder of the paper we use the region of
interest depicted in (c), which overlays the full weld as our best a priori guess to the defect
positions to be observed in the data. It spans an area of 3.56 mm× 1.02 mm. From Figure 4,
it is apparent that this region results in an aperture choice that is a mix of (a) and (b).

The 16, 8, and 4 transmit elements chosen on the basis of the region of interest in our
scenario are displayed in Figure 5. The center of the array is being sampled more densely,
as it contributes more energy to our region of interest. Still, a wide aperture is used which
can help with the imaging of very specular reflecting defects.
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3.2.2. Verification of the Transmit Element Selection Scheme

To verify the approach to subsampling we perform reconstructions of the simulated
measurement data with wider or narrower transmit patterns. To generate these patterns,
the vector c is linearly interpolated or extrapolated to reflect a wider or narrower energy
spread, the patterns are then chosen from that deviated distribution. This is done in order
to verify that the chosen approach of taking the distribution from the model matrix is valid.

In Figure 6, the interpolated distributions c are related to the corresponding scale
parameters. For larger values of the scaling factor, the curve becomes wider, yielding a
more uniform transmitter distribution over the full aperture. In contrast, a small scale
parameter leads to a narrower distribution that results in only picking the center elements
of the array as transducers.
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We evaluate the transmit element selection scheme in Figure 7 by choosing the trans-
mit pattern from a scaled c (the scaled c are displayed in Figure 6 and performing a
reconstruction both with FISTA as well as TFM on the given data. The reconstructions are
then compared by the ratio of the energy in a square region around the defect to the energy
in the whole image. The evaluation has been run both for a defect at z = 13 mm in (a) as
well as for a defect at z = 15 mm averaging over 10 noise realizations for each. All plots
have been scaled to maximum 1 for better comparison.
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proposed transmit subsampling scheme yields the measures at scaling factor 1. For each scaling factor 10, noise realizations
are evaluated, the opaque error range of each graph indicates the according standard deviations.

The curves show that the TFM reconstruction performs best for narrow transmit
patterns, except for a slight increase for 8 and 16 elements from scaling factor 0.1 to 0.25.
The performance decreases for wider aperture choices. The original distribution at scaling
factor 1.0 is approximately at half of the peak to minimum performance value. For FISTA,
the reconstruction of the defect at z = 13 mm benefits from using a pattern with scaling
factor 0.5 to 1, even failing to reconstruct when picking only the center elements. For the
other defect, the algorithm performs in a similar fashion as TFM. The results for FISTA
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show relatively large jumps for small changes of the scaling factor. This illustrates that the
algorithm reacts strongly to small changes in the presence of multiple scattering events,
leading to variations of the proportion of the front wall energy to defect energy in the
reconstruction. For future investigations, the effect could be decreased by separating the
front wall and back wall from the remainder of the data.

The measures indicate that, except for FISTA on the z = 13 mm defect, choosing a
narrower distribution yields more energy for the defect in the reconstruction, compared
to the overall energy. When choosing a wider aperture, the performance slowly starts to
decrease, as the ultrasonic waves from the outer transmitters that are reflected by the defect
have less amplitude due to the transducer directivity and boundary. On the other hand,
choosing a wider distribution is beneficial if the defect reflects stronger to the side than
back to the center, as might be the case for a crack. This mismatch is due to the model being
derived for perfect point scatterers, which have, unlike the side-drilled holes used in the
simulations, an omnidirectional reflection pattern.

Consequently, as the measures in Figure 7 are derived for side-drilled holes as reflec-
tors, the results indicate the aperture has been chosen slightly too large. Still, the choice
seems suitable, as the algorithm performance is good, and will be more robust to direc-
tional reflectors or off-center than a more narrow aperture. The given measures reflect the
performance of the algorithms for a side-drilled hole that is located perfectly in the center
of the aperture. It is also indicated that the aperture choice should not be too narrow by
the FISTA reconstruction in Figure 7a and the slight increase of most curves from scaling
factor 0.1 to 0.25. We therefore deem the transmit pattern selection scheme suitable for the
application at hand.

3.2.3. FISTA and the Dictionary Normalization

FISTA requires tuning the regularization parameter as well as number of steps for
the scenario at hand. We empirically determined that β = 0.01 as well as running
20 steps of FISTA is suitable for our application and kept these values constant for all
investigations. To justify the dictionary normalization introduced by the matrix W in
Equations (9) and (10) the performance of the algorithm is compared with and without
the weighting. The comparison is carried out using four transmit elements that were
determined by the proposed selection scheme. The resulting B-scans are displayed in
Figure 8.
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It can be seen that without the weighting, i.e., a uniform W = I, the level of the noise
compared to the maximum amplitude of the defect in Figure 8a is higher. This is due to the
rows of M corresponding to scatterers in that region having a larger norm, as the region
is visible over a wider aperture (compare also to Figure 4). Consequently, FISTA yields a
less sparse solution for scatterers being predominantly in that region, as a slight change to
values of iFISTA associated with that region introduces a large change to the data fidelity
term

∣∣|.||22 but a small change to the regularization term. For the defect at z = 15 mm in
Figure 8b, the weighted reconstruction has a better defect to front wall separation. A likely
cause for this is the uniformly weighted reconstruction favoring the backwall reflection
much more than the weighted reconstruction, leading to a more faint defect image.

Concluding, without the introduction of W as given in Equation (7), the FISTA shows
more noise, preferably near the inner pipe radius. This is due to the non-uniform effect of
the L1-norm regularization term, which is meant to promote sparsity, for non-normalized
dictionaries. In praxis, the proposed weighting scheme is capable of countering that effect.

3.2.4. Reconstruction of the Simulated Data

The reconstructions for 4, 8, and 16 transmit elements chosen according to the pro-
posed selection scheme as well as of the full FMC data are given in Figure 9. For all
defect locations, transmit element counts, as well as both algorithms, the defects are clearly
visible. The TFM reconstruction shows more background noise, predominantly for the
reconstructions of the defect at z = 13 mm. The difference of the perceived noise level
of the TFM reconstruction for both defects is due to the colormap being adjusted to the
maximum amplitude in the region of the defect of the according image. As the defect at
z = 13 mm has a smaller amplitude, the noise is more predominant here.
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number of transmit elements. The rows indexed by (a), (b) have been calculated for a defect located at z = 13 mm and
z = 15 mm, respectively.

The FISTA reconstructions show a better separation of defect and frontwall/backwall
reflection as well as less noise than the TFM reconstructions, which is due to the algorithm
favoring sparser images. Consequently, the algorithm shows a better behavior with regards
to the noise in the measurement data. Still, this requires a suitably chosen β as well as
number of iterations.

Despite the strong subsampling, imaging the according defect is still possible for
all settings. Using fewer transmit cycles increases the noise level, as there is less data
to be averaged over. For (a) TFM using four transmit cycles the noise floor becomes
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more pronounced, for FISTA, the defect echo is a bit more faint than in the other images.
Consequently, when using four elements, imaging the defects is still possible for the given
setup. Using 8 or 16 transmit cycles improves the result so far that no apparent difference
to the reconstruction of the FMC data is apparent in the region of interest.

3.2.5. Performance in the Presence of Structural Noise

In addition to the investigations in the last subsection, which display the performance
when the data is subject to 0 dB additive white Gaussian noise, in order to emulate a highly
scattering medium we also added more realistic structural noise in CIVA. The scatterers
were placed with a density of 100 pts/mm3 and amplitude 1. The reconstructions of data
subject to both noise sources are displayed in Figure 10.
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Figure 10. B-scan views of the reconstructions under presence of additive white Gaussian noise and structural noise
normalized such that the maximum of the colormap of each image is the maximum value of the defect, where each column
shows a different number of transmit elements. The rows indexed by (a), (b) have been calculated for a defect located at
z = 13 mm and z = 15 mm, respectively.

Using fewer transmit cycles clearly degrades the imaging quality in the presence of
structural noise, with the effect being more pronounced than for the dataset that only
contained additive white Gaussian noise in Figure 9. This is due to the fact that the
additional small scatterers in the medium that emulate the structural noise show up over
multiple measurements according to the forward model and therefore cannot simply be
averaged out like the zero-mean Gaussian noise. In the presence of such small-scale
scattering events, FISTA achieves a visually better defect to noise separation due to the
sparsity constraint.

In consequence, the simulation shows that for a real world application of the subsam-
pling algorithm to a highly scattering specimen the noise level from e.g., the grain needs
to be taken into account. Based on FMC measurement data, a tuning of the number of
transmit channels should be performed.

4. Discussion

We show that a significant reduction of transmit cycles is possible for the simulation
scenario at hand. Using only 8 instead of 128 elements in transmit, the TFM and FISTA
reconstructions still yield a clear image of the defects. Consequently, the measurement time
for the acquisition of one dataset can be reduced by factor 16 with virtually no impairment
of the imaging quality for the given region of interest. Furthermore, the computation time
of the reconstruction algorithms is scaled down by approximately the same factor. For
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highly scattering media, a tuning of the number of transmit channels according to the noise
level is advised.

The transmit elements are chosen according to a deterministic scheme which, for a
given region of interest, selects an as wide as suitable aperture while emphasizing those
transmit elements that contribute more energy. The scheme is verified by evaluating
the performance of the reconstruction algorithms for wider and narrower choices of the
aperture. From these observations, it becomes apparent that using a slightly narrower
aperture would benefit the imaging of the side-drilled holes used in the simulations. Still,
as less well-behaving and more directional reflections are expected when imaging actual
cracks or inclusions, the given aperture choice seems reasonable and in a good performance
range over the full region of interest.

Inspired by SART, we introduce a normalization of the model matrix, which improves
the performance of FISTA in the given scenario. The algorithm does not perform optimally
for problems that give varying weight to contributions in the imaging region. Though, this
is natural for ultrasound imaging scenarios, as different areas in the imaging region are in
most cases being observed by a varying number of transducers. We show empirically that
the proposed normalization improves the results in the given scenario.

The reconstructions, normalization for FISTA, as well as transmit element selection are
based on a linear forward model which is derived using a ray casting scheme. It includes
effects such as the directivity of the transducer elements as well as the refraction at the pipe
boundary. The algorithms are expressed in terms of linear algebra, allowing easy and fast
parallel computation and precomputation.

As next step, the findings will be applied and verified on real measurement data.
Furthermore, including other propagation modes than only longitudinal propagation
seems beneficial, further influencing the aperture choice as well as the possibilities for
imaging from a larger aperture. Including multiple propagation modes is inherently
possible given the way the algorithms are expressed here, yet the fusion of the multi-
mode images will require further investigation [11]. Furthermore, in order to reduce the
processing time further, including subsampling on the receive side might be beneficial.
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