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Abstract: Offline changepoint detection (CPD) algorithms are used for signal segmentation in an
optimal way. Generally, these algorithms are based on the assumption that signal’s changed statistical
properties are known, and the appropriate models (metrics, cost functions) for changepoint detection
are used. Otherwise, the process of proper model selection can become laborious and time-consuming
with uncertain results. Although an ensemble approach is well known for increasing the robustness
of the individual algorithms and dealing with mentioned challenges, it is weakly formalized and
much less highlighted for CPD problems than for outlier detection or classification problems. This
paper proposes an unsupervised CPD ensemble (CPDE) procedure with the pseudocode of the
particular proposed ensemble algorithms and the link to their Python realization. The approach’s
novelty is in aggregating several cost functions before the changepoint search procedure running
during the offline analysis. The numerical experiment showed that the proposed CPDE outperforms
non-ensemble CPD procedures. Additionally, we focused on analyzing common CPD algorithms,
scaling, and aggregation functions, comparing them during the numerical experiment. The results
were obtained on the two anomaly benchmarks that contain industrial faults and failures—Tennessee
Eastman Process (TEP) and Skoltech Anomaly Benchmark (SKAB). One of the possible applications
of our research is the estimation of the failure time for fault identification and isolation problems of
the technical diagnostics.

Keywords: anomaly detection; changepoint detection; ensemble; time series; signal processing;
signal segmentation; aggregation function; unsupervised learning; Tennessee Eastman Process (TEP);
Skoltech Anomaly Benchmark (SKAB)

1. Introduction

Changepoint detection (CPD), being one of the stated major challenges for big data
applications [1], is a particular part of an anomaly detection in time series data problem
presented in detail in the fundamental works [2,3]. In terms of the number of points, the
anomalies are divided into a single point and collective ones. The changepoint detection
problem mostly relates to the collective anomalies type. A common definition of the
changepoint detection is proposed in [4]:

Changepoint detection is a study of methods for identification of changes in the
probability distribution of an observed stochastic process.

Changepoint detection problems can be applied in many applications, such as com-
puter network intrusions [5], power plant failures [6], finances [7], climate changing [8],
and illness indication in medicine, including heart attack recognition [9] and arrhythmias
detection [10].
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All algorithms used for changepoint detection can be split into two main classes:
“online” and “offline” algorithms. Most of the algorithms and approaches from these
classes differ significantly. Online algorithms try to find changepoints as soon as they
occur, and they are often applicable for real-time anomaly detection and online process
monitoring. Offline algorithms appropriately deal with signal segmentation or delayed
analysis of the whole process realization. Moreover, they try to solve the changepoint
detection problem as accurately as possible. Some of the offline algorithms can be used
in real-time batch processing. However, the offline algorithms usually lose accuracy in
this case because they work only with a part of the signal and can not solve the problem
for the entire signal in an optimal way. The scope of this paper is specifically an offline
changepoint detection problem.

Anomalies of various nature may cause different statistical changes—mean, standard
deviation, autoregression dependence, seasonality, etc. To detect such changes, various
specific models may be applied. One of the biggest challenges for this problem is to
select either the most robust model or several better-performing ones, each for the specific
statistical change. Moreover, the selection of the best model depends on the search method
and selection criterion. The details regarding the model selection challenges and single-
best-model paradigm are presented in [11] and references therein. Ensembles of models
allow avoiding using a high number of separate models, improve the robustness of the
resulting changepoint detection procedure, and reduce the dependence of the resulting
procedure to the particular set of data or type of anomaly [12].

Ensemble approach in classification and clustering problems is widely studied, applied
to, and formalized well [12]. In recent years, the popularity and achieved results of the
ensemble approach in the outlier detection problem have grown as well. The current
state of the ensemble analysis and various ensemble procedures for the outlier detection
problem are represented in the following papers [12–17]. Although outlier detection and
changepoint detection problems are often considered subproblems of general anomaly
detection problem, the ensemble approach in the changepoint detection problem is weakly
formalized and much less highlighted. The reasons why ensemble analysis for anomaly
detection subproblems is quite challenging and hence not so widely explored are well
described in the mentioned paper [12]. It is worth noting that event detection in temporal
data [14,18] looks like a similar problem to changepoint detection. Nevertheless, it mainly
aims at finding a single anomalous point followed by the normal points making the
problem closer to the outlier detection problem.

The paper [19] is the first work in the direction of changepoint detection ensembles
(CPDE) for time series data according to the paper itself and to our best knowledge. We
found just a few relevant papers published since 2013 [4,11,20,21] that represent the current
state in this field of knowledge. None of these papers focus on the analysis of various
scaling functions and just two of them ([4,19]) have compared more than one aggregation
function. Moreover, just two of the works ([19,20]) relate to the offline CPD problem, but
they select only one base detector for the ensembles—the Lepage nonparametric test is
able to assess changes in the mean or the variance. Among the papers, just one [21] uses a
technical-related benchmark—KDD Cup 1999 network intrusion detection dataset—while
others either use synthetic data or ecology-related data. Finally, all of the works in the CPDE
field of knowledge lack generalizing ideas. They do not aim to formulate a framework for
various detectors (models), search methods, aggregation, and combination functions for
use and analysis.

This paper proposes a novel model-centered, independent, scaled (normalized) en-
semble approach for the offline changepoint detection problem. Moreover, we select
and study various common aggregation functions from outlier, cluster, and classification
ensembles and their applicability in CPD ensembles. The pseudocode of the particular
suggested ensemble algorithms is presented in Appendix A. Our ensemble approach is
based on and extends the famous changepoint detection procedure formulated in [22].
Additionally, we compare the proposed ensemble and original non-ensemble approaches
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and the various scaling and aggregation functions. For the comparison, we conducted
numerical experiments on the two technical benchmarks that contain industrial faults and
failures—Tennessee Eastman Process (TEP) benchmark and Skoltech Anomaly Benchmark
(SKAB). The algorithms are applied in an unsupervised way without any fitting stage but
for a known number of changepoints to look for. We also provide links to the Python source
code with the implemented ensemble algorithms and experiment results. The proposed
source code is based on the ruptures Python scientific library, presented and described
in [22] as well.

Our work differs from previous in three key aspects. Firstly, most works focus on the
single CPD algorithm and a few situational aggregation functions, not paying attention
to the scaling functions. At the same time, we tried to embrace the most common CPD
algorithms, scaling and aggregation functions, comparing them during the numerical ex-
periment. Secondly, we work with several cost functions (models), aggregating their results.
Just one of the works deals with various base detectors, while the closest to our work [19]
not only uses a single model as the base detector but also highlights the aggregation of
different test statistics (base detectors) in the ensemble as the possible future research
direction. Third, none of the works focus on detecting changepoints in the industrial
data. Still, one of the works [20] considers complex embedded systems modeled by an
autoregressive moving-average (ARMA) process. One more [21] shows the results on the
intrusion detection dataset. Therefore, our work is the first to apply CPDE on the bench-
marks with industrial faults and failures, showing the possible applicability in technical
diagnostics. Additionally, ensemble analysis for the CPD problem lacks research works,
especially when compared with outlier detection, clustering, or classification problems.

One of the possible applications of our research is the estimation of the failure time [20]
for fault diagnosis, and isolation phases of the technical diagnostics or process monitoring
loop [23]. It can help to determine which fault occurred. Accurate models and solutions
for fault detection and diagnosis (FDD) make process monitoring systems more efficient
and retrospective analysis more correct. Improving the FDD process can help to move
to condition-based maintenance, which can be less expensive than other maintenance
strategies [24]. Moreover, improving process monitoring develops smart manufacturing
and industrial big data environment technologies helping managers to fit industry into the
concept of Industry 4.0 [25]. Additionally, a thorough analysis of the historical data can
help in predicting and avoiding some threats in the future [26].

2. Materials and Methods
2.1. Ensembles of Offline Changepoint Detection Procedures
2.1.1. Time Series

A time series y is a sequence of points or samples representing process characteristics
y = {yt}tT

t=t1
, where yt ∈ RD(D ≥ 1)—sample at a time moment t, t ∈ {t1, ..., tT}—time

moment or index of the time series, T—length of a time series.
yta ..tb is a subsequence or part of the time series y, where 1 ≤ a < b ≤ T.
D = 1 and D > 1 also refer to univariate and multivariate problems, respectively.

2.1.2. Changepoint

An accepted definition of a changepoint is as follows: yk is considered as a changepoint
if at a time k ∈ T = {t1, ..., tK}K≤T some characteristics of a process y abruptly change.
T is a particular partition of y for K + 1 subsequences, where K is a total number of
changepoints, which may be known or unknown for a specific changepoint detection
problem. Generally, a partition is a set of indices or timestamps that indicate a specific
segment of a time series y. We define segmentation as a process of finding a particular
partition for a time series y. A subsequence ytk ..tk+1 can be called a segment of y for a
partition T .
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2.1.3. Changepoint Detection Procedure

We call Π a changepoint detection (CPD) procedure if Π finds the “best partition” T̂
by minimizing the quantitative criterion V(T , y) = ∑K

k=0 c(ytk ..tk+1), where c(·) is a cost
function which measures for each point of the partition tk or for each subsequence ytk ..tk+1

a “quality of partition”. To find the “best partition” T̂ , a discrete optimization problem of
minimizing the criterion V(T , y) must be solved. If a number of changepoints K is known
beforehand, an optimization problem is as follows:

min
|T |=K

V(T , y), (1)

where |T | is a cardinality of a T .
For an unknown K, an optimization problem looks like:

min
T

V(T , y) + pen(T ) = min
T

Ṽ(T , y), (2)

where pen(T ) is a constraint to balance a number of found changepoints. Additional
penalty allows to choose if a few most highly ranked points (or even none) or a lot of
candidates of a changepoint will be selected as a final decision of a “best partition” T̂ .

It is important to mention that in the case of a multivariate problem (D > 1), we need
to aggregate criteria for each of the D time series inside the Π (in this case, we can call Π
an ensemble already according to the further definition of the ensemble procedure). To
avoid dealing with ensembling of individual univarite time series, considered criterion
V(T , y) is then defined in our case in a common way as a sum of the criteria calculated for
each univariate time series and looks like:

V(T , y) =
D

∑
d=1

Vd(T , yd) (3)

Though dealing with univariate time series and following aggregating looks like a
simpler approach against using multivariate models from the first, the paper [21] clearly
shows how aggregation of the univariate models outperforms multivariate models.

A CPD procedure in a general way may consist of three main parts:

1. A cost function c(·), also called a model,
2. A search method for finding T̂ , also called an optimization or detection algorithm,
3. A constraint on the number of changepoints if the exact number of changepoints K is

unknown.

The scheme of the CPD procedure used in our work is shown in Figure 1.

Figure 1. Components of a typical non-ensemble changepoint detection (CPD) approach.

For a comprehensive review of cost functions and search methods, the theoretical
foundation behind them as well as the intuition behind the selection of a constraint, an
interested reader may refer to [22]. The number of changepoints K or a constraint are
usually set in a problem statement or can be defined during the experiment process, and
the search method only determines the way of changepoint finding. A cost function
determines the particular function for minimizing. Therefore, it is vital to select the right
cost function for each specific changepoint detection case since different cost functions
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usually represent different statistical properties of a signal. For example, changes in a
mean can hardly be detected through standard deviation calculation. It also means that
proper cost function selection can become a laborious and time-consuming process with an
uncertain result.

2.1.4. CPD Ensemble Procedure

Let us denote N CPD procedures as Π1, Π2, ..., ΠN and an aggregation or combination
function as ψ(·). We call A a CPD Ensemble (CPDE) if the “best partition” T̂ is a result of
solving the problem for a fixed K:

min
|T |=K

Vψ = min
|T |=K

ψ(V1, ..., VN) = min
|T |=K

ψ(
K

∑
k=0

c1(ytk ..tk+1), ...,
K

∑
k=0

cN(ytk ..tk+1)) (4)

and for an unknown K:
min
T

Ṽψ = min
T

ψ(Ṽ1, ..., ṼN) (5)

We propose a novel way to find changepoints by aggregating several cost functions inside
the CPD procedure, as is shown in Figure 2.

Figure 2. Components of a proposed CPD ensemble (CPDE) approach.

A procedure A is a particular case of an Ensemble method defined by an aggregation
function ψ(·). The proposed Ensemble approach implies using several cost functions and
aggregating afterward during the single CPD procedure running. The result of each cost
function applied is a univariate time series. Altogether they form an N ×M-dimensional
array of scores, s = {sn,m}, where n = 1, ..., N, m = 1, ..., M, sn,m ∈ R, N is the number
of applied cost functions, and M is a length of single cost function results. Generally,
M depends on the search method. Therefore, using N cost functions results in getting a
multivariate time series of scores with the D = N to which the aggregation function ψ
applied. The search method is only applied to the aggregation result. Such an approach
solves the problem of proper cost function selection and improves the robustness of the
CPD procedure. The robustness is achieved by making the CPD procedure invariant to a
particular statistical change considering outputs of various statistical models (cost func-
tions). The intuition behind the aggregation of several cost functions through using base
detectors score combinations is mainly related to the classification and outlier ensembles.
Such an approach allows:

• Avoiding losing useful information as it could be if the outputs of the whole CPD
procedure are aggregated. Our approach works with scores representing confidence
and many time-related characteristics, while for the second approach, only the sets of
changepoints are available for combining.

• Borrowing some useful and interesting ideas from the classification and outlier en-
sembles where combining scores of the base detectors is the most common approach;

• Getting more opportunities when working with the multivariate time series of scores
by applying some classical techniques from the time series analysis;

• Constructing a framework with four main parts (cost function, scaling function, ag-
gregation function, search method). It simplifies the experiments currently conducted
or for further research and allows to improve the results by various minor changes
added for the best-working methods.
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An illustrative example of the cost functions aggregation procedure is shown in Figure 3.

Figure 3. An illustrative example of the cost functions aggregation procedure.

Characteristics of the proposed CPDE procedure in terms of the categorization accord-
ing to [12] (shown in Figure 4) are as follows:

• Model-centered: these are the models that we use to create an ensemble, but we do not
pick subsets of data points or data features (data-centered).

• Independent: we calculate the ensemble components (cost function scores) before the
aggregation independently from each other and not in a sequential way.

• Scaled (normalized): aggregation function ψ should include a scaling procedure
for each argument (cost function application result), since different cost functions
may generate differently scaled outputs. Scaling avoids favoring one or more cost
functions.

Figure 4. Categorization of ensemble techniques.

A variety of scaling and aggregation functions for outlier, changepoint, classification
ensembles, as well as the related issues can be found in papers [12–14,16,18–20,27,28].
Though scaling can be included in and considered part of aggregation procedure [4], we
treat it separately from the aggregation function. Common scaling procedures are as
follows:

• MinMax: normalizing all values to the range [0, 1], also known as MinMax scaling;
• Znorm: zero mean, unit variance scaling, also known as Z-normalization or standard

scaling;
• MaxAbs (MinAbs): scaling by maximum (minimum) absolute value, also known as

MaxAbs (MinAbs) scaling;
• Rank: using ranks of the criterion Vn points from minimum to maximum value.

All procedures translate each criterion Vn individually. Among aggregation functions,
also called combination functions, combination methods, or combination algorithms, the
popular ones are as follows:

• Average: averaging scores of all cost functions;
• WeightedAverage: weighting cost functions and then averaging weighted scores. Dif-

ference between static and dynamic weighting is presented in [29]. Commonly, the
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weights for various models or cost functions are predetermined [16,29]. For unsu-
pervised offline ensembles, the weights can show the degree of confidence of each
separate detector.

• MajVote: the point that the majority of all cost functions has selected is a changepoint.
Though majority voting is primarily used in classification ensembles [28,29], it can be
applied for CPDE, for example, together with Rank scaling or using the threshold [4];

• Max (Min): selecting maximum (or minimum) among scores of various cost functions;
• Sum: summarizing scores of various cost functions;
• ThresholdSum: discarding (pruning) scores below the selected threshold and then

summarizing scores. Pruning can be applied either to the scores of every single model
by using the threshold or to the scores at each point by selecting only the top M < N
models [12];

• AverageOfMax: dividing cost functions into groups, taking maximum of scores of each
group, and then averaging;

• MaxOfAverage: dividing cost functions into groups, averaging scores of each group,
and then taking maximum of averages;

• FeatureBagging: applying cost functions to feature subsets and averaging of the ob-
tained scores.

The exact formulations of the scaling and aggregation functions selected for the experiment
are presented in the next subsection.

2.2. Numerical Experiment

During the experiment, we compare the CPD procedure with a single cost-function
inside (non-ensemble approach) and the proposed CPDE procedure (ensemble approach).
The experiment setup in parts of cost functions, scaling functions, aggregation functions,
and search methods is shown in Figure 5. We selected for the experiment not all common
aggregation functions because some of them are not suitable for the provided algorithms
or relate to data-centered ensembles (FeatureBagging), some need more cost functions to be
used or at least more scores to be generated for proper use (AverageOfMax, MaxOfAverage),
and some duplicate the result of selected ones (Average, WeightedAverage, MajVote). Selection
of cost functions was based on the recommendations from [19,22]. The motivation for
using selected cost functions under a single ensemble comes from a desire to avoid the
time-consuming and laborious process of proper model selection. Furthermore, in most
engineering applications, various signals are generated from various statistical models.
Likewise, a single signal may have various normal operation states generated by various
models. We find a combination of different cost functions useful for diagnostics tasks in
technical engineering systems that is one of the possible applications of our research. We
do not use a constraint because the number of changepoints for the experiment is assumed
to be known. For our experiment, the number of changepoints is equal to 1 for TEP and 4
(for most datasets) for SKAB.

Figure 5. The numerical experiment setup for CPD ensemble and non-ensemble approaches.
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2.2.1. Benchmarks
Tennessee Eastman Process (TEP) Benchmark

The original paper [30] presented a model of the industrial chemical process named
Tennessee Eastman Process and model-based TEP simulator for data generation. The
most widely used benchmark based on TEP is presented in [31]. The benchmark consists
of 22 datasets, 21 of which (Fault 1–21) contain faults and 1 (Fault 0) is a fault-free. All
datasets have training (500 samples) and testing (960 samples) parts: training part has
healthy state observations, testing part begins right after training, and contains faults
which appear after 8 h since the training part. Each dataset has 52 features or observation
variables with a 3 min sampling rate for most of all. Description of the process and related
aspects, graphical diagram of the TEP, simulation code, benchmark simulation conditions,
benchmark downloading links are presented in [31] and references therein. We do not use
the Fault 0 (fault-free) dataset in our experiment due to the unsupervised manner of our
approaches. The example of the time series representing a single feature in the dataset is
shown in Figure 3. It is worth noting that we applied Z-normalization to the data before
the experiment running because of the different scales of the separate features.

Skoltech Anomaly Benchmark (SKAB)

SKAB [32] is designed for evaluating algorithms for anomaly detection. SKAB in-
cludes 34 datasets and Python modules for algorithms’ evaluation. Each dataset repre-
sents a multivariate time series collected from the sensors installed on the testbed. All
instances are labeled for evaluating the results of solving both outlier and changepoint
detection problems. The data and detailed description of the SKAB are available at
https://github.com/waico/SKAB (accessed on 8 May 2021). For SKAB, we have also used
the Z-normalization procedure because the data are differently scaled as well.

2.2.2. Search Methods
Opt

The “forward dynamic programming” algorithm for optimal signal segmentation is
initially presented in [33]. This algorithm provides finding the exact solution for the opti-
mization problems stated earlier by calculating all possible partitions of the signal. Some
of the observations about the algorithm and its extensions, as well as the computational
complexity and other characteristics, are presented in [22].

Win

The window-based algorithm provides an approximate solution to the mentioned
problems. It is based on calculating the dissimilarity of the two following each other
window. The details are presented in [22].

BinSeg

The binary segmentation algorithm also provides an approximate solution to the
problems. The signal is split into two parts for each step of this algorithm. For the details
and additional information about the algorithm, an interested reader may refer to [34].

Extension

Our extension of the above-mentioned algorithms is as follows: in the part of cost
function calculation, we simultaneously calculate costs for all partitions using each cost
function separately, resulting in an N ×M-dimensional array of scores. Then all the scores
are scaled independently across the Nth dimension, and, finally, they are aggregated into a
single result of 1×M size. Finally, a search method is applied to the aggregated time series
of scores without any changes. Pseudocode of the proposed OptEnsemble, WinEnsemble,
and BinSegEnsemble search methods is presented in the Appendix A.

https://github.com/waico/SKAB
https://github.com/waico/SKAB
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2.2.3. Cost Functions

As well, we selected several well-known cost functions for the experiment (Figure 5).

Median-Shift through Least Absolute Deviation—l1

It allows to detect changes in median of the signal [35]. The cost function is defined by
the formula:

cl1(yta ...tb) =
tb

∑
t=ta

‖yt − ȳt1...t2‖1 (6)

where ȳt1...t2 is the median of a subsequence {yta ...ytb}. Generally, the shift of any central
point (mean, median, mode) in a numerical data set can be detected.

Mean-Shift through Least Squared Deviation—l2

Allows to detect changes in mean of the signal [22]. The cost function is defined by
the formula:

cl2(yta ...tb) =
tb

∑
t=ta

‖yt − ȳta ...tb‖
2
2 (7)

where ȳta ...tb is the mean of a subsequence {yta ...ytb}.

Mahalanobis-Type Metric—Mahalanobis

It allows to detect changes in the pseudo-metric of the signal [36]. We use Mahalanobis
distance [37] as the pseudo-metric in our experiment. The cost function is defined by
the formula:

cmah(yta ...tb) =
tb

∑
t=ta

(yt − ȳta ...tb)
TΣ̂−1(yt − ȳta ...tb) (8)

where ȳta ...tb is the mean and Σ̂−1 is the inverse of the empirical covariance matrix of a
subsequence {yta ...ytb}. Generally, instead of Σ̂−1, any symmetric positive semi-definite
matrix can be used.

Piecewise Linear Model—Linear

It allows to detect changes in a linear relationship between an observed variable and a
covariate [38]. Let us assume that the process is defined by the model yt = xT

t u + εt, where
xt ∈ Rp is a covariate vector, u is a vector of regression parameters, p is an order of the
model and εt ∈ R is a noise. Then the cost function is defined by the formula:

clinear(yta ...tb) = min
u∈Rp

tb

∑
t=ta

‖yt − xT
t u‖2

2 (9)

In the other words, a linear regression is fitted for each subsequence {yta ...ytb}.

Piecewise Autoregressive Model—ar

If the observed variable depends linearly on its previous states, a piecewise autore-
gressive model can be used [39]. The cost function is defined by the formula:

car(yta ...tb) = min
u∈Rp

tb

∑
t=ta

‖yt − xT
t u‖2

2, (10)

where xt = {yt−1, yt−2, . . . , yt−p}. For the experiment, we chose p = 1 from the grid
search procedure.
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2.2.4. Scaling Functions

The following scaling functions are used during the experiment:

s̄(MinMax)
n =

sn −max{sn}
max{sn} −min{sn}

, (11)

s̄(Znorm)
n =

sn − µ{sn}
σ{sn}

, (12)

s̄(MinAbs)
n =

sn

min{sn}
, (13)

s̄(Rank)
n = sort(sn, “ascending”), (14)

where sn is a result of the nth cost function applied, being a 1-dimensional array of M
elements, µ{sn} is the mean of sn, and σ{sn} is the standard deviation of sn. The outputs
of min{}, max{}, µ{}, and σ{} functions are single values calculated over the input
array. The sort() function transforms the input array into a set of ranks of the values in
“ascending” order.

2.2.5. Aggregation Functions

The following aggregation functions are used during the experiment:

ψMin = {min{s̄n,m}}m, (15)

ψSum = {∑
n

s̄n,m}m, (16)

ψWeightedSum = {∑
n

λn s̄n,m}m, (17)

ψThresholdSum = {∑
n

s̄n,m{s̄n,m<µ{s̄n,m}}}m, (18)

where µ{} is the mean of the sample, λn = max{sn}−min{sn}
µ{sn}−min{sn} —weighting coefficient. The

idea behind the weighting coefficient is based on the calculating the confidence of each cost
function in its extremum, so when the output does not have any outstanding extremums,
its weight will go to zero vanishing the related scores.

2.2.6. Performance Measures

Community commonly applies TEP benchmark for comparing various algorithms
[31,40–42] using mostly several metrics: detection delay, missing alarm rate, fault detection rate
(FDR), and false alarm rate. Usually, in papers with the TEP benchmark, FDR is calculated
by using labels of all single instances in each dataset for TP and FN counting. Obviously,
such an approach does not give representative results for the CPD problem. That is why
for performance scoring, we use the NAB scoring algorithm and metrics from [43]. It
was initially proposed for the Numenta Anomaly Benchmark but it can be also used for
other datasets [44]. The main features of this algorithm are rewarding early detection
and penalizing false positives and false negatives. This is achieved with a special scoring
function (19) that is applied to the detection window (Figure 3).

σA(y) = (ATP − AFP)

(
1

1 + e5x

)
− 1, (19)

where x is the position of the detected anomaly relative to the right border of the window
measured by points. ATP and AFP are weight coefficients from the application profiles for
true positives and false positives, respectively. The width of the window is heuristically
determined as 10% of the dataset length for TEP benchmark and 30 s for SKAB. It follows
from the assumption that this window size is appropriate for the domain problem. The
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NAB scoring algorithm is also parameterized by application profiles, that allow us to better
understand the properties of each specific anomaly detection algorithm. For our paper, we
take application profiles, provided in [45]. They are shown in Table 1.

Table 1. Application profile for NAB scoring algorithm.

Metric ATP AFP ATN AFN

Standard 1.0 −0.11 1.0 −1.0

LowFP 1.0 −0.22 1.0 −1.0

LowFN 1.0 −0.11 1.0 −2.0

3. Results

We provide in Tables 2 and 3 the results of the numerical experiments, in which CDP
and CPDE procedures were run on the TEP and SKAB benchmarks. Negative or zeroed
results mean that none of changepoints were found. Bold numbers refer to the best results
among the procedure (CPD or CPDE) and search method. Dashes mean unapplicability
of the cost function to the search method. It is relevant to the linear cost function and Win

search method. The window-based algorithm Win when used in CPD and CPDE procedures
needs an additional window width selection stage. The window width was selected from
the classical grid search procedure for various values. The results are presented under the
assumption that better-performed windows (w = 20 points) are found. The results for
various windows are presented at https://github.com/YKatser/CPDE (accessed on 8 May
2021). One more assumption on the experiments is that various features in the datasets
(signals) are generated from the various models.

Table 2. NAB scoring algorithm (higher is better) results of the CPD algorithms on the TEP benchmark.

Standard LowFP LowFN Standard LowFP LowFN Standard LowFP LowFN

Model Opt Win (w = 20) BinSeg

ar (1) 30.15 28.89 32.8 13.23 12.19 13.59 30.15 28.89 32.8
mahalanobis 36.88 35.82 37.29 27.79 27 28.05 36.88 35.82 37.29

l1 32.53 31.98 32.8 20.63 19.85 21.69 32.53 31.98 32.8
l2 30.3 29.52 31.31 22.09 21.68 22.66 30.3 29.52 31.31

linear 4.5 4.24 4.59 - - - 4.5 4.24 4.59

Aggregation Scaling OptEnsemble WinEnsemble (w = 20) BinSegEnsemble

Min MinMax 41.81 41 42.16 23.55 23.28 23.63 41.81 41 42.16
Znorm 25.66 24.9 26.63 23.28 22.76 23.46 25.66 24.9 26.63

MinAbs 22.85 21.8 24.76 23.82 23.35 25.4 22.85 21.82 24.76
Rank 41.81 41 42.16 22.93 22.37 23.23 41.81 41 42.16

Sum MinMax 34.8 34 35.9 23.54 23.28 23.63 34.8 34 35.9
Znorm 34.83 34.03 35.92 23.55 23.28 23.63 34.83 34.03 35.92

MinAbs 34.73 33.68 35.85 23.68 22.96 25.31 34.8 34 35.9
Rank 30.47 29.95 31.42 22.62 22.27 23.02 30.47 29.95 31.42

WeightedSum MinMax 34.8 34 35.9 23.55 23.28 23.63 34.8 34 35.9
Znorm 34.83 34.03 35.92 23.55 23.28 23.63 34.83 34.03 35.92

MinAbs 34.73 33.68 35.85 25.14 24.33 26.29 34.8 34 35.9
Rank 25.59 25.06 26.59 23.28 22.76 23.46 25.59 25.06 26.59

ThresholdSum MinMax 33.51 32.58 35.04 11.46 10.95 12.4 33.64 32.73 35.13
Znorm 34.83 34.03 35.92 11.46 10.95 12.4 34.83 34.03 35.92

MinAbs −5.5 −11 −3.67 13.75 13.22 13.93 33.64 32.73 35.13
Rank −5.5 −11 −3.67 6.38 5.59 7.43 0 0 0

https://github.com/YKatser/CPDE
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Table 3. NAB scoring algorithm (higher is better) results of the CPD algorithms on SKAB.

Standard LowFP LowFN Standard LowFP LowFN Standard LowFP LowFN

Model Opt Win (w = 20) BinSeg

ar (1) 19.4 16.83 20.63 12.36 9.58 13.62 21.39 18.89 22.72
mahalanobis 22.37 19.9 23.37 15.55 13.44 16.27 24.1 21.69 25.04

l1 18.64 15.99 20.12 18.4 16.22 19.19 17.87 15.1 19.09
l2 18.96 16.5 20.33 14.78 12.4 16.01 17.46 14.81 18.82

linear 9.37 6.6 10.61 - - - 9.53 6.7 10.97

Aggregation Scaling OptEnsemble WinEnsemble (w = 20) BinSegEnsemble

Min MinMax 19.77 17.04 20.87 14.41 11.88 15.51 0.18 -4.69 1.91
Znorm 17.71 15.01 18.99 15.85 13.19 16.98 13.03 10.85 14.07

MinAbs 19.33 16.67 20.83 16.51 13.92 17.68 7.05 3.98 8.55
Rank 19.77 17.04 20.87 16.08 13.22 17.39 0.6 -3.84 2.19

Sum MinMax 20.52 18.09 21.88 16.7 14.54 17.54 15.71 13 16.89
Znorm 20.89 18.46 22.13 16.14 13.85 16.91 11.64 10.24 12.12

MinAbs 20.25 17.95 21.45 19.38 17.03 20.35 15.84 13.26 16.97
Rank 21.53 18.98 22.82 14.25 11.5 15.39 10.15 8.29 11.12

WeightedSum MinMax 21.24 18.77 22.62 15.31 12.94 16.1 16.41 13.95 17.6
Znorm 20.89 18.46 22.13 14.08 11.6 15.03 15.3 12.74 16.61

MinAbs 20.16 17.78 21.39 18.58 16.19 19.57 16.41 13.95 17.6
Rank 23.07 20.52 24.35 12.9 10.22 13.99 18.1 15.36 19.51

ThresholdSum MinMax 21.2 18.69 22.6 9.5 7.31 10.69 15.71 13 16.89
Znorm 21.7 19.32 22.93 10.06 7.93 11.32 11.64 10.24 12.12

MinAbs −5.5 −11 −3.67 9.96 6.91 11 15.8 13.17 16.94
Rank −5.5 −11 −3.67 10.87 7.98 12.12 0 0 0

The best overall NAB (standard) score for TEP benchmark is equal to 41.81. This score
is achieved by four algorithms at once:

• OptEnsemble + Min aggregation + MinMax scaling;
• OptEnsemble + Min aggregation + Rank scaling;
• BinSegEnsemble + Min aggregation + MinMax scaling;
• BinSegEnsemble + Min aggregation + Rank scaling.

The best score among non-ensemble procedures equals to 36.88 and refers to Opt and
BinSeg search methods with mahalanobis cost function.

The best overall NAB (standard) score for SKAB is equal to 24.1. This score is achieved
by the BinSeg search method with mahalanobis cost function. The best score among
ensemble procedures equals to 23.07 and refers to the OptEnsemble search method with
WeightedSum aggregation function and Rank scaling function.

LowFP and LowFN profiles indicate that all of the procedures generate more false
positives for SKAB, whereas the gap between profiles for TEP benchmark is diminutive.

3.1. CPD and CPDE Procedures

For TEP, Opt shows exact results as BinSeg, while OptEnsemble shows quite similar
results to BinSegEnsemble. As for SKAB, the difference between Opt and BinSeg is mi-
nor as well, while the difference between OptEnsemble and BinSegEnsemble is already
significant in favor of the first. It is interesting that OptEnsemble improves Opt for both
benchmarks, and BinSegEnsemble improves BinSeg just for TEP. Especially interesting is
that BinSegEnsemble shows excellent results for TEP, demonstrating much better perfor-
mance than BinSeg and has great results in general, but BinSegEnsemble for SKAB loses
against the BinSeg algorithm as well as generally among all CPDE procedures. We can
explain it by benchmark differences and fitting of the specific algorithms to the data.
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Win algorithm is the only algorithm among non-ensemble ones that outperforms
ensemble procedures for the TEP benchmark. Even so, for SKAB, WinEnsemble outperforms
the Win algorithm quite confidently, which can also be explained by the overfitting to the
data. Eventually, Win and WinEnsemble display the weakest performance among all CPD
and CPDE procedures.

Finally, in four out of six cases, the ensemble approach shows better results than
the non-ensemble one, and one of the other two cases is comparable. Therefore, there is
just one (out of six) considerable loss of the ensemble approach against the non-ensemble
ones. OptEnsemble demonstrates the best overall performance regardless of the benchmark,
aggregation, or scaling function.

3.2. Cost Functions (Models)

Among five selected for experiment cost functions, the noticeably better result was
achieved by the mahalanobis cost function. Just once, it has shown the second-best score
(Win search method on SKAB). ar(1), l1, l2 models achieved about the same results, while
the linear model was significantly worse than others. Obviously, cost function results
depend on the data properties and anomaly nature, though experimentally, the mahalanobis
cost function shows the best result regardless of the dataset.

3.3. Aggregation Functions

Sum and WeightedSum act quite similar for all search methods. Still, Sum performs
slightly better. ThresholdSum significantly losses to them with WinEnsemble, failing with
MinAbs and Rank scaling functions regardless of search method. Min aggregation function,
in general, has worse results, but it also has the best results with some scaling functions for
the TEP benchmark. Nevertheless, it looks like a data-based pattern and not a general case.

3.4. Scaling Functions

It was unexpected to us that it is the Rank scaling function that shows the best results
in 4 out of 6 cases (OptEnsemble and BinSegEnsemble for both benchmarks). In general,
among all aggregation functions and ensemble procedures, Rank shows the worst results.
Excluding ThresholdSum aggregation and BinSegEnsemble search algorithm from the
analysis, the results of all scaling functions are quite indistinguishable, except for just a few
winning scores that rater looks like outliers.

3.5. CPD and CPDE Procedures vs. SOTA Changepoint Detection Algorithms

We should note that in our work CPD procedures from [22] are sometimes consid-
ered as state-of-the-art (SOTA) for changepoint detection problem. Moreover, existing
algorithms and approaches in the CPDE field are not systematized, and it is questionable
to consider any of them as SOTA. Quite noteworthy is that all of the added-to-compare
algorithms except for unsupervised ARIMAFD [46] are semi-supervised since they need a
training set with the healthy operation mode, while all algorithms tested in our work are
unsupervised. Therefore, compared algorithms are applicable in different situations and
are not competing.

In Table 4, we compared our results with some other SOTA results achieved on
TEP and SKAB benchmarks. We have found only one work [47] where CPD algorithms
were applied to TEP benchmark with NAB metric. We provide here the results from this
work. It is worth noting that the TEP benchmark in this work differs from ours since the
authors synthesized datasets from the TEP model themselves, while we used the most
common previously generated benchmark. This fact makes the comparison for the TEP
benchmark not fully reliable. For the details about the dataset and differences from our
version of the TEP benchmark, an interested reader can refer to [47]. For SKAB, we used the
results presented in the related repository https://github.com/waico/SKAB (accessed on
8 May 2021). Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED) from [48]

https://github.com/waico/SKAB
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is positioned as the state-of-the-art in technical diagnostics. Under the LSTM, anomaly
detection algorithm based on the LSTM-based forecasting algorithm is meant.

Table 4. Comparison of the CPD and CPDE procedures with SOTA changepoint detection algorithms.

Place Algorithm Standard LowFP LowFN

TEP

1 OptEnsemble 41.81 41 42.16
2 BinSegEnsemble 41.81 41 42.16
3 Opt 36.88 35.82 37.29
4 BinSeg 36.88 35.82 37.29

- LSTM [47] 37.3 - -
- DPCA [47] 8.6 - -

SKAB

1 MSCRED [48] 28.74 23.43 31.21
2 LSTM [49] 27.09 11.06 32.68
3 BinSeg 24.1 21.69 25.04
4 OptEnsemble 23.07 20.52 24.35
5 Opt 22.37 19.9 23.37
6 Hotelling’s T2 [50] 17.87 3.44 23.2
7 ARIMAFD [46] 16.06 14.03 17.12

It is clear from the table that CPD and proposed CPDE procedures show slightly worse
results than Neural Networks-based SOTA approaches while confidentially overperform-
ing classical (Hotelling’s T2) and situational (ARIMAFD) algorithms.

4. Discussion

We provide here our recommendations based on the experiment results.

• According to the experiment results, the ensemble approach almost always is a priority
option. Among non-ensemble procedures, the favorite ones are Opt and BinSeg

methods but only with mahalanobis cost function. Among ensemble search algorithms,
we recommend to use OptEnsemble.

• The question of what combination function to select is mentioned in [13]. Averaging
and maximum aggregation functions are the only methods compared by authors from
a bias-variance trade-off perspective. None of these functions were declared as a clear
winner. The experiments indicated that maximization achieved better results than
averaging for larger datasets, while the opposite picture was for smaller datasets.
Our experiment revealed that selecting either Sum or WeightedSum is a confident
strategy for steadily achieving high scores. Min aggregation function may lead as to
the best or the worst score, while it still can be used in combination with OptEnsemble

and MinMax or Rank functions without major losses in a score. After all, we either
cannot highlight the best combination strategy.

• Regarding the scaling functions, we can recommend avoiding the Rank to maximize
the results for most cases, even though it sometimes allows a high score. All of the
other scaling functions get similar results.

The limitations of the study are mainly connected with the data properties and gen-
eralizability of the results. Our research is mainly focused on the technical domain and
industrial data, hence industrial faults and failures. Not only do the datasets used in our
numerical experiment not allow generalizing results to any domain of knowledge, but the
bias in the data in some specific domain may lead to the inconsistency of the results. Differ-
ences in the real-world data are forcing researchers to test the methods when expanding
the proposed ensembles to the new application. One more limitation is connected with the
NAB scoring algorithm used for the evaluation of various methods results. The way of
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applying the NAB algorithm may differ from varying the window size and location around
the changepoint to application profile tunning, and no recommendations or algorithm
limitations are provided. The major limitation of the work is that the CPDE approach was
not studied for the unknown number of changepoints. The last limitation is connected with
some algorithm parameters selected from the grid search procedures. They are the number
of lags for the autoregressive model equal to 1 and the window size equal to 20 points
for the Win and WinEnsemble search methods. We assumed that the grid search procedure
provides optimal results for these parameters. Nevertheless, the limitations were known
during the study’s design, and we consider that they did not affect the principal results of
the numerical experiment.

5. Conclusions

We proposed a novel, although quite intuitive, way of ensembling unsupervised
offline changepoint detection procedures in this work. An ensemble approach for the
CPD procedure allows us to avoid the time-consuming process of algorithm selection
and decreases the uncertainty of the results. Generally, the robustness of the ensemble
algorithms assists in the automatization of the signal segmentation process, which is
useful in numerous engineering applications. Our study showed that the proposed CPDE
procedure is at least promising. Additionally, we compared various common scaling
(MinMax, Z-norm, MinAbs, Rank), and aggregation (Min, Sum, WeightedSum, ThresholdSum)
functions. The comparison results formed the basis for the recommendations on scaling
and aggregation functions selection for CPDE. Moreover, the proposed approach can act
as a framework allowing putting together many methods, algorithms, and cost functions.
It positively affects the existing problem of lack of systematization in the CPDE field
of knowledge. Both CPD and CPDE procedures were applied in an unsupervised way
without fitting phase but for a predefined number of changepoints. The results were
obtained on the technical anomaly detection benchmarks—Tennessee Eastman Process
and Skoltech Anomaly Benchmark using the NAB scoring algorithm. We also presented
pseudocode of the proposed OptEnsemble, WinEnsemble, and BinSegEnsemble algorithms
(search methods) and the link to their Python realization.

As for the future work ensemble, the approach may be extended over some other
search methods. Altogether with the proposed algorithms, they can form a programming
framework of state-of-the-art CPDE algorithms similar to the ruptures library. Additionally,
more aggregation and scaling (normalizing) functions may be explored and compared. It
can expand the proposed recommendation list for selection normalizing and aggregation
functions in the technical domain or regardless of the domain at all. Presented algorithms
can also be applied to various application domains using the proposed pseudocode and
python code from the repository. Applying the algorithms to more datasets and bench-
marks, including synthetic ones, may help to generalize results and avoid overfitting to the
particular dataset. One more interesting direction is automizing window width selection
for Win and WinEnsemble procedures, which can be based on the presented algorithms and
code. Generally, the proposed solution forms the framework for changepoint detection
ensembles. It can be the base for various search methods, scaling, aggregation functions,
and cost functions (models) applicable in offline CPD in numerous applications—from
computer networks intrusion analysis and power plant failures diagnostics to ecological
changes analysis and various medical applications. Our proposed solution fits the best
in unsupervised offline or retrospective analysis applications where the most accurate
changepoint detection is required, and models from which the analyzed signals being
generated are unknown.
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Appendix A. Pseudocode of the Ensemble Algorithms

Here the pseudocode of the proposed ensemble algorithms is shown, including:

• OptEnsemble (Algorithm A1) based on the Opt algorithm;
• WinEnsemble (Algorithm A2) based on the Win algorithm;
• BinSegEnsemble (Algorithm A3) based on the BinSeg algorithm.

Algorithm A1 OptEnsemble

Input: signal {yt}T
t=1, cost functions c1(·), . . . , cN(·), number of regimes K ≥ 2.

for all (u, v), 1 ≤ u < v ≤ T do
for n = 1, . . . , N do

Initialize C̃n(u, v)← cn
(
{yt}v

t=u
)

end for
end for
C1 ← ψ(C̃1, . . . , C̃N).
for k = 2, . . . , K− 1 do

for all u, v ∈ {1, . . . , T}, v− u ≥ k do
Ck(u, v)← minu+k−1≤t<v Ck−1(u, t) + C1(t + 1, v)

end for
end for
Initialize L, a list with K elements.
Initialize the last element: L[K]← T.
Initialize k← K.
while k > 1 do

s← L(k)
t∗ ← argmink−1≤t≤s Ck−1(1, t) + C1(t + 1, s)
L(k− 1)← t∗

k← k− 1.
end while
Remove T from L.
Output: set L of estimated breakpoint indexes.

https://github.com/YKatser/CPDE/tree/master/TEP_data
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://doi.org/10.34740/KAGGLE/DSV/1693952
https://github.com/waico/SKAB
https://github.com/YKatser/CPDE
https://github.com/YKatser/CPDE
https://github.com/deepcharles/ruptures
https://github.com/deepcharles/ruptures
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Algorithm A2 WinEnsemble

Input: signal {yt}T
t=1, cost functions c1(·), . . . , cN(·), half-window width w, peak search

procedure PKSearch.
Initialize N T-long arrays filled with 0: zn ← [0, 0, . . . ], n = 1, . . . , N. .Score list.
for t = w, . . . , T − w do

p← (t− w)..t.
q← t..(t + w).
r ← (t− w)..(t + w).
for n = 1, . . . , N do

zn[t]← cn(yr)− [cn(yp) + cn(yq)].
end for

Z ← ψ(z1, z2, . . . , zN).
end for
L← PKSearch(Z). .Peak search procedure.
Output: set L of estimated breakpoint indexes.

Algorithm A3 BinSegEnsemble

Input: signal {yt}T
t=1, cost functions c1(·), . . . , cN(·), stopping criterion.

Initialize L← {}. .Estimated breakpoints.
repeat

k← |L|. .Number of breakpoints.
t0 ← 0 and tk+1 ← T .Dummy variables.
if k > 0 then

Denote by ti(i = 1, . . . , k) the elements (in ascending order) of L, ie L = {t1, . . . , tk}.
end if
Initialize G a (k + 1)-long array. .list of gains
for i = 0, . . . , k do

for t = ti . . . ti+1 do

g[i, t]←
{[

c1(yti ..t) + c1
(
yt..ti+1

)]
, . . . ,

[
cN(yti ..t) + cN

(
yt..ti+1

)]}
end for
G[i]← ψ

(
c1
(
yti ..ti+1

)
, . . . , cN

(
yti ..ti+1

))
−minti<t<ti+1 [ψ(g[i, t])].

end for
î← argmaxi G[i]
t̂← argmintî<t<tî+1

ψ(g[î, t]).

L← L ∪ {t̂}
until stopping criterion is met.
Output: set L of estimated breakpoint indexes.
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