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Abstract: In the digital transformation era in the Architecture, Engineering, and Construction (AEC)
industry, Cognitive Digital Twins (CDT) are introduced as part of the next level of process automation
and control towards Construction 4.0. CDT incorporates cognitive abilities to detect complex and
unpredictable actions and reason about dynamic process optimization strategies to support decision-
making in building lifecycle management (BLM). Nevertheless, there is a lack of understanding of
the real impact of CDT integration, Machine Learning (ML), Cyber-Physical Systems (CPS), Big Data,
Artificial Intelligence (AI), and Internet of Things (IoT), all connected to self-learning hybrid models
with proactive cognitive capabilities for different phases of the building asset lifecycle. This study
investigates the applicability, interoperability, and integrability of an adapted model of CDT for BLM
to identify and close this gap. Surveys of industry experts were performed focusing on life cycle-
centric applicability, interoperability, and the CDT model’s integration in practice besides decision
support capabilities and AEC industry insights. The evaluation of the adapted model of CDT
model support approaching the development of CDT for process optimization and decision-making
purposes, as well as integrability enablers confirms progression towards Construction 4.0.

Keywords: cognitive; digital twins; building lifecycle management; artificial intelligence; IoT;
decision support; self-learning; optimization

1. Introduction

Computerization and digitization are beginning to significantly affect how physi-
cal/engineering properties are handled during their life cycles [1,2]. The capture, exchange,
use, and control of data and information during an asset’s entire life (design, construction,
Operation and Maintenance (O&M), and disposal/renewal) are among the most challeng-
ing aspects of implementing Building Information Modeling (BIM), so-called BIM in asset
management [3]. Intelligent, innovative asset life cycle management has arisen during the
last years in the Architecture, Engineering, and Construction (AEC) industry [2]. Digital
twins (DT), the blockchains, and the Internet of Things (IoT) draw interest because of their
synergistic and information management functionality [4].

Cognitive computing is machines’ ability to mimic the human capacity to sense, think,
and make optimal decisions in a given situation [5]. While the path reaching fully cognitive
systems is still in its early stage, there are several application areas where the technology
has already been implemented in many applications such as chatbots by the service sector
to provide optimal responses to customer feedback [6].

The DT is already in the early stages, mainly used for prototyping, and includes
modeling, simulation, verification, evaluation, and confirmation of the physical artifact
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using a simulated replica [7]. Analysis emphasis has been heavily placed on simulations
and what-if analyses to advise implementation and eventual physical product refinement
by continuous monitoring and data assimilation. According to Zhang et al. [8], encompass-
ing intelligence and cognition in a DT is a requirement to realize disruptive technology’s
potential accurately and to produce integration, calibration, and symbiotic connectivity
in the environments, the physical and virtual replica. According to intelligence and cog-
nition, mental abilities and mechanisms that utilize complex information management
and synergy across physical and digital settings will manipulate and strengthen the “twin-
ing” structure. Dimensions can be listed as stimuli, interaction, aims, time, and situation
switching. The main goal is to foster self-adaptive assessment and smart, proactive decision-
making through the two realms in an info-symbiotic way and work on the more wealthy
and finer-grained information base. Cyber-Physical Systems (CPS) and socio-technical
environments, for example, may benefit from this view because their activities are marked
by ambiguity, dynamism, and confusion. Cyber Foraging will represent intelligent analysis
and planning simulation difficult and costly computational to achieve this in reality with
limited computing resources.

In the digital transformation era in the AEC industry, Cognitive Digital Twins (CDT)
are introduced as part of the next level of process automation and control towards Con-
struction 4.0 [9]. CDT incorporates cognitive abilities to detect complex and unpredictable
actions and reason about dynamic process optimization strategies to support decision-
making in building lifecycle management (BLM). Nevertheless, there is a lack of awareness
of the real impact of CDT integration, Machine Learning (ML), CPS, Big Data, Artificial
Intelligence (AI), and Internet of Things (IoT), all connected to self-learning hybrid models
with proactive cognitive capabilities for different phases of the building asset lifecycle. This
study investigates the applicability, interoperability, and integrability of an adapted model
of CDT for BLM to identify and close this gap. Four research questions are raised in line
with the study’s goals:

(1) What functionalities do industry professionals allocate a CDT for BLM?
(2) What are achievable interoperability levels between CDT, IoT, Big data, and AI with

current BLM technologies?
(3) What integrability enablers are necessary for implementing the CDT for BLM?
(4) How and what information should be retrievable and assignable to CDT?

As the immense contribution, the knowledge domain understands how a CDT model
operates and how it connects to most BLM fields. Besides, the study of integrability enablers
and professionals’ perceptions of the technical ecosystem’s accessibility is facilitated by
synthesizing industry professionals’ questionnaire perspectives. Understanding DT’s
interoperability value, IoT, AI, big data, and sophisticated building management systems
could also help build life cycle management.

As shown in Figure 1, this article is structured as follows: in section two (theoretical
background), BLM’s essential concepts and CDT are depicted. Section three describes the
adapted model of CDT for BLM. In section four, an evaluation of the CDTsBLM model is
presented. Section five offers the discussions on decision support capabilities, integrability
enablement, and practical implications. In section six, the conclusions, recommendations,
and future road map are presented.
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cycle stages [12]. BLM sometimes starts with a physical analysis of the structure to gener-
ate a numerical representation (e.g., CAD documents). In this sense, at the beginning of 
its lifecycle, developing an effective BLM system is more than enough to avoid data loss 
during the building’s construction, use/maintenance, and disposal [13]. By offering an in-
teractive IT environment to handle the whole construction lifecycle, BLM seeks to migrate 
and enhance knowledge exchange in all phases of the building process [14]. Energy man-
agement, facilities management, maintenance management, and product/information 
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2. Theoretical Background

This section outlines key related works in the three main areas relevant to this article:
(1) Building Lifecycle Management (BLM)’s essential concepts; (2) Digital Twins (DTs) in
build environment and; (3) Cognitive Digital Twins (CDT) are presented.

2.1. Building Lifecycle Management (BLM)

The building lifecycle mainly includes the design, construction, operation, mainte-
nance, and end-of-life stages. Each step can be separated into superimposed informa-
tion layers that entail efficient data/information exchange strategies for interoperability
throughout all lifecycle phases [10]. BLM refers to a method of integrating and handling
the different stages of a construction project’s lifecycle [11]. BLM is a strategic planning
process that supports the development, operation, and maintenance of buildings and their
associated infrastructure, including building planning, design, construction, operation, and
maintenance. It aims to reduce costs and improve efficiency by ensuring that buildings are
built, operated, maintained, and replaced in the most cost-effective and timely manner. The
BLM is an integrated approach to building management that considers all the building ac-
tivities, the building’s surroundings, and the impact of these activities on the environment.
The BLM, directly and indirectly, affects many aspects, such as buildings or infrastructures’
operation and efficiency, operational risks, the environmental impact of buildings, people’s
quality of life, safety, and businesses. Such a complex and complicated process needs to be
real-time, accurate, intelligent, and automated to monitor, detect, learn, analyze, simulate,
validate, and operate. There are disintegrated data and information in every phase of the
construction project, which contains a significant amount of design and cost information in
the design process and decision-making steps; in the implementation step, a considerable
amount of material consumption beyond the data generated during the design process and
decision-making steps; and a vast data and information in operation and maintenance step.

As a result, to enforce BLM, a management mechanism must be developed that com-
municates each participant’s expertise and phase of the development project to avoid a
lack of sufficient and timely information connection and dissemination at different life
cycle stages [12]. BLM sometimes starts with a physical analysis of the structure to gen-
erate a numerical representation (e.g., CAD documents). In this sense, at the beginning
of its lifecycle, developing an effective BLM system is more than enough to avoid data
loss during the building’s construction, use/maintenance, and disposal [13]. By offering
an interactive IT environment to handle the whole construction lifecycle, BLM seeks to
migrate and enhance knowledge exchange in all phases of the building process [14]. Energy
management, facilities management, maintenance management, and product/information
traceability management are part of a scalable BLM scheme that allows users to incorporate
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and reuse building knowledge, domain expertise across a building’s life cycle [13–16].
A scalable networking infrastructure that offers uniform interfaces for sharing all forms
of data consumed or generated by the participants, corporations, or information systems,
in general, participating in the building lifecycle is a vital component of a functional BLM
framework. BLM must interact with any intelligent items/systems that are part of the
building lifecycle (sensors, actuators, RFID, databases) [10]. According to BIM, a tech-
nique that seeks to manage a building’s entire life cycle in a particular data environment,
proper data digitalization may optimize knowledge management and share within the
multidisciplinary team [17].

2.2. Digital Twins (DTs) in the Built Environment

The CPS is realized through the DT for visualization, modeling, simulation, analysis,
prediction, and optimization. DT contains three main components to create a practical loop:
a physical entity, a virtual entity, and a data link [18]. Usually, there are two approaches
to dynamic mapping in the DT. Inspection data are gathered in the physical world and
subsequently transmitted to the virtual world for further analysis. Simulation, prediction,
and optimization are achieved in the virtual model by learning data from multiple sources,
offering prompt solutions to guide the realistic process and adapt to the changing context.

Based on Alizadehsalehi and Yitmen [19], DTs have various features in the AEC
industry such as Real-time (gather and present real-time data of physical assets), Analytics
(store data, run continuous analytics from historical data, and provide helpful insight),
Simulations (utilize to run various data-driven simulations), visualization (overlay real-life
and live 3D BIM models, images, and videos of the physical asset and also the foundation
for immersive visualizations), Automation (a bi-directional system that can manage the
behavior of physical assets), and Predictions (provide predictions of assets’ future behaviors
using historical data and analytics of various scenarios assets). As a comprehensive
summary, Table 1 presents DT applications in the AEC industry that appeared in the recent
literature (2019–2021).

Table 1. Digital Twins applications in the AEC industry that appeared in the recent literature.

n Author(s) References Year Applications

1 Alizadehsalehi and
Yitmen [19] 2021 Developed and evaluated a DT-based construction

progress monitoring system called DRX.

2 Deng et al. [20] 2021 The transition from BIM to DTs in built-environment
applications was studied.

3 Pan and Zhang [18] 2021
A data-driven DT architecture based on data mining,
BIM, and IoT was developed for comprehensive project
management.

4 Bosch-Sijtsema et al. [21] 2021 Examined the digital Technology applications in the AEC
industry.

5 Hasan et al. [22] 2021 Investigated construction machinery operation and work
tracking through AR and DT.

6 Camposano et al. [23] 2021 Examined how AEC/FM professionals describe built
asset DTs.

7 Meža et al. [24] 2021 Devoted BIM-based DT for road constructed using
secondary raw materials (SRMs)

8 Hou et al. [25] 2021 Reviewed the applications and challenges of DTs in
construction safety.

9 Borowski [26] 2021 Reviewed the contemporary actions utilized and
challenged in the energy sector through the enterprises.

10 Del Giudice and
Osello [27] 2021

Investigated DT-based approaches, tools, and
implementations that can be adapted for achieving smart
city objectives.
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Table 1. Cont.

n Author(s) References Year Applications

11 Tagliabue et al. [28] 2021 Proposed leveraging DT for Sustainability Assessment of
an Educational Building.

12 Boje et al. [29] 2020 Examined the many uses and limitations of BIM, as well
as the need for Construction DT.

13 Liu et al. [30] 2020 Investigated building indoor safety management.

14 Austin et al. [31] 2020
Presented the smart city DT challenges and proposed
approaches regarding the architectural and operational
stages.

15 Lu et al. [32] 2020 Detected anomalies by DT for developed asset tracking
in service and maintenance.

16 Greif et al. [33] 2020 Developed the concept of a lightweight DT for
non-high-tech sectors such as construction.

17 Lu et al. [34] 2020 Proposed moving BIM to DT for operation and
maintenance.

18 Rausch et al. [35] 2020 Implemented a computational algorithm to support DTs
in construction.

19 Dawood et al. [36] 2020 Reviewed, developed, and implemented DT, VR, AR,
and BIM in AECO.

20 Götz et al. [4] 2020 Researched asset lifecycle management.

21 Alonso et al. [37] 2019 Presented the SPHERE platform for improving the
building’s energy performance.

22 Mathot et al. [38] 2019
Developed and discussed the next-generation parametric
system Packhunt.io with BIM, DT, and Mixed Reality
(XR) technologies.

23 Khajavi et al. [39] 2019 Discussed DT for building lifecycle management.

24 Kan and Anumba [40] 2019 Presented a comprehensive review of DT applications in
the construction domains.

25 Lu et al. [41] 2019 Proposed the DT-based smart asset management
framework.

26 Kaewunruen and
Lian [42] 2019 Recommended using DT to maintain the lifecycle of

railway turnout systems sustainably.

27 Lydon et al. [43] 2019 Conducted simulations of thermally active building
systems to assist DT.

2.3. Cognitive Digital Twins (CDT)

The DT concept allows the physical equivalent to be mirrored in virtual space, includ-
ing exchanging data between them [7]. CDT expresses an evolution of the DT concept.
It has been crafted to fit the requirement of monitoring complex industrial processes and
apply the same trade model, shadow, and thread of DTs [6]. The balance between rapidity,
resolution, and exception handling is crucial from any industry’s economic perspective [44].
Virtualization in a dynamic, run-time process allows the digital counterpart’s behavioral
model to be constantly modified to mimic the physical element’s actions, resulting in
the CDT [45]. Virtualization is a dynamic design-time process involving computational
approaches to model the physical feature, evolving into the complex, run-time process that
allows the digital counterpart’s behavioral model to be constantly adjusted to mirror the
physical element’s actions, resulting in the CDT. The CDT is a DT with cognitive abilities,
including detecting anomaly and behavioral learning, and the power to determine physical
twin actions to improve measures defining its state or function [46]. Therefore, a CDT uses
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optimization approaches to aid decision-making and data from the physical twin analyzed
using analytics or ML.

To put it another way, the CDT is envisioned as a robust monitoring and control
mechanism and an essential part of the decision-making action that leads to system op-
timization. Using optimization techniques inside the heart of the cognitive twin and its
impact is the primary crucial differentiating point instead of currently available DT so-
lutions [46]. To make the transition from physical assets in the form of digital replicas
to cognitive advancement, Abburu et al. [6] used a three-layer structure to describe the
types of twins needed: digital, hybrid, and cognitive. The need to build isolated models
of systems for anomaly detection, connect the models for predicting unusual behavior,
and problem-solving skills to deal with uncertain situations constitutes the three-layer
separation. CDT is characterized in DT through advanced semantic abilities to detect the
mechanisms of virtual model evolution, enhance DT-based decision-making, and foster
the interpretation of virtual model interrelationships [47]. The CDT ensures that assets
are adequately managed and that problems outside technical stakeholders are resolved by
implementing Internet of Things (IoT) systems [48].

CDTs may have a high degree of intelligence, allowing them to mimic human cogni-
tive processes and perform conscious acts with little or no human intervention [8]. The
Knowledge Core of CDT has semantic-driven recognition, learning, inference, estimation,
and decision qualifications consisting of a series of prediction and ML models developed
using the data from multiple sources such as physical equivalents and sensors from all as-
pects of operational conditions of the industrial systems. Besides, it incorporates temporal
supply chain data and processes as well as experts’ domain knowledge. As a result, the
CDT can train and improve to represent and depict the physical asset’s current state and
operating conditions in real-time. Furthermore, in both the digital and physical worlds,
the CDT can identify, analyze, deduce, forecast the twinned physical system’s present and
potential actions, and produce decisions by interrelating machines and humans.

Lu et al. [49] suggested a new cognitive twins so-called CT definition and a knowl-
edge graph-centric framework for the CT process. Du et al. [50] explored how to build
individualized information systems for future smart cities using a human-centered DT
simulation approach of cognitive behaviors. Eirinakis et al. [46] suggested an Enhanced
Cognitive Twin so-called ECT introducing advanced cognitive skills to the DT asset that
allow assisting choices to allow DTs to respond to internal or external stimulation in the
context of process industries. The ECT can be used at varying levels of the supply chain
hierarchy, including sensor, device, process, workforce, and manufacturing stages, and can
be integrated to allow lateral and vertical interaction.

The concepts of the Hybrid and Cognitive Digital Twin (COGNITWIN) toolbox were
developed by Abburu et al. [6] to cover cognitive skills for efficient management and
operation of processing equipment, for lowering production costs, and efficiency improve-
ments in the process industry. A sensor network can constantly track and capture data
from different plant processes and properties stored in a standard setup database. The
COGNITWIN project mainly aims at adding the cognitive component to process control
systems, thus enabling them to self-organize and provide solutions in case of unexpected
behaviors. Figure 2 shows the different stages of DT to CDT. A DT is a formal digital repre-
sentation of an asset, process, or system that captures any systems’ attributes and behaviors
through IoT-based various reality capturing sensors suitable for communication, storage,
interpolation, and processing to measure, simulate, and experiment with the digital replica
to understand its physical counterpart. A DT for monitoring, diagnostics, and prognostics
to optimize asset performance and utilization uses sensory data combined with historical
data, human expertise, and fleet and simulation learning to improve prognostic outcomes.
A DT gets data from physical entities and applies them to the model.
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Figure 2. Different stages of Digital Twins to Cognitive Digital Twins.

A Hybrid Digital Twin is usually defined as the DT comprised of combined multiple
models. A Hybrid Twin (HT) extends the DT by intertwining different models to take
advantage of both physics space and data-driven modeling. HT gets the data from the
physical entities and uses them in several models jointly. The way to increase the degree
of influence and scope of DT is to have cognitive features, such as reasoning, planning,
and learning. Digital twins based on data analytics require immense amounts of data for
accuracy, and while physics-based simulation models are highly accurate, they take an
incredible amount of time to run. New hybrid systems are combining the best of both
worlds for a digital twin that is both quick and exact.

Although HT has a lot of different models, there are so many parameters that influence
the processes that, in some situations, are not covered by existing models. CDT represents
the next step in evolving the DT concept in the AI era, incorporating cognition aspects
to deal with unforeseen situations effectively. Revolutionary DTs will arise as a result of
intertwining distinct models to accomplish advanced predictive capabilities and finding
solutions to problems to be encountered by integrating expert knowledge. CDT gets
data from physical entities and compares them with models, including models of expert
knowledge.

Table 2, as a comprehensive summary, exhibites diverse CDT applications in various
fields of industry based on the latest research (2019–2021).

Table 2. Diverse Cognitive Digital Twins applications in various fields of industry.

n Author(s) References Year Industry Applications

1 Rožanec et al. [51] 2021 Manufacturing To capture specific knowledge related to demand
forecasting and production planning.

2 Berlanga et al. [52] 2021 Computer
Science Proposed a platform for social networks.

3 Abburu et al. [6] 2020 Engineering
Proposed a framework for the implementation of
Hybrid and Cognitive Twins as part of the
COGNITWIN software toolbox.

4 Kalaboukas et al. [47] 2021 Manufacturing Implementation of CDT in Connected and Agile
Supply Networks.
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Table 2. Cont.

n Author(s) References Year Industry Applications

5 Zhang et al. [8] 2020
Computer

science and
Engineering

Discussed how the different levels of self-awareness
can be harnessed for the design of CDTs.

6 Du et al. [50] 2020 AEC industry Established methods and tools for the intelligent
information systems of smart cities.

7 Eirinakis et al. [46] 2020 Management Proposed enhanced cognitive capabilities to the DT
artifact that facilitate decision making.

8 Albayrak and
Ünal [53] 2020 Engineering Smart Steel Pipe Production Plant via CDT-based

systems.

9 Abburu et al. [54] 2020 Engineering Proposed the CT control system for automation in
the process control system.

10 Essa et al. [55] 2020 Computer
Science Introduced the automation of defect detection.

11 Saracco [56] 2019 Computer
Science Proposed to bridge Physical Space and Cyberspace.

12 Fernández et al. [57] 2019 Engineering

Introduced the concept of Associative CDT, which
explicitly includes the associated external
relationships of the considered entity for the
considered purpose.

3. Methodology
3.1. Adapted Model of aCognitive Digital Twin for Building Lifecycle Management (CDTsBLM)

This paper reviews previous work on BLM, DT in the built environment, and CDT
and presents an adapted framework developed by Lu et al. [48] and Abburu et al. [6] to
improve BLM with CDT in the AEC industry. The adapted framework in this research
is referred to as the CDTsBLM Model of the framework. This framework’s processes, as
shown in Figure 3, are discussed in detail in this section. The CDT is a capabilities-driven
digital representation of its physical twin. It should be a capability augmentation and
an intelligent digital companion cycle and evolution phases. CDT facilitates cognition
towards improving the behavior of the complex process systems inherent in planning,
design, construction, and operations. An ML pipeline automates the ML workflow by
facilitating data to be converted and associated into a model that can be processed to
automate the ML model’s outputs and input data completely. As shown in Figure 3, the
conceptual framework facilitates the implementation and evaluation of consistent CDT in
BLM by integrating various pipelines of ML and analytical tools at various stages from
planning to the whole operations through the processing phases during operations.
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Figure 3. Knowledge Graph-centric Conceptual Framework of Cognitive Digital Twin for Building Lifecycle Management
(CDTsBLM) (adapted from the developed framework by Lu et al. [48] and Abburu et al. [6]).
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3.1.1. CDTsBLM Framework

The first section of CDTsBLM is CDT and adaptive dynamic process modeling. In this
section, all IoT-based systems, consisting of reality capturing sensors, other construction-
related technologies, networks, and computational composition, are considered hybrid
systems, including continuous systems and discrete systems. DT is an incorporated
structure of mathematical models and data ensuring that real physical systems and their
virtual entities are synchronized in real-time. Such a method can be characterized as
whole workflows where the computing composition and other plant nodes are connected.
A process modeling and simulation approach is applied to enact these workflows and
simulate the hybrid system behaviors in this arrangement.

Knowledge Graph (KG) helps to represent the data that can achieve cognitive learning
by machines. Knowledge is awareness or familiarity, someone or something gained by
the experience of a fact or situation. On the other side, a Graph represents how any data
are stored in the form of associations. KG is a term of how the engine builds relationships
between people, technology, and facts. The KG models are focused on topological rela-
tionships between physical and cognitive entities. Ontologies for KG models are created
before designing KG models to describe semantics and syntax. KGs will serve as the core
mechanism for ML flows, extending data manipulation to enable practical consumption
through CDTsBLM. KGs and ML techniques provide the required abstraction layer to
clarify better (a) the context of each method and (b) the complex interactions that rep-
resent machine-understandable data and ML algorithms to make it easier for data and
information extraction tools to communicate.

Artificial Intelligence (AI) APIs, historical data, process models with dynamics, and
KG models are integrated to produce CDT models. CDT models aim to support decision-
making for dynamic processes of physical entities. The use of dynamic process simulation
has been developed as a reliable and effective tool to examine the transient behavior of
process systems.

In the CDT and analytics for the process simulation stage, optimization tools will
support process optimization through real-time data and CDT models. The result of this
optimization is implemented to make decisions for physical entities manipulating.

A service-oriented interface for the data interoperability approach is offered to develop
interfaces for heterogeneous data, and for that reason, all the assets and business domain
data should be converted into integrated formats through the established interfaces. It
means that all generated and captured data at any stage of projects need to be converted to
a common data environment.

3.1.2. Layers in CDT

The architecture of CDTsBLM has essentially four layers with each of them providing
a set of services as follows.

Model Management Layer is in charge of three different kinds of models: (1) first-
principle models for processes based on underlying physics; (2) analytical models based on
various AI methods and ML; and (3) information-driven models focused mainly on their
detailed work experience based on tacit knowledge of the domain and human operating
experts. This Layer’s primary role is to ensure that various services, including modeling,
data-driven, and human experts, provide efficient storage and access for multiple models.

The Service Management Layer makes effective use of all available services to solve
the fundamental domain issues. It is focused on a complicated organization of services,
combining data-driven model-based services to create value-added pipelines. It contains a
registry service, enabling the rapid discovery of the orchestral services required. Service
results should be made public, and practical and scalable communication of service can
be ensured.

The User Interaction Layer is a digital definition of a physical device simulating its
actions. It’s critical to assist a user in discovering a CDT’s data and models, as well as its
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characteristics. To put it another way, intuitive yet exploratory user interaction should
be possible.

A twin represents a dynamic framework that should be handled effectively, and the
Cognitive Twin Management Layer models a physical system’s behavior. A Twin can define
the system’s actions as a digital description of a physical system by offering a standard
behavior model. Contrarily, a Twin is a digital entity whose life cycle is affected by a
physical system; in other words, physical design behavior changes should be replicated
in double structure models as soon as the physical environment’s corresponding data
become apparent.

3.1.3. CDT realization within Cognitive Building Lifecycle Environment (CBLE)

Figure 4 depicts the CDTsBLM conceptual architecture built on service pipelines from
which accessible data flow. The use of data streams implements the cognitive center of the
CDT through one pipeline, which provides learning, event identification, and prediction
and reasoning skills. A second pipeline for each CDT allows analysis and justification of
vast quantities of raw data from different sources. A meta-structure improves the CDT
by allowing multi-source data flow interoperability, higher reasoning, cognition pipelines
since they interconnect through KGs.
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Figure 4. Outline of the process flow of Cognitive Digital Twin for Building Lifecycle Management (CDTsBLM) (adapted
from the developed framework by Lu et al. [48]).

KGs enrich and direct the relationship between these two data-driven modeling ap-
proaches. ML algorithms, data analytics, and KGs form the foundation of a robust cognitive
computing framework that allows for fine-tuned outcomes and increased process and rea-
soning abilities. The semantic models augment a set of data with features that enable
cognitive processes to be far more agile. Combining quantitative-driven ML, qualitative
KGs, and data analytics combines machines’ computing power with the human intuition
and experiences needed to solve various Construction 4.0 use cases. Optimization can
be exploited, related to the scope of the activity, the time horizon, providing CDTs with
the capability to resolve optimized production issues, such as short-term real-time reorga-
nization and reconfiguration of entire systems, mid-term timing, and lots for individual
activities or whole construction and long-term capacity planning.
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In the transition from CDTsBLM Conceptual Architecture to Technical Architecture,
there is a data communication framework for collecting, processing, integrating, and
managing multi-source, multi-scale, and multivariate data from production assets. CDT
module interaction and API-based communication with the business domain can also be
supported by a messaging and operation bus.

Actuators can be implemented to execute real-time decisions dynamically and com-
municate them directly from CDT to physical twin. Several enablers must characterize the
CDT definition: (1) A profile describes the twinned asset and descriptive details, as well as
models; (2) the connections between CDT and other CDT construction, as a network of linked
CDTs, a factory or process or different architecture; (3) facets of cognition such as thinking,
modeling, estimation, and optimization; (4) aspects of confidence to ensure correct knowledge
transmission; (5) status and future notification visualization for end-users; (6) computation
requirements as well as implementation aspects; (7) Identifying the CDT lifecycle.

These enablers tackle various stages of a cognitive factory model. The first is to simu-
late the construction or even other development contexts as a network of interconnected
CDTs, for example, the workstation, process, and machine. Data from different sources,
including ERP, Physical Twins, Human Operators, were initially added. Detection services
(CEP), which are combined with Simulation and Optimization Services in the Cognitive
Core functionality, use data-driven process models to allow CDTs to (1) detect a natural
anomaly, such as an impending system malfunction, (2) forecast possible response steps
with ideal outcomes, (3) simulate the optimized outputs and future consequences gradu-
ally, (4) return a well-thought-out proposal for the future course of action, which will be
submitted to the appropriate stakeholders or actuaries for approval or denial.

3.1.4. CDT and Cognition

The definition, which is data-oriented, resides at the heart of the CDT. Construction
4.0 needs a greater cognitive increase in assets to allow continuous improvement of the
data-driven process. CDTsBLM uses a modern architecture for generation construction
data analytics to integrate cognition into DTs and as a meta-platform to help create and
implement a range of building applications, such as quality management and predictive
maintenance. The CDTsBLM approach depends on a new DT data analytics, in which
an innovative CDT-driven metaphor represents a system model, improving the DT base
and the integrated CDT structures to understand and solve situations that cannot be
modeled, for example, by design allowed in numerical models or experience in the context
of numeric models. Based on the current process data in real-time, this integrated approach
will explain the issue, including tool deterioration for each particular machine and product
type. This cognitive function is assisted in rare cases by the just-in-time process status
simulation to measure an anomaly’s assurance that needs to be resolved in an extraordinary
circumstance. This data-driven simulation would also indicate whether an anomaly is
triggered by a particular scenario, meaning how long current process settings will remain
unchanged. This novel approach describes data-driven model simulations from twins
using novel predictive clustering methods and advanced inductive database mining rules.

3.1.5. CDT and Data

For the analytical models implemented in CDTsBLM, extensive data sources are
required. The well-known critical issue in developing analytical models is processing and
modeling various types of data in real-time. A complex architecture must adhere to the
other methods to construct a universal analytical structure in Construction 4.0 for real-time
data stream processing. It is also possible to synchronize and optimize data until they
are fed into the analysis models. CDTsBLM seeks to provide an exhaustive and modern,
multi-level model of uncertainties and causal relationships that include the following sub-
models at multiple levels: model content fluxes, statistical capability models, technological
process models, deviation models between optimal technical simulations, observations,
and logistics demand projects. Material flow pattern models consider the lead time of input
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materials and generate uncertainties for understanding product transport and logistics and
the various technical procedures to be used. Machinery availability, breakdown model,
and models for employee insecurity will be considered for statistical capability models.
Models of technical processes can incorporate domain awareness. Due to its state-of-the-art
data-guided online processing algorithms for broad re-in-time data streams, the CDTsBLM
uses the framework as its analytical tool to handle data requirements for CDTs. It aims to
address multimodal data fusion, data preparation, optimization, and the analytical design
of a manufacturing process as an entity that generates a typical analytical structural model
for intrinsic, interrelated process variables. The architecture allows CDTs, when introduced,
to seamlessly use many multimodal data types.

3.1.6. CDT and Optimization

When converting a DT to a CDT, the implemented optimization that allows the
CDT to generate optimization functions is a critical enabler and differentiator. The vast
majority of batch processing, construction planning optimization issues are NP-hard,
which applies to Construction 4.0. Consequently, using conventional algorithmic and
mathematical programming approaches to generate a proper solution to a real-life issue is
computationally intractable. It is not always possible to have precise values of optimization
criteria such as inventory supply, production times, costs, human resource efficiency,
equipment durability, and construction industry specifications, or to be mindful of future
diversities in material order preference, equipment failures due to a lack of information
or the changing existence of actual construction sites. As a result, an optimum solution
for approximate parameters could be inadequate until the parameters are realized. This
complexity is present, especially in the process industries, where the quality of a given
material inside a construction cannot be calculated with certainty before the component is
processed. As a result, dealing with complexity is almost as critical as making the model
itself, as it can be used to verify mathematical models and maintain production viability
during operations.

The proposed solution dealing with decision circumstances involving complexity
treats all potential realizations of parameters as part of the feedback. This collection is
referred to as a scenario set, and each parameter completion is referred to as a scenario. As
a result, a scheme reflects a possible condition of the universe. Since the cost of a solution
is determined by a situation, its value is therefore unknown. Ex-post research compares
a solution to an optimal solution that might have been obtained if the parameters had
been realized in their original form. Decision-makers who do not want to take risks are
more interested in avoiding the worst situations in the real world. A robust optimization
methodology, under a discrete or intermittent uncertainty and the regret criteria of max–
min or min–max, is a critical modeling approach for meeting the above requirements.

Another important aspect is the manufacturing process’s performance. Its capability
primarily determines the control system’s capability to adjust schedules to changing condi-
tions, especially at the short-term decision support level for real-time adaptive optimizing.
These dynamic problems with re-optimization can be handled via reactive and proactive
frames, in which the optimization process is progressively conducted at some intervals
and dynamically evolves into integrated new or old knowledge. These methods can ad-
dress complex optimization problems effectively with input parameters and variables that
have not been completed, uncertain or unknown, that are modified simultaneously by
the development of the real-time solution process. A suggested architecture for this path
utilizes vigorous optimizations of different models (1) builds on well-established concepts
such as negligence in which unique input parameters are not known to provide a universal
solution which is efficient to optimize the worst-case solution and optimize overall actuality
in all realizations of hidden parameters, (2) implements the adaptive, efficient, multi-stage
optimization technique for planning where optimized decisions on unknown criteria and
action on recourse depend on the realization of insecurity.
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CDTsBLM is designed to deliver a complete CDT optimization toolkit based on a local
hybrid search, evolutionary calculation, and data-driven techniques to scalable resource-
aware planning and optimization algorithms that can be utilized to solve complicated
planning issues with a variety of constraints, including utilities, renewable resources, and
machinery service restraints. They also possess the potential to hierarchically address
various schedule targets, including time and energy-conscious combinations. They often
have a high degree of precision by strengthening their forecasting capabilities by utilizing
(1) multiple design processes as decision variables to help monitor construction site factors
such as efficiency and length while controlling several scheduling parameters such as
processing time, energy usage, and operational expense, (2) a variety of execution types,
including, for example, alternate routings and resource demand variations for each con-
struction operation. A modified algorithm is designed to complement the prior algorithm
set in the Optimization toolkit to endorse the CDT for rigorous online preparation problems,
easily extended to resource-conscious purpose multifunctional optimization alternatives.

4. Evaluation of the Proposed CDTsBLM Model

Testing the proposed CDTsBLM model aims to recognize its effectiveness in practice
and thus validate it. In this assessment, a digital survey was established with the liter-
ature review as a basis and distributed to industry professionals across countries. The
survey’s core theme was to provide practitioners with an insight into the life cycle-centric
applicability and integrality of CDTs with existing BLM practices.

4.1. Sampling

AEC increasingly involves multiple stakeholders ranging from Design Manager to
Design Coordinator, Designer, BIM Manager, BIM Coordinator, Digitalization specialist,
Project Manager, Construction Manager, Asset Manager, Asset Administrator, and Asset
Controller. The longevity of assets may mean that the stakeholders or even the type
of usage may change over time; this poses challenges in how these assets are managed
over their life and specific challenges to the way data and information about them are
handled. Therefore, the study focused on private organizations dealing with building
projects operating in the United States (USA), United Kingdom (UK), and Sweden. The
sample includes only large firms.

4.2. Data Collection

The data collection was confined to actors that have vital roles in capturing, delivering,
and using the information in the building life cycle and technology domain innovation
projects. Design, project management, contracting, and facilities management firms were
compiled by searching for geographic position cataloging enterprises. The survey included
owners and consultants for asset management. The national inclusions improve the validity
of questions as they represent the different cultures, experiences, and ways of working of
corporate and national groups. The proportions of company positions, sizes, and regions
are shown in Table 3.
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Table 3. Company region, size, and role in percentage.

Company
Type Design Firm Project Management

Firm Contracting Firm Facility Management
Firm

Role Design
Manager 9% BIM Manager 9% Project

Manager 8% Asset
Manager 10%

Design
Coordinator 8% BIM

Coordinator 9% Construction
Manager 7% Asset

Administrator 9%

Designer 8% Digitalization
Specialist 7% BIM Manager 7% Asset

Controller 9%

Company
size Large (>250 employees) 10% 10% 9% 12%

Medium
(50–250 employees) 9% 6% 7% 10%

Small (<50 employees) 8% 5% 6% 8%
Region USA 8% 5% 6% 8%

UK 9% 6% 7% 10%
Sweden 10% 10% 9% 12%

LinkedIn contacted 271 businesses, and a single representative from each was re-
quested to participate in the questionnaire. Contributors were apprised about the search’s
aims, and their answers were kept private and anonymous. A total of 45 percent of com-
pleted queries were collected. Experts were asked to talk regarding their work, observations,
and organizations. Participant experts used a five-point Likert scale to rate their agreement
with BLM digitalization-central statements, with one being the most disagreeable and five
being the most agreeable.

4.3. Descriptive Statistics

Descriptive statistics reporting the mean values and standard deviations of question-
naire responses are presented in Table 4. The summarized statistics speficies interesting
comprehensions as an overview of the AEC industry’s perception of the concepts. Ac-
cording to the results, the mean scores for 16 of the 20 questions were higher than 3.65
out of 5.00. The proposed model’s overall mean rating was 4.06, which means that indus-
try professionals support approaching CDT development for process optimization and
decision-making purposes and that integrability enablers confirm progression towards
Construction 4.0.

The argument that sought respondents’ opinions on real-time analytics for data-driven
models enhanced with cognitive resources was conducted to support decision-making
and aid learning, optimization, and reasoning had the highest mean of 4.45 in the relative
importance of the variables. Through reason, learning, and optimization, CDTs can monitor,
project, modify, and make better choices in real-time. CDT is a robust monitoring and
tracking method, and the overall system is optimized with a mean value of 4.38. CDT
covers existing process control systems with cognitive elements that allow them to organize
themselves and provide a so-called indication of unanticipated actions at an average of
4.34. Overall, respondents agree that CDT should provide cognitive features that enable
it to sense complex and unpredictable movements and reason about dynamic process
optimization strategies to aid decision-making in BLM.
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Table 4. Descriptive statistics, factor analysis and reliability test.

Questionnaire Statement Mean SD Factor
Loading Cronbach α Rank

Bu
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)

BLM employs a CDT approach, which allows for a highly effective
expanded collaborative process built on AEC industry best
practices.

3.26 1.23 0.703

0.710

20

Using a BLM framework, users can proactively fix real-time
problems. RFIs, submittals, and change orders may be minimized or
withdrawn.

3.49 1.25 0.707 19

With BLM, designers can make more intelligent choices in a richer
data context while maintaining greater control over the final
product output.

3.54 1.19 0.718 17

BLM is intended to minimize waste by forecasting results correctly,
defining possible tension points, and improving procedures. 3.65 1.14 0.713 18
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in
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T)

CDT offers live data feeds for primary metrics, visualizations,
models, and scenario generation applications. 4.21 0.95 0.842

0.869

8

CDT integrates cognitive components into current process
management structures, helping them self-organize and respond to
unpredictable activities.

4.34 0.92 0.868 3

CDT models aid in decision-making for complex systems, including
physical actors. 4.32 1.16 0.864 4

CDT is a valuable monitoring and control mechanism that helps in
overall system optimization. 4.38 0.94 0.876 2
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The connectivity of real-time data allows for fast reporting and data
explosion, enabling deep data analytics. 4.12 0.92 0.824

0.829

13

In the IoT lifecycle, virtual model assets are needed to identify,
detect, and address dependencies across domains in the system,
subsystems, and components.

4.04 0.89 0.808 14

IoT system architecture allows for simple connectivity,
communication, and control across domain-specific applications. 4.19 0.93 0.838 10

As a hybrid architecture, IoT connects the physical and virtual
worlds. 4.23 0.91 0.846 6
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Learning introduces new expertise to current data, models, and
approaches to learn more reliable models from existing datasets. 3.96 1.12 0.792

0.813

16

Cognitive aspects help benefit from past process data and incidents
to predict and provide the best feasible solutions for unwanted
events.

4.01 1.15 0.802 15

Hybrid models that self-learn and have proactive cognitive skills. 4.13 0.95 0.826 12

The real and the virtual space can reason and learn about stimuli,
interaction, aim, and time. 4.16 0.96 0.831 11
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Real-time analysis for data-driven models augmented by cognitive
resources is conducted to facilitate decision-making and improve
learning, optimization, and reasoning.

4.45 0.96 0.892

0.856

1

Dynamic process optimization techniques contribute to an
environment in which digital structure and behavior are continually
evolved.

4.22 1.18 0.844 7

Process optimization is conducted to support and manipulate
physical structures based on CDT models and real-time data. 4.25 1.19 0.850 5

Assessing optimization scenarios in the virtual environment before
bringing them into effect in the real world. 4.20 1.20 0.840 9

4.4. Factor Analysis

Functionalities of the BLM, CDT, IoT, and Process optimization and achievable lev-
els of interoperability ad integrability of the proposed model as rated by the industry
professionals are presented in Table 4. Confirmatory factor analysis boosts trust in the
assessment’s precision and quality. Table 4 lists the items that were used to calculate
each element. A five-point Likert scale was applied to measure all objects, and they were
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found perceptual. All factor loadings between 0.703 and 0.892, as well as all Cronbach’s
coefficients less than 0.70, were considered to be adequate.

According to Table 4, CDT was ranked as the highest, Process Optimization as the
second, IoT as the third, Self-learning as the fourth, and BLM as the fifth factor for life
cycle-centric applicability and integrability of CDTs with current BLM practice, exploring
decision support capabilities and AEC industry insights.

4.5. Correlation Analysis

Spearman’s rank-order correlation was used to validate the relationships, and the
evaluation of the matrix shows a correlation. A positive linear relationship exists within
BLM for improved productivity and sustainability, CDT for enhanced decision-making, IoT
for real-time connectivity, and self-learning by applying new knowledge on the existing
data, models, methods, and optimization simulation decision support. The highest correla-
tion occurs between CDT for improved decision making and IoT for real-time connectivity
in ρ < 0.01 (r = 0.812). The second significant positive correlation exists between CDT
for enhanced decision making and optimization and simulation for decision support in
ρ < 0.01 (r = 0.799). The correlation calculations of respondents’ perception of CDT decision
support abilities are depicted in Table 5.

Table 5. Correlational analysis of Cognitive Digital Twins’ perception of decision support capabilities.

Spearman’s Matrix of Correlation Rank

BLM for
improved

productivity and
sustainability

CDT for
improved

decision making

IoT for real-time
connectivity

Self-learning by
applying new

knowledge to the
existing data,
models, and

method

Optimization and
simulation for

decision support

Spearman’sRho
(ρ)

BLM for
improved

productivity and
sustainability

1.000

CDT for
improved

decision making
0.776 1.000

IoT for real time
connectivity 0.695 0.812 1.000

Self-learning by
applying new

knowledge to the
existing data,
models, and

methods

0.687 0.797 0.790 1.000

Optimization and
simulation for

decision support
0.707 0.799 0.789 0.781 1.000

Notes: N = 85. Correlations have a (2-tailed) level of significance “Sig. < 0.000”. Correlation is significant at the 0.01 level.

5. Discussion

The motivation for this research came from the novelty of the DT concept and its
future applications, which will establish the adaption of CDTs in the AEC industry. Besides,
the lack of attention paid in the literature to CDT in AEC project management led the
authors to investigate this research. The adapted model in this study provides a viable
solution to the identified problem. Process modeling has been used to explain the steps
and significant aspects of the CDTsBLM framework. This study presents a novel adapted
model that integrates CDT and BLM concepts and allows all project stakeholders to identify
and collect the right data sets and implement them properly to optimize the system. The
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proposed model attempts to improve the BLM performance compared to the traditional
and current methods.

In BLM, the CDT can be used to represent any physical unit. Buildings, process
phases, total procedures, and ultimately an entire construction operation can be virtualized
using CDT. CDTs can be elicited at various hierarchical levels, with CDTs combining
horizontally and vertically to form an aggregated structure. The Cognitive Building
Lifecycle Environment (CBLE), built by combining CDTs, shares significant knowledge
horizontally. Only important decision-making material, on the other hand, is transmitted
vertically to upper levels. A mission-critical building’s CDT (monitoring and managing its
condition and actions) supplying input to a particular process phase that feeds the building
design process’s CDT is an example. These CDTs will act and respond when sharing
data with the various exchanged data sets and their semantics. Hence, the respective
CDTs must be coordinated by a supervisory check, resulting in the CBLE, with market
requirements, time horizons, and the essence of various activities that must be processed
at any given time determined. This study examined the implementation, integrability,
and interoperability of CDT in existing BLM practices in the life cycle, exploring decision-
making skills and AEC industry insights. It is anticipated that the CDTsBLM model will
promote the qualifications mentioned to allow better knowledge, analysis, optimization,
and decision-making, which will concentrate on evaluation. The CDTsBLM model will
enable re-evaluation, projection, and re-evaluation in a dynamic and complex world, with
the possible planning, design, structuring, and operating. The operational processes’
environmental effect must be reduced in the AEC industry by optimizing the building
lifecycle processes by the CDTsBLM model.

One path forward to achieving new operational efficiencies depends on the reality that
much of the human-dependent work activity can be significantly reduced by automating
repetitive activities such as data acquisition, base data analysis, and the need for physical
presence at physical locations, yielding a faster and safer approach to gathering data as
well as reducing the time it takes to correlate and analyze that information. This rich
collection of information is accessed, maintained, and controlled by humans for three
primary activity streams. Analytics involves various analytical models, technologies, and
approaches providing historical, current, and predictive insights from the data gathered.
The workflow requires information about and procedures to inspect, maintain, modify
and repair the physical asset. Visualization involves information, including the spatial
geometry used for primarily planning and engineering.

The cognition, interpretation, and optimization of decision-making skills are fun-
damental to CDTsBLM. The connections between the ecosystem capacity perceived as a
collective framework and all of the capabilities contribute to establishing a crucial cycle-
centric application with inclusive aspects that contribute to explain the value of technology
integrity from a professional inducible usability perspective. The CDTsBLM uses its models
to evaluate data from the current framework to provide feedback and support decision-
making. Depending on the study, the data and intelligence displayed are performed by
the CDTsBLM.

The quantitative analysis of the data collected from Design Managers, Design Coor-
dinators, Designers, BIM Managers, BIM Coordinators, Digitalization specialists, Project
Managers, Construction Managers, Asset Managers, Asset Administrators, and Asset Con-
trollers indicated that there is a willingness to use this type of CDT technology and related
models. This analysis justified that the CDTsBLM model framework helps to provide a
real-time analysis for data-driven models augmented by cognitive resources, which was
conducted to facilitate decision-making and improve understanding, optimization, and
thinking. Further, it shows that CDTsBLM is a valuable monitoring and control mechanism
that helps in overall device optimization. It helps managerial levels of projects self-organize
and respond to unpredictable activities and aid in decision-making for complex systems,
including physical actors. The AEC industry can revolutionize how to design, build truly,
and operate in a complex project environment. The AEC industry will inevitably adapt
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cognition, analytics, self-learning, and optimization techniques due to the emergence of DT,
Cognitive computing, AI, ML, and cloud-based systems. Table 6 shows such a system’s
process, opportunities, and challenges. This research indicates that the CDTsBLM is an
intelligent system that seamlessly connects engineering operational data, information, and
models utilized over the whole building asset lifecycle with self-learning and predictive
capabilities. It then makes the results readily available in real-time and the proper context
for all related stakeholders to prevent or solve potential issues proactively. The findings
from this research could serve as a base to pave the way for promoting progression towards
Construction 4.0.

Table 6. Sample of Cognitive Digital Twins cognition, analytics, and optimization processes in Building Lifecycle Management.

Building Lifecycle Management

Process Opportunities Challenges

Cognition

Sensing complex and
unpredicted behavior, and
reasoning and insights from
real-time processing, where
cases, knowledge, and
experience interoperate to
facilitate to comprehend and
control the progress

Creating cognitive artificial
intelligence from raw data
and maximizing monitoring
accuracy.

IoT network in terms of
scalability, security, data loss,
competent human resources, lack
of enabling technologies

Analytics

Monitoring, refining, and
utilizing the flow of incoming
real-time data from various
sources (the physical
counterparts and sensors)

Applying cognitive analytics
through data-enriched
simulations enhanced by
cognitive computing insights
and predictive analytics

Lack of fully automated DT
platform, various types of
captured data, experienced staff,
IT infrastructure, trust with
respect to data, privacy and
security, lack of historical data

Self-Learning

Extracting knowledge from
aggregated data,
automatically learning from
data, identifying patterns, and
making decisions.

Applying intelligent and
self-learning planning and
control to improve the
accuracy of monitoring
through iterative updating.

Integration of transfer learning
algorithms, lack of comprehensive
modeling language, data
availability, validation of data

Optimization

For schedule design, task
allocation, and workflow
optimization of the relevant
construction process and
resource allocation

Combining reasoning and
optimization
for establishing planning and
design, construction schemes
based on analytic algorithms

Uncertainty quantification
algorithms, multi-objective
algorithms, complex environment
modeling, large-scale
computation

6. Conclusions

Construction projects and their data from the first stage to the last day of AEC projects
are becoming huge and more complex to gather and manage. It is becoming exceedingly
difficult, if not impossible, to identify and collect the right data sets and put them in the
proper context to enable the optimization of the system. However, with help from a DT that
can sense, reason, and act, such intelligent systems will help projects’ stakeholders make
the right decisions or autonomously trigger the right actions in the digital or physical world.
Increasing complexity in terms of the DT becomes apparent when looking at the various
application streams and their need for precise and real-time data. The DTs’ highest level is
the CDT connected with the top-level cognitive engineering maturity, including AI and ML.
This article introduced the newly adapted CDT paradigm, including BLM’s capabilities in
cognition, analytics, and optimization for construction 4.0. The most significant advantage
of cognition is the ability to solve problems preventively unknown. The CDT provides
a toolkit for optimizing based on its cognitive components that enables CDT to carry
out optimization tasks and delivers valuable results that other CDTs or process actors
consume. Industry practitioners have examined the technical framework of CDTsBLM
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and taken full advantage of additional CDT capabilities, including construction schedules,
preventive maintenance, and other goals, in the traditional DT sense. The benefits of
implementing the CDT concept in the construction industry are intended by opening
the optimization tool kit inside the CDT and enhancing real-time or almost real-time
choices by interplaying optimization and simulation. Finally, the CDT description and
conceptualization formalities will be further evolved alongside this implementation and
assessment by tailoring every application scenario specific to the technology, ability, and
KPIs that show this CDT effect.

The findings demonstrate the applicability of the CDTsBLM integration for a variety
of AEC analysis scenarios. Future research directions could focus on investigating the
processes and sub-processes of CDTsBLM applications in various AEC projects. Utilizing
this system’s legal and financial aspects will also lead to future research opportunities of
CDTsBLM. Researchers might want to explore the processes and integrability of various
construction technologies with CDT for various purposes.
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