
applied  
sciences

Article

Short-Term Prediction of COVID-19 Cases Using Machine
Learning Models

Md. Shahriare Satu 1 , Koushik Chandra Howlader 2 , Mufti Mahmud 3,4 , M. Shamim Kaiser 5 ,
Sheikh Mohammad Shariful Islam 6 , Julian M. W. Quinn 7 , Salem A. Alyami 8

and Mohammad Ali Moni 7,9,*

����������
�������

Citation: Satu, M.S.; Howlader, K.C.;

Mahmud, M.; Kaiser, M.S.; Shariful

Islam, S.M.; Quinn, J.M.W.; Alyami,

S.A.; Moni, M.A. Short-Term

Prediction of COVID-19 Cases Using

Machine Learning Models. Appl. Sci.

2021, 11, 4266. https://doi.org/

10.3390/app11094266

Academic Editor: Anton Civit

Received: 11 March 2021

Accepted: 23 April 2021

Published: 8 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Management Information Systems, Noakhali Science and Technology University,
Noakhali 3814, Bangladesh; shahriarsetu.mis@nstu.edu.bd

2 Department of Computer Science and Telecommunication Engineering, Noakhali Science and Techology
University, Noakhali 3814, Bangladesh; koushik@nstu.edu.bd

3 Department of Computer Science, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK;
mufti.mahmud@ntu.ac.uk

4 Medical Technologies Innovation Facility, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
5 Institute of Information Technology, Jahangirnagar University, Savar 1342, Bangladesh; mskaiser@juniv.edu
6 Institute for Physical Activity and Nutrition, Deakin University, Burwood, VIC 3125, Australia;

shariful.islam@deakin.edu.au
7 Healthy Ageing Theme, The Garvan Institute of Medical Research, Darlinghurst,

Sydney, NSW 2010, Australia; j.quinn@garvan.org.au
8 Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh 13318, Saudi Arabia; saalyami@imamu.edu.sa
9 WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community

Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
* Correspondence: m.moni@unsw.edu.au

Abstract: The first case in Bangladesh of the novel coronavirus disease (COVID-19) was reported on
8 March 2020, with the number of confirmed cases rapidly rising to over 175,000 by July 2020. In the
absence of effective treatment, an essential tool of health policy is the modeling and forecasting of
the progress of the pandemic. We, therefore, developed a cloud-based machine learning short-term
forecasting model for Bangladesh, in which several regression-based machine learning models were
applied to infected case data to estimate the number of COVID-19-infected people over the following
seven days. This approach can accurately forecast the number of infected cases daily by training the
prior 25 days sample data recorded on our web application. The outcomes of these efforts could aid
the development and assessment of prevention strategies and identify factors that most affect the
spread of COVID-19 infection in Bangladesh.

Keywords: COVID-19; machine learning; infected cases; forecasting

1. Introduction

The outbreak of the novel coronavirus SARS-CoV2 was first recognized in Wuhan,
China [1], and was declared a pandemic by the World Health Organization (WHO) on
11 March 2020 [2]. The Institute of Epidemiology, Disease Control and Research (IEDCR)
confirmed the first case in Bangladesh on the 8 March 2020 and the number of infected cases
subsequently increased rapidly [3–5]. SARS-CoV2 is spread from person to person through
physical contact, respiratory droplets, and touching contaminated surfaces [6,7] but the
most challenging issue about COVID-19 is that is passed on by infected but asymptomatic
individuals. Due to the limited awareness of the disease among the population, complex
and uncertain social-political factors increased the wide spread of this virus. Bangladesh
is a highly populated country with almost 161.4 million people and a high population
density with over 1115 people per square kilometer, and large numbers living in crowded
cities and villages [8,9]. Until vaccine access or effective medical treatment, COVID-19
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cases will continue to cause a very high death toll. To tackle uncontrolled transmission,
the Government of Bangladesh enacted national lockdowns that severely curtailed personal
interaction and economic activity [10,11]. For any low or middle income country, most
of the population do not have sufficient financial support or savings to survive such a
pandemic without working to pay for rent, food, and other necessities. In such a situation,
where case numbers are unclear and infection risk is high, it can be difficult to estimate
how many people will become infected in particular localities over the the short term.
To combat this situation, the government has explored new ways to manage stocks of
medical equipment and prepare hospitals by increasing and opening new COVID-19
treatment units and testing labs.

Machine Learning can be utilized to extract useful information from extensive datasets
and build intelligent prediction models for healthcare, as well as other features of this
viral pandemic [12–17]. Along with PCR-based and antibody based virus test predictions,
COVID-19 cases can be identified by chest X-ray [18,19] and computerized tomography
(CT) [20,21] images using machine learning [22,23]. Besides this, cloud computing has also
provided on-demand availability of computing resources such as power and storage [24].
Several resources have thus been developed to forecast ongoing COVID-19 case numbers
using a variety of machine learning algorithms. Sujath et al. [25] designed a machine
learning forecasting model where linear regression (LR), multilayer perceptron (MLP),
and vector autoregression model models were performed on COVID-19 Kaggle data to
anticipate case loads in India. Yadav et al. [26] employed machine learning models such as
support vector machine (SVM), naïve Bayes (NB), LR, decision tree (DT), random forest
(RF), prophet algorithm and long short-term memory (LSTM) to predict COVID-19 cases
in different countries. Also, Rustam et al. [6] used different models such as LR, least
absolute shrinkage and selection operator (LASSO), SVM and Exponential Smoothing (ES)
to predict harmful factors promoting COVID-19 spread. Ardabili et al. [27] compared
susceptible, infected and recovered (SIR) as well as susceptible, exposed, infected and
recovered (SEIR) models with machine learning and soft computing models, and suggested
that machine learning could be an efficient tool to model this outbreak. Zeroual et al. [28]
provided a comparative study of five deep learning models such as recurrent neural
network (RNN), LSTM, bidirectional LSTM (Bi-LSTM), gated recurrent unit (GRU) and
variational autoencoder (VAE) algorithms to forecast infectious cases of Spain, France,
China, USA and Australia. Gupta et al. [29] implemented SEIR and regression models to
predict COVID-19 cases in India. Wieczorek et al. [30] proposed a neural network model
using NAdam where it shows high accuracy to predict COVID-19 cases. Amar et al. [31]
applied seven regression models into infectious cases which are exponential, polynomial,
quadratic, third degree, fourth degree, fifth degree, sixth degree and logit growth model,
respectively. Again, Shahid et al. [32] implemented autoregressive integrated moving aver-
age (ARIMA), support vector regressor (SVR), LSTM, Bi-LSTM to manipulate COVID-19
instances, respectively. In the current circumstances, most of the standard epidemiological
models, such as SIR [33] or SEIR models, can be used to estimate future case numbers
and locations. The effect of COVID-19 on various country-specific sectors has also been
studied using computational modeling [34]. Often, these models have not given useful
results because they do not properly take into account the non-stationary social mixing
parameters prevailing in Bangladesh [27]. Epidemiological data is limited, and it is re-
quired to estimate parameters and elaborate automatic transmission models that cannot
be accurately interpreted. Therefore, short-term forecasting may be of greater utility in
guiding us to understand the patterns of infection spread through the community and
suggest the best interventions for minimizing the epidemic [35]. Machine learning models
can be used as an alternative means to conventional models for generating short term
forecasting based on the reported cases. In addition, these models are also needed to
inform rapid actions to counter COVID-19 spread. The integration of cloud services with
machine learning models provides an opportunity to greatly improve clinical outcomes
above what can be achieved by normal infrastructure alone. Thus, this expected morbidity
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framework that we propose could greatly assist medical staff to better understand the
local and temporal aspects of a dynamic epidemic situation, and so act and communi-
cate accordingly. The objective of this work is therefore to construct a web tool resource
that can provide useful forecasts of case numbers and COVID-19-related deaths over the
short term future (i.e., 7 days ahead) that employs cloud services readily available in
Bangladesh. This work has been shared on the public repository using this following link:
https://github.com/shahriariit/Short-Term-Forecasting-BD, accessed on 6 April 2021.

The contribution of this paper is summarized as follows:

1. The number of COVID-19 infected people is currently still increasing inBangladesh
but there are only incomplete data on the number and location of cases. There are
many strategies for reducing the spread that could be implemented by the local
authorities but a lack of understanding of the spreading pattern hinders their design
and implementation. We therefore designed software based modeling that can be
trained to perform short-term forecasting.

2. Many previous studies have considered many epidemiological models where several
pandemic parameters depended on the rate of social mixing of people. In the current
circumstances in Bangladesh, we cannot determine or measure such parameters
precisely. Therefore, various machine learning models can be a useful approach to
forecast infectious cases without needing such parameter precision. However, it
is important to note that predictions of infection levels are sensitive to non-linear
changes of parameters so that long term prediction tends to give poor results. For this
reason, we have focused on implementing short-term forecasting models where
accuracy is more likely to be achieved.

3. The analysis with different sliding windows (rounds) helps to estimate the predic-
tion capability of individual machine learning models and assist in the exploration
of the best models that provide the most accurate predictions. This model will as-
sist governmental authorities to take more effective steps against COVID-19 spread
and fatalities.

4. Cloud based web mining makes it possible to achieve fast and feasible to get real-
time outcomes.

This paper is organized as follows—Section 2 provides a brief description of the
datasets employed in this paper. This section also explains and discusses the features of the
machine learning models and describes the procedures used in the current study. Section 3
then details our experimental results obtained in this analysis, and Section 4 discusses
and evaluates the work. Finally, Section 5 summarizes the findings and indicates future
directions that may improve this type of analysis.

2. Materials and Methods
2.1. Data Description

Daily COVID-19 prevalence data were retrieved from the GitHub repository of the
Center for Systems Science and Engineering (CSSE) at Johns Hopkins University [36] in
this structure. The datasets contained regular case reports and time series summary tables.
These summaries have been formatted with three tables, such as confirmed infection, fatal-
ity and recovered cases of COVID-2019, and contained six attributes, that is, province/state,
country/region, last update, confirmed infection, death and recovered cases, where the
frequency is updated once a day. Therefore, the cumulative infectious and fatality records
have been taken for COVID-19 cases from 8 March to 28 November 2020 as representative
case analyses for various stages. We extracted confirmed infection and fatality instances
specifying country/region as Bangladesh with our forecasting starting from 14 April 2020.

2.2. Regression Methods

In this framework, we implemented several machine learning regression models to
investigate cumulative confirmed infectious and fatality cases in the data constrained envi-
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ronment. To estimate the number of infectious cases, many machine learning models, for
example, Linear Regression (LR), Polynomial Regression (PR), Support Vector Regression
(SVR), Multi-Layer Perceptron (MLP), Polynomial Multi-Layer perceptron (Poly-MLP),
and Prophet algorithm have been applied. However, they were applied to both classifica-
tion and regression. These models were already used to forecast numerous epidemic dis-
eases such as SARS, Ebola, Cholera, Dengue fever, Swine fever, and H1N1 influenza [27,37].
Recently, some COVID-19 forecasting studies have also performed analyses with these
regression models in an effort to model epidemic conditions [6,25,27,30–32,38,39]. These
studies described good performance of these methods for various types of problem solving
and data science competitions. Consequently, we considered these machine learning re-
gression models, which not only performed well for different virus related diseases, but
also for COVID-19. In addition, they provided good predictions with a low error rate
compared to other models (see Section 3). A brief discussion of these algorithms is given at
Appendix A.

Hyperparameter Tuning

Sometimes, different regression models did not show the best results when using their
default settings. Therefore, we tuned various parameters of them to improve results. In this
case, a parameter named the number of degrees was tuned by PR, SVM and Poly-MLP to
get better outcomes. Again, MLP and Poly-MLP were changed the number of neurons to
determine the best result. In LR and prophet, there are not found any significant parameters
which can improve the findings, hence these classifiers were run in their default settings.
Table 1 shows the hyperparameter tuning of different models at each round in this work.

Table 1. The Hyper Parameters of Best Performing Regression Models in Each Round.

Round Method Hyperparameters Method Hyperparameters

1st Round Prophet default Prophet default
2nd Round SVR degree = 5 SVR degree = 5
3rd Round PR degree = 4 Poly-MLP degree = 2, neuron = 100
4th Round PR degree = 3 Poly-MLP degree = 1, neuron = 25,13,5
5th Round Prophet default Prophet default
6th Round Prophet default Prophet default
7th Round Prophet default Prophet default
8th Round Prophet default Prophet default
9th Round Prophet default Prophet default
10th Round Prophet default Prophet default
31st Round Prophet default Prophet default
32nd Round Prophet default Prophet default
33rd Round Prophet default Prophet default
34th Round Prophet default Prophet default
35th Round Prophet default Prophet default

2.3. Cloud Based Services

In this work, we implemented different cloud services to manipulate individual tasks
of this web tool. Firstly, the colab notebooks run on Google cloud server that can leverage
the power of Google hardware including GPUs and TPUs regardless of the local machine
power. These forecasting graphs were then deployed using the plotly Chart Studio cloud
service and host it into our local cloud server in the web portal.

2.4. Evaluation Metrics

In regression analysis, the root mean square error (RMSE) is the most widely used
evaluation metric for assessing individual regression models. Other metrics, such as Mean
Absolute Error (MAE) and R2-Squared, are employed along with RMSE. In this work,
a brief description and computation criteria for these are given as below.
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2.4.1. Root Mean Square Error (RMSE)

Root mean square error (RMSE) is a quadratic scoring rule that manipulates the
average magnitude of inaccuracy. It processes how actual data points focus with the best fit
line and is useful for avoiding unexpected large errors. The associated formula regarding
this error rate for n instances is given as follow:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (1)

where yi and ŷi specifies the data points and predicted data points respectively.

2.4.2. Mean Absolute Error (MAE)

Mean absolute error (MAE) determines the average magnitude of the error without
considering its direction. It is a linear scoring procedure where all singular differences are
weighted in the same way. The matrix values of MAE is also initiated from 0 to infinity
and fewer scores represent the good performance of learning models.

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (2)

where n, yi and ŷi specifies the number of data points, data points and predicted data
points, respectively.

2.4.3. R-Squared

R-Squared is a statistical parameter used to assess the performance of regression
models. It indicates the strength of the relationship between dependent variables and
models, usually described as percentages. This value defines the degree of spread of data
points around the prediction lines with 100 percent indicating a data perfectly fits the line.
A high R2 value also indicates the goodness-of-fit for the model.

R2 = 1− SSRES
SSTOT

= 1− ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 . (3)

SSRES and SSTOT indicate the sum of regression and total regression error. yi, ŷi and ȳ
denotes as data points, predicted data points and mean values respectively.

2.5. Cloud Based Short Term Forecasting Model: Epidemic Analysis

In this work, we developed a short-term forecasting model that predicts the severity
of COVID-19 using various cloud services. The real-time results of this tool are evaluated
and broadcasted by our developed web application named COVID-19: Updates, Forecasts
and Assistant (https://corona.nstu.edu.bd/, accessed on 21 January 2021). However, it is
not a static analysis where the training and forecasting cases of this tool have been updated
every 24 h. The working pipeline of the short-term forecasting model is given as follows
(see Figure 1):

• Firstly, this web tool gathers the daily cumulative instances of confirmed infection
and fatality cases of Bangladesh at the Github repository of the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University (see Section 2.1).

• In this work, we gathered the daily cumulative instances from 8 March 2020 to 28
November 2020 where the confirmed infection and fatality cases were investigated to
assess the severity of the pandemic in Bangladesh. This whole period was split into
several windows using sliding window techniques [40,41]. The size of sliding window
was fixed (32 days) and each of them is called round. Instances were identified from
the last 25 days where 85% of the data were used as the training set and 15% of the data
were used for the the test set. Thus, it analyzes the confirmed infection and fatality

https://corona.nstu.edu.bd/
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cases and forecasts them for the next couple of days as a requirement. For instance,
we predicted the next 7 days cases from the training period in this work. Besides this,
we considered 35 rounds where the first 10 and last 5 rounds were presented for the
next 7 days of future forecasting.

• The primary web mining model was executed on the Google Colab platform. Raw
data were loaded and applied using different machine learning regression models
which are described in Section 2.2. To explore the best results, parameters need to
be estimated and the highest outcomes from them need to be found [27]. However,
choosing the optimal parameters is a challenging task for any machine learning
procedure. In this work, we manually trained models with various parameters and
identified the best model from them.

• To evaluate the performance of different regression models, we used several metrics
such as MAE, RMSE and R2 values (see details in Section 2.4) for evaluating the test
set and identifying the best model for predicting cumulative confirmed infection and
fatality cases with the lowest error rate.

• All actual and predicted trajectories have been placed in our web tool which is
uploaded by the local cloud host via plotly Chart Studio.

COVID-19 

Dataset

Data Preprocessing
Data Splitting

Machine Learning 
Models

Test Set

Training Set

Model Evaluation

Identify Best Model
Future Forecasting

Figure 1. Cloud based Short-Term Forecasting Model.

3. Experiment Result

Forecasting COVID-19 using limited data is a challenging task when we do not have
enough accurately measured features for consideration. To estimate confirmed infection
and fatality cases, we adopted a simple time series forecasting approach by taking 25 days
of cumulative instances for training and test data and generated 7 days of short-term
forecasts in Bangladesh. Therefore, we used the scikit learn library to build this tool in
Google Colab using python [42].
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3.1. Cloud Based Short Term Forecasting

We considered a total of 35 rounds to predict confirmed infections and fatalities from
the day of detecting the first infectious case in Bangladesh on 12 November 2020. For the
sake of simplicity and brevity, we have shown the first 10 rounds of prediction results
starting from 8 March 2020 until 10 June 2020, which has been followed by the last 5 rounds
of predictions.

3.1.1. 1st Round (8 March 2020–8 April 2020)

In this 1st round, the minimum growth factor was specified as 1 and the maximum
factors were found to be 1.667 and 2 for confirmed infection and fatality cases on March
15 and 21, correspondingly (see Table 2). Among 11 regression models, LR showed the
lowest RMSE, MAE and highest R2 values for confirmed infection and fatality cases among
other models, respectively (see Table 3). Although the trend of this model is negative,
we ignored the confirmed infection of 8–10 March and fatality cases of 8–12 March 2020.
After the training step, we forecasted approximately 58–73 infected cases from 2 to 8 April
(see Figure 2a). In the same period, 6–8 fatalities were estimated (see Figure 3a).

Table 2. The Highest Growth Factors of Confirmed Infected Cases and COVID-19-related Fatalites.

Round Date Highest Factor Date Highest Factor

Infected Cases Fatality Cases

1st Round 15-March 1.6670 21-March 2.0000
2nd Round 16-March 1.6000 21-March 2.0000
3rd Round 9-April 1.5138 23-March 1.5000
4th Round 9-April 1.5138 7-April 1.4167
5th Round 9-April 1.5138 7-April 1.4167
6th Round 13-April 1.2930 17-April 1.2500
7th Round 20-April 1.2003 20-April 1.1099
8th Round 29-April 1.0992 13-May 1.0760
9th Round 5-May 1.0775 13-May 1.0760
10th Round 18-May 1.0772 13-May 1.0760
31st Round 07-October 1.0064 14-October 1.0044
32nd Round 12-October 1.0061 14-October 1.0044
33th Round 05-November 1.0044 29-October 1.0054
34th Round 17-November 1.0051 17-November 1.0063
35th Round 19-November 1.0054 17-November 1.0063

3.1.2. 2nd Round (15 March 2020–15 April 2020)

In this round, the regression models were optimized by tuning individual parameters.
Moreover, SVR showed the lowest RMSE, MAE and highest R2 values for confirmed
infection and fatality cases (see Table 3). In this work, SVR used a polynomial kernel and
its number of degrees was 5 for both of these cases. The highest growth factor for death
cases (2) was larger than the confirmed infection cases (1.6) in this round (see Table 2). It
initiated training with 5 infectious and 0 fatality cases on 15 March up to 5 April 2020.
In the 7 days forecasting interval, it estimated 247–672 confirmed infections (see Figure 2b)
and 20–57 fatality cases from 9 to 15 April 2020 (see Figure 3b).
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Table 3. Experimental Results for Both Infected and Fatality Cases from Different Regression Models.

Round Method RMSE MAE R2 Method RMSE MAE R2

Infected Cases Fatality Cases

1st Round LR 1.0950 1.0489 0.7716 LR 0.2766 0.2500 0.5921
2nd Round SVR 19.5371 17.4783 0.8372 SVR 2.0445 1.6569 0.7710
3rd Round PR 13.2350 10.4837 0.9966 Poly-MLP 0.9218 0.8057 0.9777
4th Round Poly-MLP 53.2986 43.5731 0.9882 MLP 0.7134 0.6773 0.9956
5th Round Prophet 43.9722 39.9999 0.9951 Prophet 1.0051 0.8383 0.9758
6th Round Prophet 13.0955 10.9061 0.9998 Prophet 0.5113 0.4621 0.9751
7th Round Prophet 38.8117 32.6514 0.9989 Prophet 1.7241 1.5615 0.9870
8th Round Prophet 59.5438 56.5706 0.9987 Prophet 1.8866 1.6031 0.9925
9th Round Prophet 125.7346 105.7328 0.9946 Prophet 0.8403 0.5109 0.9988
10th Round Prophet 151.9238 132.1162 0.9974 Prophet 2.8667 2.5618 0.9939
31th Round Prophet 7.13 ×10−11 5.82×10−11 1.0000 Prophet 9.25×10−12 8.41×10−12 1.0000
32th Round Prophet 2.10×10−10 1.46×10−10 1.0000 Prophet 4.55×10−13 2.27×10−13 1.0000
33th Round Prophet 7.70×10−11 7.28×10−10 1.0000 Prophet 4.55×10−13 2.27×10−13 1.0000
34th Round Prophet 2.93×10−09 2.49×10−09 1.0000 Prophet 1.36×10−12 1.14×10−12 1.0000
35th Round Prophet 11.7169 9.0584 0.8144 Prophet 213.5905 201.4884 0.9923

3.1.3. 3rd Round (22 March 2020–22 April 2020)

The number of COVID-19 infected individuals were increasing rapidly and PR spec-
ified the lowest RMSE, MAE and highest R2 values for confirmed infection cases (the
number of degree = 4) and Poly-MLP showed the lowest RMSE, MAE and highest R2

values for fatality cases where the number of degree was 2 and was trained using 100
neurons in this round (see Table 3). In addition, the highest growth factor was 1.5 for
confirmed infection and fatality cases correspondingly (see Table 2). In the beginning,
this round contained 27 confirmed infectious cases and 2 fatalities on March 22. After the
training stage, it predicted almost 1491–4055 confirmed infectious cases (see Figure 2c) and
55–94 fatalities from 16 to 22 April 2020 (see Figure 3c).

3.1.4. 4th Round (29 March 2020–29 April 2020)

In the 4th round, Poly-MLP played the best performance (e.g., number of degrees = 2
and neurons = 100) for confirmed infectious cases and MLP showed the best result (e.g., 25,
13 and 5 neurons) for fatality cases among all other regression models, which are shown in
Table 3. In this situation, the growth factor of confirmed infected cases (1.5) increased more
than fatality cases (1.4) (see Table 2). Again, it started its training steps on March 29 with 48
confirmed and 5 fatalities. It estimated nearly 4272–8093 confirmed cases (see Figure 2d)
and 130–178 death cases (see Figure 3d) from 23 to 29 April 2020.

3.1.5. 5th Round (5 April 2020–6 May 2020)

In the 5th round, it showed 1.5 highest confirmed infection and 1.4 highest death
factors (see Table 2). Previously, it started its training process on April 5 with 88 infected and
9 death cases. After implementing different regression models, prophet showed the lowest
RMSE, MAE and highest R2 values (see Table 3) and predicted 7431–10,270 confirmed
infection cases (see Figure 2e) and 169–203 fatalities (see Figure 3e) from 30 April to 6 May
2020 in this prediction interval.

3.1.6. 6th Round (12 April 2020–13 May 2020)

As indicated in Table 2, the growth factor of infected cases (1.29) was increased by
more than the fatality factor (1.25) in the 6th round. The training stages of this analysis
were initiated with 621 infected and 34 fatality cases on 12 April 2020. We therefore trained
a cumulative sequence of 25 days cases with regression models where prophet showed the
lowest RMSE, MAE, and highest R2 values (see Table 3) for the test set. It estimated almost
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12,365–16,602 confirmed cases (see Figure 2f) and 191–211 fatality cases (see Figure 3f) from
7 to 13 May 2020.

3.1.7. 7th Round (19 April 2020–20 May 2020)

To forecast cumulative cases more accurately, training was initiated with 2456 con-
firmed infections and 91 fatality cases on April 29 when the highest growth rate was 1.2 for
confirmed infection and 1.1 for fatality cases (see Table 2). Among all regression models,
prophet showed the best results which are presented in Table 3. To forecast the next 7 days’
cases, it estimated approximately 18,579–24,182 confirmed infections (see Figure 2g) and
276–345 fatality cases (see Figure 3g) from 14 to 20 May 2020.

3.1.8. 8th Round (26 April 2020–7 May 2020)

In the 8th round, the highest growth factors of confirmed infection and fatality cases
were generated as 1.10 and 1.08 on 29 April and 13 May, respectively (see Table 2). At the
initial stage, it contained 5416 confirmed infected and 145 fatality cases on 26 April and
took the required instances sequentially for training. Again, prophet showed the lowest
RMSE, MAE and highest R2 values compared to other regression models (see Table 3).
Hence, it predicted more accurately 27,683–35,368 confirmed infected (see Figure 2h) and
402–508 fatality cases (see Figure 3h) on 21 to 27 May 2020, respectively.

3.1.9. 9th Round (3 May 2020–3 June 2020)

The 9th round was started with 9455 confirmed infected and 177 fatality cases where its
highest growth factor was 1.08 for infection and fatality cases on 5 and 13 May, respectively
(see Table 2). After analyzing the cumulative COVID-19 cases with regression models,
prophet showed the best performance in this round (see Table 3). Based on this analysis, it
estimated 40,149–50,011 confirmed infected (see Figure 2i) and 568–706 fatality cases (see
Figure 3i) from 28 May and 3 June 2020.

3.1.10. 10th Round (10 May 2020–10 June 2020)

The 10th round was begun with 14,657 confirmed infected and 228 fatality cases,
including its highest growth factor being 1.07 for confirmed infected and 1.08 for fatality
cases (see Table 2). Prophet showed the best performance at forecasting cumulative cases
in this round (see Table 3). Moreover, it predicted 57,380–72,367 confirmed infections (see
Figure 2j) and 773–964 fatality cases (see Figure 3j) from 4 to 10 June 2020.

3.1.11. 31st Round (4 October 2020–4 November 2020)

In the 31st round the highest growth factors of confirmed infection and fatality cases
were provided as 1.006 and 1.004 on 7 and 14 October 2020 (see Table 2) like previous
round. The training stages of this analysis started with 368,690 infected and 5348 fatality
cases on 4 October 2020. We therefore analyzed a cumulative sequence of 25 days of cases
using regression models; prophet showed the lowest RMSE, MAE and highest R2 values (see
Table 3) for the test set in this work. It forecasted almost 404,236–412,112 confirmed cases (see
Figure 2k) and 5885–6014 fatality cases (see Figure 3k) from 29 October to 4 November 2020.

3.1.12. 32nd Round (11 October 2020–11 November 2020)

Finally, the 32nd round was initiated to train instances with 378,266 confirmed infected
and 5524 fatality cases along with its highest growth factor being 1.006 for confirmed infec-
tion and 1.004 for fatality cases (see Table 2). Again, prophet showed the best performance
to predict cumulated cases in this round (see Table 3). Moreover, it estimated 415,485–
424,678 confirmed infections (see Figure 2l) and 6028–6157 fatality cases (see Figure 3l)
from 5 to 11 November 2020.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)
Figure 2. Future Forecasting of Confirmed Cases estimating (a) 1st round by LR (b) 2nd round by SVM (c) 3rd round by PR
(d) 4th round by Poly-MLP including (e) 5th (f) 6th (g) 7th (h) 8th (i) 9th (j) 10th (k) 31th (l) 32th (m) 33th (n) 34th round by
Prophet Algorithm and (o) 35th round by PR.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3. Future Forecasting of Death Cases estimating (a) 1st round by LR (b) 2nd round by SVM (c) 3rd round by
Poly-MLP (d) 4th round by MLP including (e) 5th (f) 6th (g) 7th (h) 8th (i) 9th (j) 10th (k) 31th (l) 32th (m) 33th (n) 34th
round by Prophet Algorithm and (o) 35th round by PR.
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3.1.13. 33rd Round (18 October 2020–18 November 2020)

In the 33rd round, there were initiated 388,569 confirmed infected and 5660 fatality
cases where its highest growth factor was 1.004 for confirmed infected and 1.004 for fatality
cases (see Table 2). Likewise, prophet provided the maximum results to predict cumulated
cases (see Table 3). Moreover, 429,072–437,725 confirmed infections (see Figure 2m) and
6144–6252 fatality cases (see Figure 3m) were estimated from 12 to 18 November 2020.

3.1.14. 34th Round (25 October 2020–25 November 2020)

The 34th round was initiated with 398,815 confirmed infected and 5803 fatality cases
along with the highest growth factor was 1.005 for confirmed infected and 1.006 for fatality
cases (see Table 2). After investigating them, prophet provided the highest outcomes to
predict cumulated cases (see Table 3). Moreover, 441,374–454,618 confirmed infections
(see Figure 2n) and 6293–6430 fatality cases (see Figure 3n) were estimated from 19 to 25
November 2020.

3.1.15. 35th Round (1 November 2020–28 November 2020)

In Table 2, the growth factor for infected cases (1.005) was increased more than the
fatality factor (1.006) in the 35th round. Initially, it represented 409,252 confirmed infected
and 5941 fatality cases on 1 November, then training instances were gathered sequentially.
Consequently, PR showed the lowest RMSE, MAE and highest R2 values compared to other
regression models (see Table 3). Hence, it predicted 447,928–462,881 confirmed infected
(see Figure 2o) and 6408–6715 fatality cases more precisely (see Figure 3o) on 22 to 28
November 2020 respectively.

4. Discussion

In this work, we constructed a short-term forecasting model that trains in a cloud
server using data on the cumulative number of reported cases for the COVID-19 pandemic
in Bangladesh. It forecasted the infection and fatality cases for the following couple of days
quickly and accurately. There have previously been some attempts at this type of statistical
modeling [43] around COVID-19 in Bangladesh that have shown some success. However,
our proposed improved model employs a comprehensive machine learning prediction
model to investigate cumulative cases which yielded a very good fit to the epidemic curves
when it conducts its evaluations using RMSE, MAE and R2 values.

It is notable that individual rounds provide trends of the epidemic curve, which are
observed in this analysis. In the 1st round, LR showed the best result because the cumu-
lative cases were not much increased during this period. However, the trend or growth
factor increased markedly from the 1st to the 4th round, showed the best performance
for SVM, PR, MLP, or Poly-MLP using hyperparameter tuning. Through the rest of the
rounds (for the 5th, 6th, 7th, 8th, 9th and 10th), we investigated the results of machine
learning regression models, and found that the prophet model gave the best results for
both infections and mortalities. From the 5th to the 9th rounds, it indicated the increased
rate of growth factor for confirmed infection than death cases. However, their differences
are not large. Nevertheless, the growth rate of fatalities is increased compared to the
confirmed infection rate in the 10th round. However, the growth factor did not vary more,
hence prophet showed the best results consistently from the 5th to the 10th round. Besides,
Table 4 shows the average execution times of different methods where prophet algorithms
takes more time than others. The runtime of the prophet algorithm is also higher from
the 31st to the 34th round, respectively. Nevertheless, this algorithm generated a low
error rate in forecasting associated cases, hence it has been taken as the best model in
most of the rounds. To justify the consistency of these results, we split primary dataset
into 75:25 ratio where 75% instances were trained and 25% records were used as test sets.
Similar models were then implemented into these datasets and manipulated the error rates
(see Table 5). Without the 1st and 4th rounds, all regression models showed consistent
results as well. Numerous research groups have attempted to forecast infectious cases,
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such as [6,44,45], but did not verify their models using several intervals or rounds. Some of
these [25] did not evaluate their work using appropriate evaluation metrics. Our model is
implemented on a cloud based web portal (https://corona.nstu.edu.bd/, accessed on 21
January 2021) and dynamically predicted confirmed both infection and fatality cases with
high consistency [46].

Table 4. Execution Time of Individual Rounds.

Round LR PR SVR MLP Poly-MLP Prophet

1st Round 0.467 0.603 0.666 1.673 1.314 0.450
2nd Round 0.468 0.431 0.483 1.201 1.201 0.433
3rd Round 0.452 0.444 0.451 3.557 2.609 4.012
4th Round 0.459 0.454 0.457 6.173 7.149 4.189
5th Round 0.471 0.432 0.465 6.842 8.127 4.613
6th Round 0.724 0.457 0.466 11.836 9.134 4.560
7th Round 0.522 0.456 0.437 13.691 10.809 4.501
8th Round 0.466 0.703 0.470 12.593 12.404 4.693
9th Round 0.445 0.460 0.476 8.051 10.579 4.520
10th Round 0.471 0.458 0.452 8.013 8.801 4.737
31st Round 0.515 0.656 0.665 8.532 7.510 35.499
32nd Round 0.471 0.483 0.459 8.657 8.002 30.286
33rd Round 0.493 0.723 0.512 8.764 7.590 23.994
34th Round 0.485 0.475 0.751 8.727 7.762 28.945
35th Round 0.500 0.463 0.477 9.043 7.848 0.459

In previous studies of diseases, epidemiological models require a number of parame-
ters related to social mixing to fit models well. However, contact tracing has found this is
non-stationary through time due to unreliable social interaction parameters. In SIR or SEIR,
social mixing alters the number of susceptible individuals and the reproductive number
R0. If R0 is greater than 1, then it will spread. When it is less than 1, then the epidemic
may decrease and eventually disappear. In addition, it is clear that such models must be
adapted to the local situation based on insights into susceptibility to confirmed infection.
For Bangladesh, conventional epidemiological models face substantial limits to obtaining
a generalized prediction ability and robustness. Therefore, machine learning has gained
a great deal of attention, resulting in numerous attempts to develop a disease outbreak
prediction tool that shows high generalization and reliability. These models can empower
individuals and organisations to estimate infection and fatality cases in the near future and
take rapid decisions about public health measures that counter it.

Implications

This application likely has a useful impact on people, organizations and society. In the
pandemic situation, people are suffering from financial crisis and cannot engage in their
work due to lockdowns that mean they cannot go outside of their home. This has severe
economic effects on individuals and also affects their psychological condition. Various
organizations have reduced their activities due to this persistent pandemic which in turn
hampered their business and led to large financial losses. In such scenarios, knowing
the pandemic condition and the probable number of cases in the near future becomes
important. The proposed short-term forecasting model is more useful for giving a perfect
prediction about how many people will be infected or die. It gives real-time forecasting
by training recent instances. Therefore, individuals can be updated about the pandemic
situation and can make appropriate plans on how to plan their work and activities. Hence,
organizations are interested in minimizing their losses by receiving COVID-19 updates
from models such as this.

https://corona.nstu.edu.bd/
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Table 5. Verification of Experimental Results for Infected and Fatality Cases.

Round Method RMSE MAE R2 Method RMSE MAE R2

Confirmed Cases Death Cases

1st Round Prophet 3.5808 2.7740 −0.5786 Prophet 0.5837 0.4524 −1.7821
2nd Round SVR 24.8737 22.8440 0.8043 SVR 2.4589 2.2902 0.7660
3rd Round PR 55.1576 49.7568 0.9676 Poly-MLP 2.3675 2.1407 0.9394
4th Round PR 63.7025 57.3959 0.9928 Poly-MLP 5.8317 4.9376 0.9072
5th Round Prophet 36.9007 31.2751 0.9985 Prophet 1.3350 1.0758 0.9877
6th Round Prophet 10.9600 9.0326 0.9999 Prophet 0.7154 0.6148 0.9870
7th Round Prophet 38.8742 34.5744 0.9995 Prophet 1.5454 1.4078 0.9956
8th Round Prophet 51.7929 46.3280 0.9996 Prophet 1.4812 1.1691 0.9982
9th Round Prophet 117.2432 98.1062 0.9987 Prophet 0.8894 0.6813 0.9996
10th Round Prophet 155.8378 131.5769 0.9990 Prophet 2.2835 1.8957 0.9987
31st Round Prophet 6.22×10−11 4.99×10−11 1.0000 Prophet 9.27×10−12 8.71×10−12 1.0000
32nd Round Prophet 1.89×10−10 1.50×10−10 1.0000 Prophet 4.86×10−13 2.60×10−13 1.0000
33rd Round Prophet 7.93×10−11 7.48×10−11 1.0000 Prophet 4.86×10−13 2.60×10−13 1.0000
34th Round Prophet 3.11×10−09 2.63×10−09 1.0000 Prophet 1.33×10−12 1.17×10−12 1.0000
35th Round Prophet 4.40×10−11 3.33×10−11 1.0000 Prophet 8.21×10−11 7.04×10−11 1.0000

5. Conclusions and Future Work

Importantly, confirmed infections and fatality cases were defined, and influenced the
testing capacity of Bangladesh. Again, it indicated other related factors such as lockdown,
curfew, quarantine, and suspect infected zones according to the reporting date. During this
pandemic period, the prediction shows the number of confirmed infections and fatality
cases were rising rapidly in Bangladesh. Furthermore, there were notable delays in identify-
ing and isolating cases due to the magnitude of the pandemic. Our cloud-based short-term
forecasting model can aid real-time decision making that will be needed to prepare , such
as anticipating the amount of equipment, beds for treatment in the hospital, and other
medical resources that will be needed. In addition, the cloud server manipulates time-series
instances and forecasts that are easy and rapid. We evaluated time-series COVID-19 dataset
using different regression models and the prophet algorithm shows the lowest error rate in
most of the rounds. Thus, prophet can be estimated as a more stable regression model than
others. However, there are some limitations; for instance, it does not provide functions
such as region or person-to-person contact tracing, which is more useful for identifying
affected cases in Bangladesh. In the future, these issues will be addressed and a more
appropriate model to forecast cumulative instances will be prepared. We will utilize more
machine learning techniques to estimate missing information about exposed and infected
persons and fit it to conventional epidemiological models.

Author Contributions: Conceptualization, M.S.S. and K.C.H.; methodology and software, M.S.S.;
validation and formal analysis, M.M., M.S.K. and S.M.S.I.; resources, M.S.S.; data curation, M.S.S.;
writing—original draft preparation, M.S.S., K.C.H. writing—review and editing, S.A.A., J.M.W.Q.
and M.A.M.; visualization, M.S.S.; supervision, M.A.M.; funding acquisition, S.A.A.All authors have
contributed to, seen and approved the final manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: No external funding has been received.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The data used in this paper is available in the references in Section 2.1.

Conflicts of Interest: The authors declare that the research was conducted without any commercial
or financial relationships that could be construed as a potential conflict of interest.



Appl. Sci. 2021, 11, 4266 15 of 18

Appendix A

Appendix A.1. Linear Regression (LR)

Linear Regression (LR) [6,25,47] is the most functional regression models the given
data with a straight line. In 2-dimensional space each observation of this algorithm de-
pends on two random variables namely the predictor (independent variable) and response
(proposed dependent variable) variable. Hence, the following equation can represent how
the independent variable x relates to the dependent variable y.

y = β0 + β1x + ε (A1)

where ε represents the error terms which account for the variability between x and y.
Further to this, β0 and β1 demonstrates as intercepts and slope in this model. The goal
of this algorithm is to explore the best values for β0, β1 and fit with the regression line
well. Linear regression can be extended to multiple regression methods that involve the
modelling of dependent variables.

Appendix A.2. Polynomial Regression (PR)

Polynomial Regression [29] is an extension of the idea of linear regression which rep-
resents curvilinear relationship between the dependent and independent values. The data
points have been transformed into polynomials and implemented linear regression to fit
into parameters. In this model, the relationship between dependent y and independent x
can be modelled by the following equation:

Y = θ0 + θ1x + θ2x2 + θ3x3 + ....... + θnxn (A2)

where θ0 is called intercept and θ1, θ2, ......., θn represent the weights or partial coefficients
of the polynomial components. In addition, n is the number of degrees of polynomial.
Choosing the degree is a challenging task. If the values that are too low are applied, they
are not fitted well by the algorithm, while if the degrees of polynomial are too high they
will be overfitted to the data.

Appendix A.3. Support Vector Machine-Regression (SVR)

Support vector machine is a supervised algorithm that can be used to the both re-
gression and classification problem. Again, it is used in both linear and non-linear data
and worked well high dimensional data [48]. In regression analysis, it transforms in-
put data into desired form using a set of function called kernel [6,49]. Consequently,
the values of input vector is mapped into high dimensional feature space using non-linear

function [50]. Suppose, we consider S = xi, yi where xi =
(

x(1)i , . . . , x(n)i

)T
∈ Rn and

yi ∈ {+1,−1}. Therefore, the polynomial kernel is considered as a kernel in SVR which is
defined as follows:

K(xi, xj) =
(

γxi
>xj + p

)d
(A3)

where xi and xj is the input vector, d the number of degree, γ the kernel coefficient,
and p ≥ 0 is a unrestricted parameter exchanging the effect of higher-order versus lower-
order terms. Using this kernel, SVR shows its result as follows:

Y(x) = sgn

(
n

∑
i=0

yiαiK(x, xi) + b

)
(A4)

Hence, αi is logrange multipliers.

Appendix A.4. Multi-Layer Perception (MLP)

MLP [25,51] is habitually used to estimate functions like regression. It is one kind of
feed forward neural network that is implemented ambiguously. The input-output pairs
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(xp, yp) where xp =
(
xp1, xp2, . . . , xpn

)
and yp are indicated as input and output vector

respectively. The sigmoid function is commonly used as the transfer function in hidden
and output nodes respectively. However, the output values from jth hidden node (opj) are
manipulated using fs sigmoid function, θj the bias and wij associated weight of ith input
as follows:

opj = fs

(
n

∑
i=1

wijxpi + θj

)
(A5)

Therefore, the output value (op) is calculated by:

op = fs

(
k

∑
j=1

wjopj + θ

)
(A6)

where wj is the associated weight of opj and θ is the bias value in the output layer.

Appendix A.5. Polynomial Multi-Layer Perception (Poly-MLP)

In Poly-MLP, we transformed training features into polynomial form and apply MLP
in it. Therefore, this integration is worked better to forecast time series data in different
perspectives. Likewise PR and MLP, it combat both of the challenges to choose the number
of degrees and neural units as well as predict more accurate cumulative cases as well.

Appendix A.6. Prophet Model

Prophet is a time series forecasting technique that uses a decomposed model with three
components for instance, trend, seasonality, and holidays [52]. It originates on an additive
model where non-linear trends are fit with yearly, weekly, daily seasonality, and holiday
effects. The related equation is represented as follows:

y(t) = g(t) + s(t) + h(t) + εt (A7)

where g(t) indicates the trend function of the non-periodic deviations in the time series.
Later, s(t) shows periodic changes and h(t) specifies the consequence of holidays that
happens at irregular moments in one or more days. It works well in time series data that
contains strong seasonal effects of historical data. Prophet is also robust to the missing
values, and handles outliers and move trends [45].
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