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Abstract: We present a detailed description of the experiment realizing for the first time a protective
measurement, a novel measurement protocol which combines weak interactions with a “protection
mechanism” preserving the measured state coherence during the whole measurement process. Fur-
thermore, protective measurement allows finding the expectation value of an observable, i.e., an
inherently statistical quantity, by measuring a single particle, without the need for any statistics. This
peculiar property, in sharp contrast to the framework of traditional (projective) quantum measure-
ment, might constitute a groundbreaking advance for several quantum technology related fields.

Keywords: protective measurements; quantum optics; quantum measurements

1. Introduction

Measurement in quantum mechanics is usually described through projective measure-
ments (PJs), represented by a projector onto physical states within a given Hilbert space.
This kind of measurement induces the wavefunction collapse onto a specific eigenstate of
the observable, corresponding to the observed eigenvalue. In contrast with this measure-
ment paradigm, in weak measurements, introduced by Aharonov, Albert and Vaidman [1],
the coupling between the pointer and the quantum state is weak, introducing only a par-
tial decoherence of the wavefunction, at the price of acquiring only partial information
about the state. Examples of weak-coupling-based schemes are measurements of weak
values [1,2] and protective measurements (PMs) [3–6].

In general, a common property for all quantum measurements is that the measure-
ment procedure is invasive, inducing unavoidable decoherence in the initial state of the
system. Even in weak value measurements [1,2,7–40], the coupling between the system
and the measuring device causes a small perturbation to the system state. In contrast to
other quantum measurement paradigms, a PM is able to preserve the coherence of the
quantum state during the whole measurement process, thanks to a protection mechanism
or alternatively, via the adiabatic theorem [3]. This difference with respect to traditional
measurement protocols allows the PM to extract the expectation value of an observable
(thus far considered an inherently statistical quantity, only obtainable by means of re-
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peatedly measuring an ensemble of identically prepared systems) by measuring a single
quantum system.

Hence, PM is a novel measurement paradigm presenting significant elements of inter-
est, both as a tool for quantum metrology and for understanding the very foundations of
quantum measurement, and more generally, of quantum mechanics itself, e.g., the possibil-
ity of measuring a stationary wavefunction |ψ〉 [3]. For this reason, on the one hand, PMs
add significant elements to the debate about the ontic or epistemic nature of the wavefunc-
tion, a highly debated topic in the scientific community [4–6,41–56], and on the other hand,
they allow overcoming the quantum Cramér–Rao bound in specific protocols [57,58].

In this work, we extensively illustrate the scheme, methodology and obtained results
related to the first experimental implementation of PM [57], demonstrating its capability to
preserve the system state coherence, and at the same time, extract the expectation value of
an observable even from a single measurement event.

Theoretical Framework

In the framework of quantum mechanics, given a quantum state |ψ〉, we define the
quantum expectation value of an observable A = ∑i ai|φi〉〈φi| (with ∑i |φi〉〈φi| = I) as the
average of its eigenvalues ai weighted on their respective probabilities pi:

〈A〉 = 〈ψ|A|ψ〉 = ∑
i

piai
(

pi = |〈ψ|φi〉|2
)

(1)

Similarly to its classical counterpart, 〈A〉 is understood as a statistical property.
PM can be modeled as a standard von Neumann measurement [59] in which we

couple the observable of interest A with a pointer P with a long and adiabatic interaction
instead of the usual instantaneous one. Such interactions are mediated by the coupling
g(t), which allows us to write the interaction Hamiltonian as

Hint = g(t)A⊗ P (2)

where the interaction intensity is g(t) = g/T for a time interval T and smoothly goes to
zero before and after. If the coupling g(t) is smooth enough, we obtain the adiabatic limit,
in which the state of the system |ψ〉 does not change, thanks to the protection. In the limit
T → ∞ and for bounded P, one hasHint → 0 while the state |ψ〉 remains unchanged thanks
to the preserving action of the protection mechanism. We can calculate, then, the shift of
the energy of the eigenstate via first-order perturbation theory [3]:

δE ' 〈Hint〉 = g
〈A〉P

T
(3)

from which we can calculate the time evolution U associated toHint in the limit T → ∞:

U ' exp
(
− i

h̄
g〈A〉P

)
(4)

resulting in a pointer wavefunction shift proportional to the expectation value 〈A〉.
A second protection scheme involves the so-called active protection, based on the

quantum Zeno effect [60], which consists of a series of repeated projections onto the initial
state [61–80] during the interaction described by the Hamiltonian in Equation (2), but in
the non-adiabatic limit. In our experiment, we will focus on this quantum Zeno-type
protection [6].

From a quantum informational perspective, our experiment corresponds to a protocol
in which Alice produces a quantum state, which she transmits to Bob together with the
proper protection, implemented by Bob as a black box when realizing the PM.

The PM framework can be formalized with an equivalent description consisting of
a series of K instantaneous weak interactions, described by a (weak) coupling constant
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g =
∫ T

t=0 g(t)dt. Between two subsequent interactions, the active protection occurs, induced
by the projector Πψ = |ψ〉〈ψ|. It is straightforward to show that, in the weak interaction
approximation (g � 1), each of the K weak interaction/protection blocks evolves the
system in the following way:

|ψ〉〈ψ|U|ψ〉 ⊗ |ϕ(x)〉 = |ψ〉〈ψ|exp
(
− i

h̄
gA⊗ P

)
|ψ〉 ⊗ |ϕ(x)〉 ≈ |ψ〉 ⊗

∣∣ϕ(x− g〈Â〉)
〉

(5)

where |ϕ(x)〉 is the pointer initial wavefunction.
From Equation (5), one can see how the PM induces a shift in the meter wavefunction,

which is directly proportional to the expectation value 〈A〉. PMs, then, allow us to directly
estimate the expectation value 〈A〉 for each single particle undergoing them, in sharp
contrast with the concept of 〈A〉 being only a statistical quantity.

2. Experimental Implementation

In our experiment, we implement two different methods to measure the expectation
value of the polarization operator A = |H〉〈H| − |V〉〈V| (with H and V being the horizontal
and vertical polarization, respectively): the aforementioned PM, able to estimate 〈A〉 with
a single reading of the measuring device, and a traditional PJ, in which the expectation
value is extracted from the statistics obtained from repeated measurements on an ensemble
of identically prepared particles. Both measurements can be described as a von Neumann
protocol in which we couple the polarization of an incoming photon, prepared in the
linearly polarized state |ψ〉 = cos(θ)|H〉+ sin(θ)|V〉, with its transverse momentum P:

U = exp
(
− i

h̄
gΠH ⊗ P

)
(6)

where ΠH = |H〉〈H| is the projector onto the H polarization. This interaction causes a shift
of the horizontally polarized component of the wavefunction along an axis orthogonal to
the photon propagation direction. This is mathematically equivalent to a von Neumann
coupling of strength g/2 between the polarization A and the momentum P, so from here
we will consider a rescaling of our system in order to describe the latter scenario.

The initial spatial wavefunction of the photon is described by a normal distribution:

φ0(x) = 〈x|φ0〉 =
1

4√2πσ2
exp

(
− (x− x0)

2

4σ2

)
, (7)

centered at x0 and with standard deviation σ.
For strong interactions (i.e., g � 1), the two polarization components will be com-

pletely separated (Figure 1a). Hence, the expectation value can be evaluated as

〈A〉 = NH − NV
NH + NV

(8)

where NH(V) is the number of count events obtained for the polarization H(V). This is the
case of projective measurement [81].

PMs, instead, in our scheme, consist of a series of weak von Neumann couplings
(g � 1) alternating with a protection mechanism, i.e., a projection Πψ = |ψ〉〈ψ| onto the
initial state |ψ〉. In this case, the photons will fall in a region not corresponding to any
eigenvalue of our polarization observable A, but whose position is directly proportional to
its expectation value (Figure 1b). Thus, the expectation value of the polarization can be
extracted by the formula:

〈A〉 = x− x0

a
(9)

with x0 = xH+xV
2 and a = xH−xV

2 , being xH (xV) the center of the horizontally (vertically)
polarized photon distribution in the PJ framework.
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Figure 1. Theoretical framework (ideal pictorial representation). (a) Projective measurement: the two polarization com-
ponents are completely separated, with the single photons impinging on two regions of the detector corresponding to
the polarization operator eigenvalues A = ±1. The expectation value 〈A〉 is evaluated as the weighted average of the
events, following Equation (8). (b) Protective measurements: all the photons fall in the same region, centered in a position
proportional to the polarization expectation value (see Equation (9)).

Experimental Setup

Both PM and PJ experimental setups (Figure 2a,b, respectively) can be divided into
three parts.

In the first part, single photons are generated by a heralded single-photon source [82,83].
A mode-locked laser with a second harmonic at 398 nm and a 76 MHz repetition rate pumps
a 10× 10× 5 mm LiIO3 non-linear crystal, producing signal–idler photon pairs by exploit-
ing Type-I spontaneous parametric down-conversion (SPDC). The generated idler photons
(920 nm) are filtered by an interference filter (IF) centered at 920 nm and with a FWHM
of 10 nm, coupled to a single-mode fiber(SMF) which addresses them to a Silicon single-
photon avalanche diode (SPAD), heralding the presence of the correlated signal photons
(702 nm). Signal photons are filtered with an IF centered at 702 nm and with a FWHM of
10 nm, fiber-coupled and addressed to the second part of the setup, where the PM takes
place. A Hanbury–Brown and Twiss interferometer allowed us to estimate the quality of
our single-photon emission by evaluating the α parameter [84,85], obtaining a value of
α = 0.13± 0.01 without any background or dark count subtraction, testifying the high
quality of our heralded single-photon source.
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Figure 2. Experimental setups for projective measurement (a), extracting the expectation value of an observable by
measuring an ensemble of identical particles, and protective measurement (b), able to reliably estimate such an expectation
value with just a single detection event. Ti:Sa ML laser: titanium–sapphire mode-locked laser; SHG: second harmonic
generator; SMF: single-mode fiber; SPAD: single-photon avalanche diode; PBS: polarizing beam splitter; HWP: half-
wave plate.
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In the second part, the PM and PJ are performed. The signal photon produced in
the previous stage is decoupled and collimated in a Gaussian spatial mode over a 2 m
length. Then, it is initialized (pre-selected) in the polarization state |ψ〉 by a polarizing
beam splitter (PBS) followed by a half-wave plate (HWP). Finally, in the PJ configuration
(Figure 2a), the photon goes through K = 7 weak interaction units (we chose the number
of units K = 7 from practical considerations approximating the ideal case of large K).
Each unit consists of a first 2 mm-long birefringent calcite crystal with an extraordinary (e)
optical axis lying in the x–z plane, having an angle of π/4 with respect to the z direction,
followed by a second 1.1 mm calcite crystal with the optical e-axis oriented along the
y-axis. The first crystal shifts the horizontally polarized component of the wavefunction
along the transverse direction x, while the second one compensates for the phase and time
decoherence induced by the first crystal. The combined effect of all the seven units allows
for the complete separation of orthogonal polarizations, reproducing the PJ framework. In
the PM scenario (Figure 2b), instead, the protection of the quantum state is implemented,
exploiting the quantum Zeno effect, realized by inserting a polarizing plate after each weak
interaction unit. The polarizing plate realizes the projection Πψ = |ψ〉〈ψ|, projecting the
state outgoing the weak von Neumann interaction onto the same polarization of the initial
state |ψ〉, thus canceling the (small) decoherence induced by the birefringent crystals in
each weak interaction unit.

The final part of each experimental setup is the detection stage: photons are detected
by a 2D spatially resolving single-photon detector prototype, i.e., a two-dimensional array
of 32 × 32 “smart pixels”, each hosting a SPAD with dedicated front–end electronics [86].
The detection of the idler photon (920 nm) by the Si-SPAD on the heralding arm gates the
SPAD array with a 6 ns detection window.

Furthermore, an optional quantum tomography [87,88] apparatus, comprising an
HWP, a quarter-wave plate (QWP) and a polarizer, can be inserted just before the SPAD
array to reconstruct the density matrix of the single-photon state at the end of each mea-
surement procedure.

3. Results

We acquired data sets for three different states: the state |+〉 = 1√
2
(|H〉 + |V〉),

which should be subjected to the maximum decoherence, and the intermediate states∣∣π
8
〉
= cos

(
π
8
)
|H〉+ sin

(
π
8
)
|V〉 and

∣∣∣ 17
60 π

〉
= cos

(
17
60 π

)
|H〉+ sin

(
17
60 π

)
|V〉. Each data set

is composed of multiple acquisitions:

• An acquisition with only the crystals in the optical path and |ψ〉 = |H〉 or |ψ〉 = |V〉,
which allows us to calibrate the system;

• An acquisition without protection (only crystals in the optical path), corresponding to
the traditional PJ scenario;

• An acquisition with both weak interaction and active Zeno-like protection (both
birefringent crystals and polarizers in the optical path), realizing the PM;

• Two acquisitions, one with only the polarizing plates and one with a free optical path,
allowing us to complete the system calibration by evaluating and properly subtracting
unwanted position biases introduced by crystals and polarizing plates.

3.1. Output State Verification

To immediately highlight the difference between PM and PJ, we performed a tomo-
graphic reconstruction of the states at the end of the measurement process.

In the PJ case, we expected that the repeated shifts of the horizontal polarization
component would cause decoherence on ρ̂in = |ψ〉〈ψ|, generating a final state ρ̂dec. In
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contrast, in the PM case, the protection should be able to preserve, in principle, the initial
polarization state ρ̂in, thus we expect a final state ρ̂prot = ρ̂in:

ρ̂in =

(
cos2(θ) − sin(θ) cos(θ)

sin(θ) cos( θ) sin2(θ)

)
(10)

ρ̂dec =

 cos2(θ) − sin(θ) cos(θ) exp
(
− g′

2

(2σ)2

)
sin(θ) cos(θ) exp

(
− g′

2

(2σ)2

)
sin2(θ)

 (11)

where g′ = 〈xH〉 − 〈xV〉 = 11.56± 0.07 px (pixels), as 〈xH(V)〉 is the average position of
photons in the H(V) polarization on the x axis, and σ = 4.17± 0.02 px is the distribution
width obtained by Gaussian fits.

We first computed the distance between the reconstructed states ρrec
PM and ρrec

PJ , respec-

tively, obtained in the PM and PJ case (shown in Figure 3 for the state
∣∣∣ 17

60 π
〉

), and their
theoretical counterparts ρin and ρdec, by evaluating the Fidelity F [89,90] between them
(second and third columns of the Table 1). The high fidelities obtained certify the adherence
of the experimental results to our model, showing that PM indeed preserves the initial state
by the decoherence induced by the birefringent crystals, while this does not happen for PJ.

Then, we compute the distance between the two reconstructed states (fourth column of
Table 1). Again, the low fidelities obtained tell us that, without protection, the decoherence
induced on the initial state by the K = 7 unitary interactions makes the final state totally
incompatible with the one outgoing the PM procedure (and, obviously, with the initial
state itself).

Finally, by analyzing the purity P [89] of the reconstructed states (last two columns of
Table 1), we notice that, as expected, the decoherence reduced the purity of the initial state
ρin in the PJ case, while this does not happen in the PM one. Thus, we proved the PM pro-
tocol’s ability to preserve the coherence of the initial state during the whole measurement
process, a feature in sharp contrast with the traditional quantum measurement paradigms.

Figure 3. Density matrix reconstructions for the state outgoing the measurement process, considering an initial polarization

state
∣∣∣ 17

60 π
〉

: (a) theoretical real part Re[ρin] of the initial state density matrix (Im[ρin] = 0); (b,c), respectively: the

reconstructed real (Re[ρrec
PM]) and imaginary (Im[ρrec

PM]) parts of the density matrix of the single-photon state after the
protective measurement; (d) theoretically expected real part Re[ρdec] of the density matrix of our state at the end of the
projective measurement (Im[ρdec] = 0); and (e,f), respectively: reconstructed real (Re[ρrec

PJ ]) and imaginary (Im[ρrec
PJ ]) parts of

the density matrix of the single-photon state after undergoing the projective measurement.
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Table 1. Comparison between theoretical and reconstructed density matrices. F(ρrec
PM, ρin) and

F(ρrec
PJ , ρdec): fidelities between reconstructed density matrices ρrec

PM(PJ) and their theoretical coun-
terparts ρin(dec) in the PM (PJ) case; F(ρrec

PM, ρrec
PJ ): fidelities between reconstructed protected and

unprotected states; and P(ρrec
PM) and P(ρrec

PJ ): purities of the reconstructed states in the PM and PJ
case, respectively.

State F(ρrec
PM , ρin) F(ρrec

PJ , ρdec) F(ρrec
PM , ρrec

PJ ) P(ρrec
PM) P(ρrec

PJ )

|+〉 0.999 0.998 0.720 0.998 0.540∣∣∣ 17
60 π

〉
0.996 0.999 0.751 0.992 0.520∣∣π

8
〉

0.992 0.999 0.894 0.992 0.789

3.2. Expectation Values

Subsequently, in order to test the predictions of PM regarding the possibility of
extracting the expectation value 〈A〉 even from a single detection event, we evaluated 〈A〉
with both the PM and PJ methods.

Plots in Figure 4a,c,e show the results obtained for the three states in the PJ case. We
can see that the photons accumulate around the two eigenvalues’ positions xH and xV ,
hence, we can statistically find the expectation value as the counts ratio in Equation (8).

Plots in Figure 4b,d,f host, instead, the PM results, in which all the photons accumulate
in a specific position corresponding to x = a〈A〉, in agreement with our expectations. This is
clear evidence that, with PM, each single photon carries information about the expectation
value of its polarization.

The extracted expectation values are reported in Table 2, column 3 for PJ and in
Table 2, column 4 for PM, together with the associated experimental uncertainties (a de-
tailed description of the expectation values and uncertainties analysis can be found in
Appendix A). Within the experimental uncertainties, the expectation values extracted with
the PM method are in good agreement with the ones obtained with the traditional PJ one,
as well as with the theoretical expectations.

In [57], a general comparison was performed between the uncertainties associated
with the PM and PJ protocols (considering the same amount of initial photons), showing
how PM performs better than PJ in terms of precision for almost every initial state.

Table 2. Comparison between the experimental and theoretical expectation values. Experimental
expectation values—〈A〉th: theoretical expectation values; 〈A〉PJ: experimental expectation value with
projective measurements; and 〈A〉PM: experimental expectation value with protective measurements.

State 〈A〉th 〈A〉PJ 〈A〉PM

|+〉 0 −0.03± 0.04 0.012± 0.014∣∣∣ 17
60 π

〉
−0.208 −0.21± 0.02 −0.19± 0.02∣∣π

8
〉

0.707 0.72± 0.02 0.72± 0.02

To further confirm this result, the two plots in Figure 5 show the equivalent of the
distributions in Figure 4a,b for a few detection events. However, for the PM in Figure 5b,
all the counts (except for dark counts) belong to a region centered in the x axis position
corresponding to the expectation value 〈A〉, though the same does not happen for the
PJ in Figure 5a. Henceforth, with PM, one can achieve a sound estimate of the average
polarization value for the state

∣∣∣ 17
60 π

〉
from just the first detection event (yellow pixel in

Figure 5b), obtaining 〈A〉 = −0.3± 0.3, where the uncertainty is estimated from the width
of the initial (Gaussian) spatial photon distribution. This result is in agreement with the
theoretically expected value 〈A〉th = −0.208. On the contrary, it is not possible to do
the same in the PJ case, since the first detection event (yellow pixel in Figure 5a) does
not provide any reliable information about the expectation value of the detected photon
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polarization. This is a final demonstration of the PM capability of extracting the expectation
value even from a single detection event.

Figure 4. Plots of the photon counts distributions obtained with projective (a,c,d) and protective (b,d,f) measurements, for three

different linearly polarized initial states |ψθ〉. (a,b)
∣∣∣ψ 17

60 π

〉
≈ 0.629|H〉+ 0.777|V〉; (c,d)

∣∣∣ψ π
4

〉
≈ 0.707|H〉+ 0.707|V〉; and

(e,f)
∣∣∣ψ π

8

〉
≈ 0.924|H〉+ 0.383|V〉.
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(a) Projective measurement case (14 detection events). (b) Protective measurement (17 detection events).

Figure 5. Few-event photon counts distributions for the input state
∣∣∣ 17

60 π
〉

. In both figures, the first detection event is
marked in yellow. While PJ (a) requires a measurement on an ensemble of identically prepared particles, PM (b) allows
extracting the expectation value of our observable with just a single click. Yellow dashed line: x position corresponding to
the theoretical expectation value of the polarization 〈A〉th = −0.208; red circles: FWHM of the corresponding distributions

for the state
∣∣∣ 17

60 π
〉

reported in Figure 4.

4. Conclusions

Protective measurements represent a novel, groundbreaking measurement paradigm,
which allow preserving the initial coherence of the measured state and extracting the
expectation value of an observable, to date considered as a purely statistical quantity,
even from a single detection event. The presented results demonstrate this unprecedented
capability by exploiting certified single photons. In particular, in this paper, we described
in detail the first experimental implementation of PM, providing the readers with all the
details needed for a full understanding of the experiment and obtained results, as well as of
the related implications for quantum mechanics foundations. We verified that PM preserves
the coherence of the initial state during the whole measurement process, as certified by the
high fidelities between the initially prepared states and the reconstructed ones outgoing
the PM. Furthermore, the ability of PM to extract the expectation value of a quantum
observable from a single (protected) particle is demonstrated by the photon distributions
obtained with this protocol, always centered in a position proportional to the expectation
value of the polarization of the detected photons and allowing to estimate the polarization
expectation values always in agreement with the ones obtained with traditional PJ, all
matching the theoretical expectations within the experimental uncertainties.

These results shed important insight on the very foundations of quantum mechanics,
especially in the long-standing debate about the ontic or epistemic nature of the wave-
function, at the same time paving the way toward new quantum measurement methods
with possible significant application for quantum technologies, and in particular, to quan-
tum metrology [91–93], with the eventual possibility to exceed the quantum Cramér–Rao
bound [94] thanks to the parameter dependence of the measurement procedure [95,96] .
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Appendix A. Expectation Value Analysis

Here, we describe in more detail our analysis of the expectation values in this work.
The first step consists of extracting the centers xH and xV of the photon distributions corre-
sponding to the horizontally and vertically polarized photons (i.e., the points corresponding
to the A eigenvalues ±1), respectively. This can be done by performing a linear regression
of the acquisition for the states |H〉 and |V〉 and averaging over multiple acquisitions.

From the extracted xH and xV , we define the center of our “laboratory system” (i.e.,
the point at 〈A〉 = 0) as

x0 =
xH + xV

2
(A1)

and the distance between the center and one of the two extremes as

a =
xH − xV

2
(A2)

with an associated uncertainty of:

σa = σx0 =

√
σ2

xH
+ σ2

xV

2
(A3)

This allows evaluating the expectation values from both measurement procedures.

Appendix A.1. Projective Measurements

In the PJ case, we find the expectation value as the counts ratio:

〈A〉 =
(NH − N(dark)

H )− (NV − N(dark)
V )

NH + NV − N(dark)
H − N(dark)

V

(A4)

where NV(H) is the number of counts in the region corresponding to the vertical (horizontal)

polarization component and N(dark)
V(H)

is the number of dark and background counts in the
same region, estimated by evaluating the number of counts outside the region of interest of
the detector.

The associated uncertainty is:

σ〈A〉 =

√√√√ 4

∑
k=1

(
∂A
∂Nk

)2
σ2

Nk
(A5)
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with N1 = NV , N2 = NH , N3 = N(dark)
V , N4 = N(dark)

H . We evaluate the uncertainties

on the number of background counts N(dark)
V(H)

by assuming a Poissonian behavior (i.e.,

σ
N(dark)

V(H)

=

√
N(dark)

V(H)
). The uncertainty on the number of photons in the two regions,

instead, is more delicate, as the two distributions belonging to horizontally and vertically
polarized photons are separated, but not completely. For this reason, we evaluate these
uncertainties as

σNH =
√

NH + (cH NH)2 + (cV NV)2 (A6)

σNV =
√

NV + (cH NH)2 + (cV NV)2 (A7)

where the two coefficients cH and xV come from an ad hoc evaluation of the influence of
the distribution tails (small, but still relevant) on the number of photon counts.

Appendix A.2. Protective Measurements

In the PM case, each photon carries information about the expectation value, estimated
as the ratio:

〈A〉 = x− x0

a
(A8)

where x is the position of the photon, corrected by compensating for unwanted deviations
induced by the polarizers and a = g/2. We extract x from every pixel and then average it,
weighting on the number of counts for each pixel. The associated uncertainty is:

σ〈A〉 =

[
σave +

(
1

x′H − x′V
+

〈Â〉
x′H − x′V

)2

σ2
x′H

+

(
1

x′H − x′V
− 〈Â〉

x′H − x′V

)2

σ2
x′V

]1/2

(A9)

where σave indicates the standard deviation of the mean of 〈A〉. The second and third terms
are the uncertainties on the parameters x′H(V) = xH(V) + xpol − xvoid, where xvoid and xpol

are the positions of the beam in the acquisition with a free optical path and with only the
polarizers inserted, respectively. This allows us to compensate for the aforementioned
unwanted polarizer-induced deviations. The variances associated with these parameters
are σ2

x′H(V)
= σ2

xH(V)
+ σ2

xpol
+ σ2

xvoid
.
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