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Abstract: In the context of seismic risk, studying the characteristics of urban soils and of the built
environment means adopting a holistic vision of the city, taking a step forward compared to the
current microzonation approach. Based on this principle, CLARA WebGIS aims to collect, organize,
and disseminate the available information on soils and buildings in the urban area of Matera. The
geodatabase is populated with (i) 488 downloadable geological, geotechnical, and geophysical
surveys; (ii) geological, geomorphological, and seismic homogeneous microzone maps; and (iii) a
new Digital Surface Model. The CLARA WebGIS is the first publicly available database that reports
for the whole urban area the spatial distribution of the fundamental frequencies for soils and the
overlying 4043 buildings, along with probability levels of soil-building resonance. The WebGIS is
aimed at a broad range of end users (local government, engineers, geologists, etc.) as a support to the
implementation of seismic risk mitigation strategies in terms of urban planning, seismic retrofitting,
and management of post-earthquake crises. We recommend that the database be managed by local
administrators, who would also have the task of deciding on future developments and continuous
updating as new data becomes available.

Keywords: seismic risk; WebGIS; seismic resilience; HVNSR; fundamental frequency; soil-building
resonance level; DSM

1. Introduction

There is a current acceleration of the global urbanization phenomenon: it is estimated
that in 2050 about 66% of the world population will reside in cities. In Europe, about
80% of the population lives in urban areas [1]. Italy is characterized by a large number
of medium-sized cities (50,000–200,000 inhabitants) and historical centers of inestimable
historical and architectural value that are highly exposed to catastrophic events (e.g.,
earthquakes, landslides, volcanic eruptions, etc.) and extreme climatic events. Therefore,
with the increase in urbanization there is a significant increase in the demand for smart
technologies for the management of interventions related to the security of the territory
in urban areas [1,2]. The Sendai Framework for Disaster Risk Reduction (UN 2015) [3]
and The Paris Agreement, 2030 Agenda for Sustainable Development [4] contain the
main references and criteria for risk reduction and constitute a general framework under
which it is essential to include national strategies on risk knowledge, assessment, and
prevention. Examples of good practices in the adoption of smart technologies to improve
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environmental sustainability as well as the mobility and safety of citizens are already
present in Europe and Italy in particular [5,6]. Here, administrations have developed
strategies for the introduction and pervasive diffusion of digital technologies in urban
areas (e.g., smart sensors, IoT, cloud computing), transforming cities into open laboratories
and stimulating scientific creativity and technological innovation.

The scientific and technological challenges of the ‘CLARA’ project have, from a Smart
Cities perspective, consisted in (i) developing a systemic approach for the characterization
of the main physical properties of the urban subsoil and overlying built environment
based on the full integration of the most modern, non-invasive, expeditious, and low-
cost geophysical technologies [7–10]; (ii) digital archiving of all geological, geotechnical,
geophysical, and engineering data for the city of Matera, acquired during the project; (iii)
disseminating all the data and results of the project through the active involvement of
public administrations (service oriented approach). WebGIS is one of the most widely
used technologies for the dissemination of open data, for multiple purposes and in varied
contexts, such as tourism, archeology, agriculture, the environment, etc. [11–15]. Aiming at
improving global cooperation and communication with other countries, Shi et al. (2009) [11]
designed a WebGIS system to relate the genetic classification of the soils of China to the
soil taxonomy. Manna et al. (2020) [12] demonstrated how a geospatial decision support
system can assist in the planning and management of olive groves and provide operational
support to stakeholders.

The use of WebGIS technologies has also been widespread for natural risk assessment
and communication [16–19]. With regard to geo-hydrological risk, WebGIS tools have
been used for the analysis and/or the management of the risk deriving from floods or
landslides [20–22], for slope stability analysis [23], and for online mapping of unstable
rock slopes [24]. Salvati et al. (2009) [25] designed and shared a WebGIS to disseminate
information on historical landslides and floods in central Italy. Even in the field of seismic
risk, in which the presented work is inserted, WebGIS and geodatabase technologies have
been used for the development of interactive tools for the definition of seismic hazard
scenarios and risk analysis [26], for the assessment of seismic damage in the seaport of
Gioia Tauro [27], and for choosing the optimal routes in the case of a seismic event [28].
Other authors have published databases to share acceleration recordings of earthquakes in
urban areas of Kalachori (Greece) [29] and the permeability of fault zones and surrounding
protolithic rocks in sites around the world [30]. Although some authors have implemented
and published software systems to store and visualize subsoil data to be used in seismic
microzonation [31], to the best of our knowledge no databases or WebGIS tools relating to
soil-building interaction in urban areas have currently been made public.

The soil-building resonance effect is a well-known and extensively studied phe-
nomenon. It can arise during seismic events when the oscillation frequency of a building is
very close to that of the foundation soil, causing an increase in damage [32–35]. The soil-
building interaction effect for a single/limited number of closed-spaced buildings has been
numerically and experimentally studied [36–39], while for the urban scale as a whole only
numerical simulation approaches have been proposed [33,40–46]. Recently, Agea-Medina
et al. (2020) [47] evaluated the probability of resonance effect in several districts of munici-
palities of Alicante and Elche, while other authors have produced soil-building resonance
level maps based on numerical relations provided by seismic regulations [48,49], and on ex-
tensive collections of experimental data [8]. From a legislative point of view, microzonation
studies focus exclusively on the seismotectonic, lithostratigraphic, and geotechnical aspects
of shallow soil, completely neglecting the presence and role of buildings [8]. Thanks to
seismic microzonation studies, it is possible to know the exact areas susceptible to seismic
amplification and instabilities; however, there is no information about areas of cities where
the soil-building resonance effect could take place during earthquakes.

In this paper, an open tool with the dual function of a geodatabase and disseminative
WebGIS, through which it is possible to visualize and download (i) geological, geotechnical,
and geophysical data; (ii) the spatial distribution of the main resonance frequency for
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urban soils; (iii) the main vibrational frequencies for the 4043 overlying buildings; (iv)
the spatial distribution of the soil–building resonance levels for the urban area of Matera,
which represents the innovative core is presented. Therefore, for the first time, the urban
environment has been seismically characterized as a unicum (urban subsoil and overlying
buildings), and all data are fully usable through CLARA WebGIS. In addition, users can also
rely on a Digital Surface Model (DSM) of the city of Matera and its surroundings, which was
generated with a cross-sensor multi-view approach from a triplet of optical satellite images.
DSMs, which incorporate the natural ground surfaces, buildings, vegetation, and other
objects higher than the underlying topographic surface [50,51], can serve as valuable input
for the characterization of urban structures. In this way, DSMs address the requirement
of municipalities for reliable and up-to-date information for land-use and infrastructure
planning, the creation and continuation of development plans, and the overall monitoring
of changes [52]. The increasing availability of new high-resolution optical spaceborne
sensors allows for the creation of precise DSMs (such as the one included in the CLARA
WebGIS), ensuring low cost, speed of data acquisition and processing, and relaxed logistic
requirements [53]. A detailed presentation of the experimental design and the methodology
adopted to produce the soil-building resonance map and to generate the DSM can be found
in Gallipoli et al. (2020) [8] and Lastilla et al. (2021) [54], respectively.

2. CLARA WebGIS: Data Sources

The CLARA WebGIS, which is accessible at https://smartcities-matera-clara.imaa.cnr.
it/, is populated with two types of data sources: (i) open data made available by public
institutions and (ii) experimental geophysical data about shallow soils and buildings,
collected both in previous geological studies supporting territorial planning and within
the project, organized in 25 layers with specific vector geometries (Table 1). The queries to
the database can be graphically formulated using the hand cursor icon, avoiding the need
to use the SQL language.

Table 1. Characteristics of all objects present in the CLARA WebGIS.

CLARA Vector Geometry # Download

OD Age of construction point 2648 -

OD Typology point 2648 -

OD State of conservation point 2648 -

RSDI Height max point 4522 -

RSDI edifici is polygon 11,802 -

RSDI unità volumetrica (volumetric unit) polygon 25,497 -

ISTAT Sassi area polygon 1 -

ISTAT Census variables polygon 318 -

Calcarenite Sampling Station point 8 *

Down hole point 18 *

HVNSR soil point 117 (10) ** (*) 1

HVNSR buildings point 96 (34) ** (*)

MASW point 8 *

Mechanical Surveys point 234 *

Seismic Refraction Surveys point 7 *

Surface features point 2 -

Geomorphology polygon 301 -

https://smartcities-matera-clara.imaa.cnr.it/
https://smartcities-matera-clara.imaa.cnr.it/
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Table 1. Cont.

CLARA Vector Geometry # Download

Geology polygon 13 -

MOPS polygon 52 -

Building resonance level polygon 4043 -

Building frequency polygon 4043 -

Soil isofrequency map polygon 7652 -

Soil isoamplitude map polygon 7652 -

DSM m (Orthometric Heights) raster - -

DSM blg Height raster - -
1 * and ** indicate pre-existing and new geological/geophysical downloadable data, respectively.

2.1. Open Data

Open data from the following three sources was used: (i) Regional Spatial Data In-
frastructure of the Basilicata Region (RSDI) [55], (ii) OpenData (OD) Matera [56], and
(iii) Italian National Institute of Statistics (ISTAT) [57]. RSDI is the main channel of the
Basilicata Region for disseminating updated territorial information with technical and
thematic cartographic production. OD Matera is a catalogue that allows users to search,
access, download, and preview open data relative to the city of Matera through a single
access point. ISTAT is a public research organization producing official statistics and op-
erating in tandem with the academic and scientific communities. Two shapefiles from
RSDI (original names: ‘edifici_is’ and ‘unità volumetrica’), one from OD Matera portal
(original name: rnc_4326.shp), and two from ISTAT (original names: ‘R17_11_WGS84′ and
‘R17_indicatori_2011_sezioni’) were downloaded and used for CLARA WebGIS. From the
merging of the data contained therein, it was possible to obtain a new shapefile consisting
of 4043 buildings, each with information relating to building typology (Figure 1A; ma-
sonry, reinforced concrete moment-resisting frame buildings, etc.), year of construction
(Figure 1B), use and state of conservation (Figure 1C), and (eaves and maximum) heights
(Figure 1D). ISTAT shapefiles contain a series of census variables, the municipal admin-
istrative limits, and the census sections of the study area, from which the SASSI area has
been excluded (Figure 1).

For the 2648 buildings reported in OD Matera portal, there is a prevalence of reinforced
concrete (~70%) compared to masonry (~27%) (Figure 1A). In general, a good (~51%) and
very good (~42%) state of conservation is reported for residential buildings, with few
buildings in poor and mediocre condition (~7%), which often corresponds to those of older
construction (as of last release, 14 February 2018) (Figure 1B,C). The ISTAT data aggregated
by neighbourhood allow us to make considerations and assessments on a territorial scale.,
i.e., the historic districts of the city (Piccianello, Historical Centre, Cappuccini-Agna)
mainly consist of masonry dwellings, while the more recently urbanized districts show a
prevalence of reinforced concrete moment-resisting frame buildings with a better state of
conservation (Figure 2).
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Figure 2. Spatial distribution of ISTAT census variables aggregated by neighborhood and classified according to (A) number
of total buildings; (B) population; (C) number of residential buildings, including a pie chart of (A) building state of
conservation, (B) building use, (C) built typology.

2.2. Pre-Existing Data

Examination, collection, digitization, and organization of the data available from
previous studies were carried out for the area of Matera. An archive made up of 319 georef-
erenced geological, geotechnical, geophysical, and seismic surveys (downholes, mechan-
ical surveys, calcarenite sampling stations, MASW, HVNSR, seismic refraction surveys;
Figure 3) was harmonized in a geo-database; ~11% of which consisted of seismic surveys
performed on buildings (Table 1). Moreover, the following maps of urban areas derived
from microzonation studies were digitalized and georeferenced: geological, geomorpho-
logical, and MOPS (homogeneous microzones from a seismic response perspective). The
user can access, visualize, query, and download data via the WebGIS user interface by
clicking on the geometries. The information display mode is possible at all levels; after
clicking on the geometry, the factsheets of all the active geometries arranged under the
selected point will appear in nested mode (Figure 3). Data can be downloaded by clicking
on the hyperlink contained in the last row of each attribute table. It is worth pointing out
that ~87% of test certificates for geological-technical surveys are downloadable; for ~12.5%,
only the main results are available.

2.3. CLARA Data
2.3.1. Ground-Based Geophysical Data

In the framework of the CLARA project, the interaction effect between near-surface
geology and all overlying buildings in the urban area of the city of Matera, as thoroughly
described by [8], was evaluated. To this end, 107 single-station seismic ambient noise
measurements of the main urban lithologies and 62 of the main building typologies were
planned and performed. All the seismic ambient noise recordings on soils and buildings
were performed using a Tromino seismograph (MoHo s.r.l.) and were analyzed applying
the Horizontal-to-Vertical spectral ratio technique (HVNSR), following the standard pro-
cedures [58–60] and using Grilla software (version 8.1, Moho s.r.l. 2018). It was possible
to estimate the main resonance frequencies for all urban soils and the main vibrational
frequencies for the measured buildings.
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Figure 3. Examples of factsheets displayed by clicking on the related geometries (polygon in F sub-image) or sym-
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Soil HVNSR

The integration of the 107 new and 10 pre-existing HVNSR (Table 1) curves evaluated
for urban soils increased the area of the city of Matera covered by surveys from 18 to
1758 ha, with an average density of 3.7 surveys/km2. Overall, the density of all surveys
in the urban area is about 11.25 surveys/km2. We merged in the same point-vector layer,
named ‘HVNSR soil’, the pre-existing and new HVNSR functions. By clicking with the
hand icon cursor on the point of interest, it is possible to visualize a factsheet with all the
information related to that point (Figure 4). The thirteen fields shown in the factsheet have
been given self-explanatory names: ‘X’ and ‘Y’ report the coordinates or the measurement
locations in UTM WGS84 33N, EPSG 32633; ‘A_Thresold’ is the value of the HVNSR
amplitude beyond which amplification is considered to occur (this value was chosen to
be equal to 2 for all the analyses; Gallipoli et al., 2020 [8]); ‘F0 soil’ is the value of the soil
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fundamental resonance frequency (Hz), with an amplitude equal to ‘A0 soil’; ‘F1 soil’ (<‘F0
soil’) and ‘F2 soil’ (>‘F0 soil’) are the two frequencies (Hz) at which the HVNSR curve
intersects the ‘A_Thresold’ value; ‘Data_asc’ and ‘Data_bmp’ contain hyperlinks to the
downloadable HVNSR file in text format and HVNSR curve in bmp format, respectively;
‘Macro area’ indicates the neighbourhoods whose names are untranslatable, except for
‘Historic Center’ (‘Centro Storico’) and ‘Small business area’ (‘Zona Artigianale’) [61].
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Building HVNSR

By integrating the 34 pre-existing with the 62 new HVNSR functions estimated for
buildings, the percentage of buildings measured increased from 0.8% (#6) to 2.5% (#18) for
masonry buildings (out of 732) and from 1.5% (#28) to 4.2% (#78) for reinforced concrete
buildings (out of 1872). The percentage was calculated with respect to the total number
of buildings falling within the studied area (#2648) for which the building typology was
known. For reinforced concrete buildings, the sample distribution of measured buildings
by macro-area is representative of the percentage of buildings in that area with respect
to the total number of buildings in the urban study area (Figure 5B,C). The same does
not apply for masonry buildings (Figure 5D,E) due to logistical issues (impossibility of
access, etc.).
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Except for the buildings in the ‘Granulari’ districts or ‘Small business area’, which
are almost completely founded on Gravina calcarenite, most of the buildings in the urban
area of Matera lie on thick layers of Subappennines clays or above Gravina calcarenite
(Figure 6). A detailed presentation of the lithostratigraphic features of the area is given
by [8].

A total of 11 building HVNSRs in the same point-vector layer, named ‘HVNSR build-
ings, were merged. The attribute table, available for consultation by clicking on a point,
consist of fifteen fields with self-explanatory names (Figure 7): ‘X’ and ‘Y’ report the co-
ordinates in UTM WGS84 33N, EPSG 32633; ‘Type’ refers to the building typology (R.C.
or masonry); ‘F0 blg Hz’ is the main vibrational frequency of the building, retrieved by
the HVNSR technique; ‘Use’ indicates the specific use for which a building is projected
and built (i.e., residential, commercial, public, etc.); ‘Data asc zip’ and ‘Data bmp’ report
the hyperlink of the downloadable HVNSR file in text format and HVNSR curve in bmp
format, respectively.

2.3.2. Digital Surface Model from Satellite Data

In the framework of the CLARA project, we generated a DSM of the city of Mat-
era and its surroundings, including the slope of the rocky ravine created by the Grav-
ina stream [62]. In particular, the Agisoft Metahape photogrammetric software (Agisoft
Metashape, 2021) [63] was used to process a cross-sensor multi-view satellite optical triplet
composed of a WorldView-3 stereo pair and a GeoEye-1 image, whose acquisition features
are described in [54].
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First, three DSMs were produced using the three stereo pairs obtained by combining
the three images. We followed the procedure described in [54], which adopts an origi-
nal terrain-independent approach to refine the Rational Polynomial Coefficients (RPCs)
supplied in each image metadata [64]. The geoid undulations derived from the EGM2008
model [65] were applied to transform the native ellipsoidal heights, derived from the RPC
based orientation, to the corresponding orthometric ones. Moreover, we cropped the DSMs
in accordance with the maximum intersection area common to the three DSMs, and we
resampled our products to 0.5 m. Lastly, the final DSM was produced by computing a
weighted mean of the three DSMs [54]. Moreover, an additional raster, containing the
building heights with respect to the ground level for each pixel belonging to a building, was
computed by subtracting the heights of the RSDI Digital Terrain Model (DTM)—resampled
to the DSM resolution—from the DSM heights.

To evaluate the accuracy of the overall DSM, our product was compared with a
reference generated using the open data from RSDI. Specifically, we added the orthometric
heights of the RSDI DTM, resampled to the DSM resolution, to the building eave heights
of the shapefile called ‘unità volumetrica’ to produce a reference DSM. In this way, the
height differences (∆Z) between the reference and the overall DSM were computed for
each pixel (Figure 8), and the standard statistical indicators [66] such as mean, standard
deviation, root mean square error (RMSE), median, normalized median absolute deviation
(NMAD), Linear Error at 68% and 90% confidence interval (LE68 and LE90, respectively)
were evaluated. To compute the indicators, a threshold ∆Z equal to 20 m was adopted to
remove the values outside the range (−∆Z, ∆Z), which were considered outliers.
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The results were assessed using the entire DSM and considering the different land
covers separately. To distinguish artificial surfaces as well as agricultural, forest, and
semi-natural areas, we adopted the CORINE Land Cover inventory [67] at epoch 2012,
resampled to the DSM resolution. Furthermore, the statistics over the area corresponding
exclusively to the buildings were computed using the ‘unità volumetrica’ shapefile. The
results of the overall DSM validation are shown in Table 2. The DSM shows completeness
equal to 98.42%, evaluated as the ratio (percentage) of the filled DSM pixels over the
number of pixels of the reference raster.

Table 2. Statistical indicators for DSM accuracy assessment.

Tile Mean
[m]

Std. Dev.
[m]

RMSE
[m]

Median
[m]

NMAD
[m]

LE68
[m]

LE90
[m]

Number of
Pixels

Overall −1.1 2.4 2.7 −0.8 1.1 1.2 3.0 119,865,099

Artificial surfaces −1.3 3.7 3.9 −0.6 1.5 2.0 5.9 34,110,194

Agricultural areas −0.8 1.6 1.8 −0.8 0.9 0.9 1.8 68,037,393

Semi-natural areas −1.8 1.9 2.6 −1.4 1.0 1.2 2.7 17,717,512

Buildings 1.2 3.4 3.7 0.8 2.3 2.6 5.4 8,110,798

It is worth noting that the errors in the semi-natural class can derive from the missing
reconstruction of the vegetation in the reference DSM since it was generated from a DTM
(Figure 9). Moreover, the ‘Artificial Surfaces’ and ‘Buildings’ classes are the most critical
due to the high urban density, which makes the DSM production from satellite images
very challenging because of occlusion issues (Figure 10). For these two classes, the RMSE
reaches the highest values, being slightly higher than 3.5 m. However, in this case, the
values of median and NMAD, which are significantly lower than the mean and standard
deviation, denote the presence of outliers. As mentioned, most are probably related to
occlusion issues; however, careful inspection showed that some outliers could be due to
rather coarse simplifications inside the ‘unità volumetrica’ shapefile, which was used to
generate the reference for the buildings. In fact, some complex buildings (one relevant
example is the castle; Figure 9) were represented with just one unique height. Therefore,
it is possible to improve the building heights in RSDI using the generated DSM where
outliers were highlighted.

Finally, Figure 10 shows a section extracted from the reference (in black) and the
generated DSM (in red); as indicated in the lower left and lower right corners, the profile
direction is SW-NE (Figure 8). Even if the resulting DSM is noisier than the reference, the
multi-view approach allows for the accurate and dense reconstruction of the terrain and all
the objects within it (buildings—visible in the reference—and vegetation—not included).
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3. CLARA WebGIS Products
3.1. Soil Isofrequency, Soil Iso-Amplitude, and Building Frequency Distribution Maps

Interpolating the soil resonance frequency values (‘F0 soil Hz’) and the relative am-
plitude values (‘A0 soil’), which derive from the HVSR analysis of the measurements
carried out at each of the 117 urban soil locations, the soil isofrequency (Figure 11A) and
isoamplitude maps (Figure 11B), respectively, were retrieved. When clicking on any cell of
the ‘Soil isofrequency’ (or ‘Soil isoamplitude’) map layer, a factsheet in multi-level form
shows the interpolated ‘F0 soil Hz’ (or amplitude ‘A0 soil’) value. Using the empirical
relationship T = 0.0167 H, estimated for the measured buildings [8] and having available
the heights for all buildings of the Matera City, we predicted the main vibrational frequency
and its uncertainty (‘F0 blg range Hz’) for 4043 buildings. By clicking on any geometry of
the ‘Building frequency’ layer, the user can visualize both the estimated main vibrational
frequency of the building ‘F0 blg Hz’ and the interpolated frequency of its foundation soil
‘F0 soil Hz’ values in the same factsheet (Figure 11C).
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Figure 11. Screenshot of mapview and pop-up showing (A) soil isofrequency map; (B) soil isoam-
plitude map; (C.1) building frequency distribution overlying soil isofrequency map. The building
frequency layer has an attribute table composed of thirteen fields (C.2).

The first vibrational frequencies of buildings (‘F0 blg Hz) and the fundamental fre-
quencies of soils (‘F0 soil Hz’) are classified based on the same frequency ranges and colour
palette; when a building and the underlying soil pixel have the same color it means that
they vibrate in the same range of frequencies (Figure 11C). This layer has an attribute table
composed of thirteen fields (Figure 11(C.2)), with most of them inherited from the layers
presented above. The new field, ‘Class f b’, indicates the class of frequency range (‘F0 b
range Hz’) to which the building belongs, reported in the penultimate row of the factsheet.

3.2. Soil-Building Resonance Map

The soil-building resonance effect was evaluated considering the overlap between the
amplifying HVNSR frequency ranges of the soil (‘F1 soil Hz’ and ‘F2 soil Hz’) and buildings
(‘F1 blg Hz’ and ‘F2 blg Hz’), as shown in [8]. Six levels of probability of soil-building
resonance occurrence, encoded through a color scale ranging from green (low probability
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of resonance occurrence) to red (high probability of resonance occurrence), were identified.
A building whose estimated range of resonance falls within the interpolated resonance
range of the underlying soil is attributed a high probability of resonance occurrence (100%,
colored red), whereas a low probability level is assigned when the estimated resonance
range of the building is completely disjointed from that of the interpolated underlying soil
(Figure 12). When clicking on any of the 4043 polygons in the ‘Soil–building resonance
levels’, an attribute table containing fourteen fields pops up. Most of the entries in the
factsheet are inherited from other layers, except a new one, named ‘resonance level’, which
reports the concatenation of three pieces of information: the class (of resonance occurrence
probability) to which the building belongs, the total number of buildings in that same class,
and the percentage with respect to the analyzed building stock (4043).
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Figure 12. (A) Screenshot of soil–building resonance levels overlapping the geological map in the urban area of Matera. The
insets show two examples: a (red-colored) building having ‘F1 blg Hz’ and ‘F2 blg Hz’ values included in the interpolated soil
frequency range (100% probability of resonance occurrence), and a (green-colored) building with a probability of resonance
effect equal to 0%, along with the related pop-up windows; (B) attribute table of soil-building resonance level layer.

3.3. Digital Surface Model and Building Height Rasters

The DSM raster has a resolution of 0.5 × 0.5 m and covers an area ranging from
632,450.2 m E to 638,868.7 m E and from 4,500,872.2 m N to 4,506,039.2 m N (Coordinate
Reference System CRS: EPSG:32633−WGS 84/UTM, zone 33N−Projected). The elevations,
expressed in meters, are orthometric heights referred to EGM2008 geoid model. Among
the 121′879′530 pixels of the raster, 1′921′658 (1.58%) have no height information; these
void pixels are indeed located within the urban area, near and among the buildings, and in
the deepest valleys of the rocky ravine, where the occlusions and shadows have a negative
impact on the photogrammetric matching process. By clicking on any point of the layer, it
is possible to visualize the height value of each pixel inside the raster (Figure 13).
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The building height layer is a masked raster in which only the pixels corresponding
to the buildings contain the height (expressed in meters) of the considered building with
respect to the ground (Figure 14). It is important to highlight that this height is different
from the eave height, which is the facade height (Figure 14). The building height raster
covers the same area of the DSM raster and is characterized by the same resolution (0.5 m)
and CRS.
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4. Discussion

If societies do not learn from historical earthquakes and do not build up a culture of
seismic risk management, earthquakes will continue to have catastrophic effects [68,69].
The improvement of the knowledge and awareness of individual citizens is key for achiev-
ing a better resilience of civil communities. In this view, sharing information about the
seismic aspects specific to a given urban environment with the widest number of end
users possible (central and local administrators and planners, engineers and professional
geologists, citizens, etc.) is both vital and increasingly made possible by the emerging
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paradigm of open data and modern geospatial technologies. Aimed at improving seismic
risk mitigation in the city of Matera, CLARA WebGIS was designed to organize, analyze,
and disseminate available information on soil, buildings, and soil–building interaction
in the urban area of Matera by combining open data with new geospatial technologies.
In the following section, we highlight some useful aspects identified in relation to those
we believe to be the main users or beneficiaries of this tool, i.e., local authorities, urban
planners, freelancers, and private citizens.

CLARA WebGIS Potential and Perspectives

The knowledge of the spatial distribution of the local seismic amplification effect, of
the main characteristics of buildings, and of the soil-building resonance effect contributes
efficiently achieving a three-part objective: (i) increasing the seismic resilience of an urban
system and reducing the probability of a crisis occurring in the case of an earthquake; (ii)
reducing the potential losses in economic and social terms; (iii) facilitating the return of
the urban system to pre-existing conditions or recovering a new state of equilibrium by
reducing the recovery phase time.

If we share the basic principle according to which the use of the areas affected by
seismic amplification and their secondary effects (road obstruction, interruption of services,
slowdown of rescue services, etc.) should be more carefully regulated, then the mapping
of the probability of occurrence of soil-building resonance, along with the consequent
assessment of the areas with the greatest probability of increased damage during seismic
events becomes crucial for the implementation of mitigation and prevention strategies
(urban planning laws, land-use planning, planning for intervention in emergencies and to
manage post-earthquake crises). For example, the soil-structure interaction maps in the
urban area of cities could help to (i) determine the most suitable areas for urbanization
(characterized by low resonance levels) or eligible for other intended uses, such as parks,
gardens, recreational areas (characterized by medium/low resonance); (ii) define seismic
retrofitting strategies for existing strategic buildings/structures/infrastructures; (iii) in-
tegrate microzonation studies with the effects due to the presence of buildings and their
interaction with the soil according to a holistic approach [8]. The achievement of the latter
two targets is all the more feasible since some governments are currently financing seismic
retrofitting for existing buildings and microzonation studies, e.g., the Italian government
through the ‘Sisma bonus’ (Ministerial Decree August 6, 2020, n. 329) [70] and ‘Guidelines
for Seismic Microzonation’ [71] respectively.

For years, technical and scientific communities have been discussing the opportunity
of creating for each building a certificate containing all available information. Besides
basic information on each building (height, age of construction, typology, use, etc.) and
geological/geotechnical data of the relative foundation soil, the CLARA WebGIS contains
the estimates of the fundamental frequency of all urban soils and the vibrational frequency
in the linear elastic domain for 4043 buildings within the urban area. Such information
constitutes invaluable knowledge for freelance engineers, as it is key for numerical models
of seismic retrofitting.

In addition, CLARA WebGIS allows further evaluations in support of mitigation
strategies, both on an urban and suburban scale, by combining the geophysical and engi-
neering data contained in the layers. For example, by cross-referencing the data on the
state of conservation of buildings with the probability levels of soil-building resonance
occurrence, it is possible to estimate the number of buildings for which seismic retrofitting
is recommended (Figure 15).
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The experience gained in the development of the CLARA WebGIS with respect to the
creation of a digital surface model (DSM) starting from the elaboration of satellite data,
can constitute an adaptable reference for those situations in which there is no availability
of open data on building heights. Indeed, if DSMs, which represent the Earth’s surface
with all the human-made objects on it (including precise information on the orthometric
heights of buildings and infrastructure), are accompanied by the orthometric elevation of
the topographic surface (provided by a digital terrain or elevation model—a DTM or a
DEM), allow retrieving an accurate estimate of the height from ground for each building.
Moreover, for DSMs generated from high-resolution satellite imagery, the RMSE of the
height estimate can reach a few meters (up to 3.5 m, as is the case for this study, which
corresponds to an overestimate or underestimate of one floor for each building). Thanks to
this estimate (whose level of accuracy may be possibly increased in the coming years with
the development of new sensors) and to detailed information on the type of foundation soil,
it would still be possible to evaluate the resonance frequency of the buildings (inversely
proportional to their heights) in areas where data on building heights are totally absent
(or not publicly available) and thus to predict the type of response of each building to a
seismic event.

We believe the following goals need to be pursued: (1) the CLARA WebGIS should
be continuously developed and updated, taking into account additional needs, future
challenges, user feedback, and the best available ICT; (2) the management of CLARA
WebGIS should be entrusted to local administrators to ensure greater efficiency in its
updating and maintenance and, above all, to strengthen awareness of the perception of
risk in the actors responsible for implementing mitigation strategies.

5. Conclusions

This paper analyzed the interactive CLARA WebGIS, which is accessible at https:
//smartcities-matera-clara.imaa.cnr.it/, a useful tool developed, maintained, and enriched
by CNR–IMAA, managed by CNR-GeoSDI, and built using open-source software and with
a user-friendly interface addressed to a wide range of end users (government administra-
tors and planners, engineers and geologists, citizens, etc.). CLARA WebGIS lets users query
and download 319 geological and geotechnical surveys (Downholes, Mechanical Surveys,
Calcarenite Sampling Stations, MASW, HVNSR, Seismic Refraction Surveys) from studies
conducted from 1990 to 2010, 213 new single-station seismic ambient noise measurements
carried out between 2015 and 2019 during the CLARA project, geological and geomorpho-

https://smartcities-matera-clara.imaa.cnr.it/
https://smartcities-matera-clara.imaa.cnr.it/
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logical maps, and a map of homogeneous microzones from a seismic perspective. The
principal outputs derived by crossing all geophysical and engineering data available in the
database are:

• the estimation of fundamental resonance frequencies for all urban soils;
• the estimation of the main vibrational frequencies for 4043 overlying buildings;
• the resonance effect of each building with respect to the relative foundation soil;
• the DSM generated using satellite imagery composed of a WorldView-3 stereo pair, a

GeoEye-1 image, and a building height map obtained from the produced DSM and
RSDI open data.

The first three outputs, regarding the main soil and building characteristics and their
interaction, represent a key element to plan strategies for seismic risk mitigation in terms of
urban planning, seismic retrofitting, and management of post-earthquake crises. Moreover,
the detailed DSM could represent improved knowledge for those cities/megacities without
open data on building heights. We hope that this tool can be a starting point for the
administration of all cities and that individual geodatabases similar to CLARA WebGIS
can be built by combining pre-existing and new geophysical data for the characterization
of the soil and buildings.
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