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Abstract: Distorted medical images can significantly hamper medical diagnosis, notably in the analy-
sis of Computer Tomography (CT) images and organ segmentation specifics. Therefore, improving
diagnostic imagery accuracy and reconstructing damaged portions are important for medical diag-
nosis. Recently, these issues have been studied extensively in the field of medical image inpainting.
Inpainting techniques are emerging in medical image analysis since local deformations in medical
modalities are common because of various factors such as metallic implants, foreign objects or
specular reflections during the image captures. The completion of such missing or distorted regions
is important for the enhancement of post-processing tasks such as segmentation or classification.
In this paper, a novel framework for medical image inpainting is presented by using a multi-task
learning model for CT images targeting the learning of the shape and structure of the organs of
interest. This novelty has been accomplished through simultaneous training for the prediction of
edges and organ boundaries with the image inpainting, while state-of-the-art methods still focus
only on the inpainting area without considering the global structure of the target organ. Therefore,
our model reproduces medical images with sharp contours and exact organ locations. Consequently,
our technique generates more realistic and believable images compared to other approaches. Addi-
tionally, in quantitative evaluation, the proposed method achieved the best results in the literature
so far, which include a PSNR value of 43.44 dB and SSIM of 0.9818 for the square-shaped regions; a
PSNR value of 38.06 dB and SSIM of 0.9746 for the arbitrary-shaped regions. The proposed model
generates the sharp and clear images for inpainting by learning the detailed structure of organs. Our
method was able to show how promising the method is when applying it in medical image analysis,
where the completion of missing or distorted regions is still a challenging task.

Keywords: multi-task learning; medical image inpainting; medical image analysis; deep learning;
arbitrary-shaped inpainting; medical prognosis

1. Introduction

Computed Tomography (CT) has been one of the essential medical imaging systems
and utilized for expert diagnoses. However, the CT images are often distorted by reflection
from metallic implants or foreign objects such as pacemakers, catheters, and drainage
tubes. Moreover, medical images are sometimes degraded due to the sudden movements
of the patient during the scanning phase. Many approaches have been proposed for the
restoration of deformed images, which include research results on noise reduction, image
translation, or inpainting. Among these methods, inpainting has emerged as a reasonably
effective and popular method today. Several studies on medical image inpainting have
been proposed, including the technique of handling damaged square-shaped regions [1,2].
However, in the real situation, the defects are mostly not of the squares, but of arbitrary-
shaped regions, which launched the study of medical image inpainting with any damaged
forms [3], resulting in the restoration of practical failures with any deformation. These
techniques still suffer from incomplete restorations, such as blurred boundaries and loss of
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the organ structures inside the deformed part. To overcome such problems of restoration
failures, structural information has been exploited, where the information of edges is the
main tool for implementing the learning process [4–8]. EdgeConnect [4] is a two-stage
adversarial model that comprises an edge generator followed by an image completion
network. The edge generator hallucinates the edges in the missing area (either square-
shaped or arbitrary-shaped). The image completion network fills in the distorted regions
using hallucinated edges as a priori for the inpainting. Edge structures and color-aware
maps are fused in a two-stage generative adversarial network (GAN) [5]. In the first stage,
edges with the missing regions are used to train an edge structure generator. Meanwhile,
distorted input images with the missing part are transformed into a global color feature map
by the content-aware fill algorithm. In the second stage, the edge map and the colormap are
fused to generate the refined image. The authors in [6] proposed a foreground-aware image
inpainting system that explicitly disentangles structure inference and content completion.
The foreground contours are predicted first and then the inpainting is performed using the
predicted contours as a guidance. The Edge-Guided GAN [7] method is an edge-guided
generative adversarial network to restore brain MRI images which have distortion or
missing parts. A multi-task learning framework with auxiliary tasks of edge finding and
gradient map prediction is used to incorporate the knowledge of the image structure to
assist inpainting [8]. Even though the edges in the image provide a part of structural
information, there are several drawbacks in such methods. First, the edges are obtained
from any objects in the image and they do not represent the spatial structures of the organs
of interest. Second, the edges are more complex than the specific organ descriptions and
this could make it harder for the model to understand the structure of organs. Therefore,
we believe that the edges alone cannot provide sufficient knowledge of organ structures in
the body, resulting in the still poor restoration quality.

The proposed method is trained and predicted in an end-to-end framework. Our
contributions can be summarized as follows:

• We propose a framework based on edge and organ boundary awareness to reconstruct
deformed regions in CT images.

• We newly introduced the use of organ boundaries in addition to edges to establish
enough structural knowledge for the inpainting of damaged regions, including the
part of the organs. Specifically, multi-task learning is employed to train the network
simultaneously for the prediction of edges and organ boundaries. The use of organ
boundaries for the learning of structural information in medical image inpainting has
never been tried before, and it is adopted for the first time in the literature.

• Our method generates more realistic and believable images compared to other ap-
proaches. In both quantitative and qualitative evaluation, the proposed method
outperforms the state-of-the-art methods.

The rest of the paper is organized as follows. In Section 2, we introduce the related
literature in the field of general inpainting and medical inpainting. The details of our
architecture are presented in Section 3. The experimental results are given in Section 4.
Finally, conclusions are shown in Section 5.

2. Related Works
2.1. Inpainting in General Field

For inpainting images, we can put them into two main groups: traditional and
learning-based approaches. The traditional methods employ diffusion-based or patch-
based methods with low-level features, while the learning-based approaches try to under-
stand the semantics of the image to fulfill the inpainting task. The success of deep learning
has made the second approach effective and very popular in recent years. We introduce
the details of studies based on both approaches in the following sections.
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2.1.1. Traditional Approach

With conventional methods, the algorithms try to find components from the back-
ground area, then compute the similarity levels and fill in the hole. It uses the information
available in the image containing the deformed part to generate the missing area [9,10],
which provides a simple algorithm, responding relatively well to the inpainting of small
areas in case the scene is not too complicated. Conventional methods also do not require a
high amount of training data. However, in some cases, such as large or arbitrary-shaped
holes possibly with the background of complex structures, these methods can fail to
produce a good recovery.

2.1.2. Learning-Based Approach

In learning-based approaches, different types of features can be learned from a large
spectrum of sample images, leading to better predictions compared to conventional meth-
ods. The deep learning approaches have been studied extensively, and the results showed
a significant improvement in the performance. The context encoder (CE) network [11] uses
adversarial training [12] with a novel autoencoder. Most of the early deep learning methods
use standard convolutional networks over the corrupted image, using convolutional filter
responses on the pixels in the masked holes, which often lead to artifacts such as color
discrepancy and blurriness. Partial convolution [13] was proposed, where the convolution
is masked and renormalized to be conditioned on only valid pixels. In this model, an
updated mask was automatically generated for the next layer as part of the forward pass.
Later, partial convolution has been generalized to a gated convolution [14] by providing
a learnable dynamic feature selection mechanism for each channel and each spatial loca-
tion for free-form image inpainting. In early studies using deep learning networks, the
missing parts were predicted by propagating the surrounding convolutional features into
the missing region to produce semantically plausible images, but they often resulted in
blurry images. Spatial attention has been applied to consider the contextual relationship
between the background and the hole region. The Shift-Net model [15] introduced a special
shift layer to the U-Net architecture to shift the encoder feature of the known region for
an estimation of the missing parts, resulting in sharper images with detailed textures. A
learnable bidirectional attention map module (LBAM) [16] learned feature re-normalization
on both the encoder and decoder of the U-net [17] architecture. A recurrent feature network
(RFN) [18] was proposed to exploit the correlation between adjacent pixels and strengthen
the constraints for estimating deeper pixels. However, these studies have not fully utilized
the structural knowledge of the image. There are several approaches to exploit the inherent
structure of information in the input images by using the edge or object boundaries for
inpainting [4–6,8]. EdgeConnect [4] is a two-stage adversarial model that comprises an
edge generator followed by an image completion network. The edge generator halluci-
nates the edges in the missing area (either square-shaped or arbitrary-shaped). The image
completion network fills in the distorted regions using hallucinated edges as a priori for
the inpainting. Edge structures and color-aware maps are fused in a two-stage generative
adversarial network (GAN) [5]. In the first stage, edges with the missing regions are used
to train an edge structure generator. Meanwhile, distorted input images with the missing
part are transformed into a global color feature map by the content-aware fill algorithm.
In the second stage, the edge map and the colormap are fused to generate the refined
image. The authors in [6] proposed a foreground-aware image inpainting system that ex-
plicitly disentangles structure inference and content completion. The foreground contours
are predicted first and then the inpainting is performed using the predicted contours as
a guidance. A multi-task learning framework with auxiliary tasks of edge finding and
gradient map prediction is used to incorporate the knowledge of the image structure to
assist inpainting [8].
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2.2. Inpainting in Medical Field
2.2.1. Traditional Approach

The use of inpainting techniques is emerging in medical image analysis since local
deformations in medical modalities are common because of various factors such as metallic
implants or specular reflections during the image captures. The completion of such missing
or distorted regions is important to enhance post-processing tasks such as segmentation or
classification. Traditional approaches for medical image inpainting focus on interpolation,
non-local means, diffusion techniques, and texture synthesis [19–23]. However, the con-
ventional methods are confined to a single image and they do not learn from images with
similar features.

2.2.2. Learning-Based Approach

These days, medical image inpainting has been studied extensively with deep learning
models [1–3,24,25]. GAN is used to incorporate two patch-based discriminator networks
with style and perceptual losses for the inpainting of missing information in positron
emission tomography–magnetic resonance imaging (PET-MRI) [1]. A generative frame-
work is proposed to handle the inpainting of arbitrary-shaped regions without a prior
localization of the regions of interest [3]. Several improvements are made to deep learning
models and are reported with better performance than conventional methods. However,
these methods do not use the inherent structure of information in the medical images,
resulting in blurry images and often lacking detail. The authors in [7] proposed a method
using structural information which is represented by the edges of the image. The network
decouples image repair into two separate stages: edge connection and contrast completion.
The first stage is to predict the edges inside the missing region. The result edge map is used
for inpainting. Even though the use of edges succeeded in improving the performance, it
does not provide deeper knowledge of organ structures in the body, resulting in still poor
quality of restoration. Recently, a deep neural network for medical inpainting has been
proposed in [26]. This framework generates 3D images from sparsely sampled 2D images.
They employed an inpainting deep neural network based on a U-net-like structure and
DenseNet sub-blocks. However, because of ignoring boundary information in training,
their method meets the problem of boundary artifacts. Additionally, since [26] was trained
and tested on a dataset that is not publicly available, it is hard to compare performance
with this study.

In this paper, we propose a multi-task learning model based on auxiliary tasks of
edge reconstruction, and organ boundary prediction with the main task of CT image
inpainting. The proposed method is more consistent and effective for image inpainting
through simultaneous training of the prediction of edges and organ boundaries.

3. Proposed Method
3.1. Network Architecture

There have been several methods for boundary detection, such as sketch generation
using GAN [27,28]. A contour generation algorithm is used to output contour drawings of
arbitrary input images [27]. An application for face photo-sketch synthesis based on the
composition-aided GAN is introduced by [28]. The proposed network consists of three
GANs for edge reconstruction, organ boundary prediction and image inpainting. Our multi-
task learning model is built on an adversarial framework, where the three discriminators
feedback the discrimination results to the generator as well as the discriminator. Figure 1
shows the detailed architecture of our model. After encoding the input image, three
decoder networks predict the edge map, the organ boundary, and the completed image
simultaneously. These results are fed into the discriminator networks, whose feedbacks
are directed to the generators. The generator network is a modified autoencoder with
one shared encoding and three decoding parts. The Dilated Residual Network (DRN)
block of an upgraded ResNet block [4] is constructed by replacing the first convolutional
layer with the dilated convolutional layer. Dilated convolutions are used with a dilation
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factor of two instead of original convolutions in the residual layers to effectively expand
the receptive field without losing resolution in subsequent layers [29–31]. Figure 2 shows
the detailed architecture of the DRN block. In the training process, the decoding part is
usually difficult to generate feature maps with enough detailed information. Therefore,
we employ a super-resolution module (SRM) inside the decoding parts for helping the
network learning feature efficiently and produce feature maps with more details. SRM is
a modification of the fast super-resolution convolutional neural network (FSRCNN) [32],
which makes our model faster with better-reconstructed image quality. Our model is based
on the pix2pix GAN [33]. The proposed network takes images from one domain as input
and outputs the corresponding image in the other domain, rather than a fixed-size vector.
Unlike the initially proposed architecture which classifies a whole image as real or fake, the
pix2pix GAN-based model tries to classify patches of an image as real or fake. Therefore,
the output is a matrix of values instead of a single value.

Figure 1. The overall architecture of our multi-task framework. The network is built on an adversarial framework.
It leverages the edge and organ boundary knowledge with multi-task learning (simultaneous image, edge and organ
boundary generation).
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Figure 2. The architecture of Dilated Residual Network Block (DRN Block).

3.2. Discriminator

The discriminator is the network to distinguish whether data are from a dataset or
generated from generators. Thanks to the discriminator, the model learns the associa-
tion between input and output. Therefore, the generated images are better and more
plausible in detail. We use three discriminators separately during training for better learn-
ing features. Each discriminator consists of several convolution layers with a sigmoid
activation function.

3.3. Loss Function

The loss function returns a non-negative real number representing the difference
between two quantities: the predicted label and the correct label. The loss function is like
a form to force the model to pay the penalty every time it predicts its mistake, and the
number of penalties is proportional to the severity of the error. In all supervised learning
problems, our goal always includes minimizing the total penalty payable. Ideally, the loss
function should return the minimum value of zero. During the training process, we used
many different types of loss for various purposes.

In our network, the input uses the distorted image Ĩgt = Igt � (1−M), where Igt
is the ground truth image and M is the mask image with 1 value for missing region and
0 for background. The symbol � denotes the Hadamard product. Similarly, we have
Iedge_in = Iedge_gt � (1−M), where Iedge_gt is the edge map extracted from ground truth
images by the Canny edge detector. Our network generates three images: completed image
Iimage_pred, organ boundary map Iorgans_pred and edge map Iedge_pred with missing regions
filled in. Those images have the same resolution as the input image. Let G, D1, D2, and D3
be the generator and the discriminator of the image generator, edge generator and organ
boundary generator, respectively.

Iimage_pred, Iedge_pred , Iorgans_pred = G
(

Ĩgt, Iedge_in

)
(1)

First, we analyze the network with a decoding part which generates completed image
Iimage_pred. We employed two losses proposed in [34,35], commonly known as perceptual
loss Lossimage_perceptual and style loss Lossimage_style. Perceptual loss is defined as follows:

Lossimage_perceptual = E
[
∑i

1
Ni
‖δi
(

Iimage_gt
)
− δi

(
Iimage_pred

)
‖

1

]
(2)

where δi is the activation map in the ith layer of a pre-trained network. These activation
maps are also employed to calculate style loss, which measures the differences between
covariances of activation maps. Given feature maps of size Ni = Cj × Hj ×Wj, style loss is
calculated by:

Lossimage_style = E
[
∑i ‖G

δ
j

(
˜Iimage_pred

)
− Gδ

j

(
˜Iimage_gt

)
‖

1

]
(3)
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where Gδ
j is a Cj × Cj Gram matrix generated from activation maps δi. We also used the

reconstruction loss Lossimage_reconstruction in our model. We chose l1 loss for this reconstruc-
tion loss. We also used a discriminator for our image completion part. Typically, generators’
gradients often disappear quickly in generative adversarial networks [12]. To fix this
problem, we employed Hinge loss [36], which is useful for classifiers. These loss functions
are defined as:

Lossimage_gen = −Eedge_in

[
D1

(
Iimage_pred, Iedge_in

)]
(4)

LossD1 = Eimage_gt,edge_in

[
max(0, 1− D1

(
Iimage_gt, Iedge_in

)]
+Eedge_in

[
max(0, 1 + D1

(
Iimage_pred, Iedge_in

)] (5)

In the components that generate the completed map and completed organ bound-
ary, the structures are similar. The completed edge map and completed organ boundary
map are denoted as Iedge_pred, Iorgans_pred, respectively. We still use the perceptual losses
Lossedge_perceptual , Lossorgans_perceptual , style losses Lossedge_style, Lossorgans_style and recon-
struction losses Lossedge_reconstruction, Lossorgans_reconstruction in our model for training the
whole model. Finally, our overall loss function is calculated by:

Losstotal = ε1Lossimageperceptual + ε2Losssimage_style

+ε3Lossimage_reconstruction
+ε4Lossimagegen+ ε5Lossedge_perceptual + ε6Lossedge_style
+ε7Lossedge_reconstruction+ε8Lossedge_gen
+ε9Lossorgans_perceptual + ε10Lossorgans_style
+ε11Lossorgans_reconstruction + ε12Lossorgans_gen

(6)

where ε is the weight of each loss component. From the experiment, we choose ε1 = ε5 =
ε9 = 0.1, ε2 = ε6 = ε10 = 250, ε3 = ε7 = ε11 = 1, ε4 = ε8 = ε12 = 0.1 for the training of
our model.

4. Experiments and Results
4.1. Experimental Environment and Datasets

We have used masks of arbitrary-shaped regions and square-shaped regions in this
study. One hundred random mask images are created for each mask type for training and
50 mask images are generated for the testing. To make the comparison fair, we use these
same masks for training and testing. We conducted a review of our methodology on a
publicly available medical dataset of StructSeg2019 [37]. In the StructSeg2019 dataset, there
are 50 3D images of CT scans from 50 patients. Fifty of the voxel representations in 3D
images are converted into 4775 2D images, among which 1000 2D images are used for the
testing, and the rest are used for the training. The input sizes for training and testing are
uniformly set as 256 in width and 256 in height. The Canny edge detector [38] is used to
generate edge map ground-truth from the input image and organ boundaries ground-truth
from the organ segmentations given in the dataset. We employed the Adam algorithm
with a batch size of 4 to optimize the network. The proposed method was trained with 30
epochs and the initial learning rate was set at 0.0002. During the training of the model, we
use two types of augmentation which are rotation and horizontal reflection. With rotation,
we rotate the image in angles 90, 180, and 270 degrees. Our method was implemented in
Python language and Pytorch framework. Table 1 shows the details of our experimental
environment and the configuration of the training model.

Table 1. The details of our experimental environment and the configuration of training model.

Batch Size Num. of Epoch Learning Rate Programming Language Framework

4 30 0.0002 Python Pytorch
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4.2. Evaluation Criterion

Following research [3] in the medical inpainting field, we use common evaluation
metrics such as structural similarity index for measuring image quality (SSIM) [39], peak
signal-to-noise ratio (PSNR), mean squared error (MSE), and universal image quality index
(UQI) [40] to quantify the performance of the models. Our research conducted experiments
on both settings of square-shaped holes and arbitrary-shaped holes. The metric PSNR and
MSE are defined as:

PSNR = 10log10

(
k2

max
MSE

)
(7)

MSE =
1

m× n

m

∑
i=1

n

∑
j=1

(
kij − (k0)ij

)2
(8)

where MSE represents mean squared error, and the maximum value is denoted by kmax,
particularly for 8-bit images kmax = 255. The better the image quality, the higher the PSNR.
Structural similarity (SSIM) is seen to be a stronger parameter for evaluating picture consis-
tency which is within the range [0,1], with a score close to 1 indicating better conservation
of the structure. This metric is based on the visual perception characteristic of humans. The
SSIM is calculated between two commonly sized windows A× B.

SSIM =
(2µω1 µω2 + c1)(2σω1ω2 + c2)

(µω1
2 + µω2

2 + c1)(σω1
2 + σω2

2 + c2)
(9)

where µωi , σωi
2 are the average and the variance of window ωi, respectively. The covariance

is denoted by σω1ω2 and c1, c2 are numerical stabilizing parameters. We also used the
metric UQI, which is the predecessor of SSIM, to evaluate our proposed methods with
other methods. Let Igt =

{
Igti
∣∣ i = 1, 2, . . . , Z

}
and Ipred =

{
Ipredi

∣∣∣ i = 1, 2, . . . , Z
}

be the
ground truth and the predicted image, respectively. The metric UQI is defined as:

UQI =
σIgt Ipred

σIgt σIpred

.
2 Igt Ipred

(Igt)
2
+ (Ipred)

2 .
2 σIgt σIpred

σ2 Igt + σ2 Ipred

, (10)

where the dynamic range of UQI is [−1,1]. One can achieve the highest value 1 if and only
if Ipredi = Igti for all i = 1, 2, . . . , Z. The lowest value of −1 occurs when Ipredi = 2 Igt − Igti

for all i = 1, 2, . . . , Z. The element
σIgt Ipred

σIgt σIpred
is defined as the correlation coefficient between

ground truth image Igt and predicted image Ipred, and the value of this element is in the

range [−1,1]. The element
2 Igt Ipred

(Igt)
2
+(Ipred)

2 , with a value range of [0,1], computes how close

the mean luminance is between ground truth image Igt and predicted image Ipred. It equals

1 if and only if Igt = Ipred. The last element
2 σIgt σIpred

σ2 Igt+σ2 Ipred
presents how similar the contrasts

of the images are. The value of this element is in the range [−1,1], where the best value 1 is
obtained if and only if σIgt = σIpred .

4.3. Results

Our results in PSNR and MSE metrics are presented by graphs which are shown
in Figures 3 and 4. Figure 3 shows the PSNR score of our method for a square-shaped
and arbitrary-shaped masked image compared with the others. The higher value is the
better. Figure 4 presents the MSE score of our method for a square-shaped and arbitrary-
shaped masked image compared with the others. The lower value is the better. For
square-shaped inpainting, the results are presented in Figure 5 and Table 2, respectively.
Partial convolution [13] resulted in the worst inpainting results from both a quantitative
and qualitative perspective. The proposed method achieved the highest performance
compared to the others. In Figure 6 and Table 3, the qualitative and quantitative results for
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arbitrary-shaped inpainting are given, respectively. Our approach still outperforms other
methods. The PSNR results achieved 43.44 and 38.06 dB in the property of square-shaped
and arbitrary-shaped masks, respectively. These results demonstrate the effectiveness of
the proposed method for both square and arbitrary masks. Table 4 shows the comparison
of results from different types of loss function using a discriminator. Table 5 shows the
quantitative results of the proposed method between using SRM and without using it.
Table 6 presents the quantitative comparison of PSNR/SSIM/MSE/UQI between multi-
task and mono-task framework in property of arbitrary-shaped regions. Table 7 introduces
the quantitative comparison of PSNR/SSIM/MSE/UQI between multi-task and mono-task
framework in property of square-shaped regions.

Figure 3. This graph shows PSNR score of our method for a square-shaped and arbitrary-shaped
masked image compared with the others. The higher value is the better.

Figure 4. This graph shows MSE score of our method for a square-shaped and arbitrary-shaped
masked image compared with the others. The lower value is the better.
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Figure 5. The inpainting results of our method for a square-shaped masked image compared with
the others. (a) The masked image. (b) Result obtained from using public source code of method [15].
(c) Result obtained from using public source code of method [16]. (d) Result obtained from using
public source code of method [4]. (e) Result obtained from using public source code of method [13].
(f) Result obtained from using public source code of method [14]. (g) Result obtained from using
public source code of method [18]. (h) Result of our method. (i) Ground truth image.

Table 2. The quantitative comparison of PSNR/SSIM/MSE/UQI between proposed method and
other methods in property of squared-shaped regions. The results from other methods are derived
from using their public code.

[4] [13] [14] [15] [16] [18] Ours

PSNR 40.63 22.34 36.57 34.23 43.00 37.97 43.44
SSIM 0.9785 0.2335 0.9002 0.7032 0.9811 0.9764 0.9818
MSE 59.41 1223.08 97.75 118.80 38.84 93.30 37.93
UQI 0.9938 0.2666 0.8767 0.9393 0.9951 0.9899 0.9960
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Figure 6. The inpainting results of our method for an arbitrary-shaped masked image compared with
the others. (a) The masked image. (b) Result obtained from using public source code of method [15].
(c) Result obtained from using public source code of method [16]. (d) Result obtained from using
public source code of method [4]. (e) Result obtained from using public source code of method [13].
(f) Result obtained from using public source code of method [14]. (g) Result obtained from using
public source code of method [18]. (h) Result of our method. (i) Ground truth image.

Table 3. The quantitative comparison of PSNR/SSIM/MSE/UQI between proposed method and
other methods in property of arbitrary-shaped regions. The results from other methods are derived
from using their public code.

[4] [13] [14] [15] [16] [18] Ours

PSNR 37.20 29.95 33.87 31.21 35.86 33.57 38.06
SSIM 0.9731 0.3916 0.8941 0.7222 0.9729 0.9716 0.9746
MSE 58.27 241.09 108.93 178.23 72.28 117.05 50.49
UQI 0.9964 0.7228 0.8790 0.9601 0.9966 0.9939 0.9972

Table 4. The effect of loss function using a discriminator.

Arbitrary-Shaped Regions Square-Shaped Regions

BCE MSE Hinge (Ours) BCE MSE Hinge (Ours)

PSNR 37.00 37.58 38.06 41.78 42.51 43.44
SSIM 0.9723 0.9742 0.9746 0.9802 0.9812 0.9818
MSE 57.75 53.64 50.49 50.36 46.44 37.93
UQI 0.9965 0.9970 0.9972 0.9948 0.9953 0.9960
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Table 5. The effect of SRM in our network.

Square-Shaped Regions Arbitrary-Shaped Regions

w/o SRM Ours w/o SRM Ours

PSNR 41.98 43.44 36.99 38.06
SSIM 0.9804 0.9818 0.9726 0.9746
MSE 44.16 37.93 59.23 50.49
UQI 0.9954 0.9960 0.9967 0.9972

Table 6. The quantitative comparison of PSNR/SSIM/MSE/UQI between multi-task and mono-task framework in property
of arbitrary-shaped regions.

Mono-Task Multi-Task with Edge
Information

Multi-Task with Organs’
Boundary Information

Multi-Task with Edge and
Boundary Information (Ours)

PSNR 36.62 37.20 36.94 38.06
SSIM 0.9724 0.9745 0.9734 0.9746
MSE 69.78 69.25 63.73 50.49
UQI 0.9963 0.9962 0.9967 0.9972

Table 7. The quantitative comparison of PSNR/SSIM/MSE/UQI between multi-task and mono-task framework in property
of square-shaped regions.

Mono-Task Multi-Task with
Edge Information

Multi-Task with Organs’
Boundary Information

Multi-Task with Edge and
Boundary Information (Ours)

PSNR 40.85 42.32 42.77 43.44
SSIM 0.9797 0.9812 0.9817 0.9818
MSE 61.36 61.64 36.35 37.93
UQI 0.9946 0.9947 0.9963 0.9960

Tables 2 and 3 show the experimental results compared to other methods based on
both arbitrary-shaped and square-shaped masks. Compared to recent inpainting studies,
our method produced promising results. Particularly, we compared it to methods [13,15]
proposed in 2018, methods [4,14,16], introduced in 2019, and method [18] presented in 2020.

From Tables 2 and 7, for square mask shapes, with using the only mono-task frame-
work, our results are only 40.85 dB PSNR and lower than the method results from
LBAM [16], with a PSNR value reaching 43 dB. Although we integrated the edge knowledge
learning task or organ boundary awareness task, the results show very little performance
increase with the PSNR metric increased to 42.32 and 42.77 dB, respectively. However,
it does prove the positive value of adding the auxiliary task into the network. We con-
tinued to survey the inpainting results using a multi-task learning framework based on
edge awareness and organ boundary knowledge in the medical image. We achieved
promising results when the PSNR metric value increased to 43.44 dB, which surpassed all
remaining methods.

Tables 3 and 6 show that our results still obtained the best value for the mask shape
in an arbitrary form. The proposed method helped us achieve a PSNR value exceeding
38.06 dB compared with the highest value of the remaining methods of 37.20 dB belonging
to the EdgeConnect method [4]. Our approach has outstanding practicality and outstanding
performance from the above quantitative comparisons compared to inpainting methods in
recent years.

We also present qualitative comparisons in Figures 5 and 6. We apply a mask shape
of a square in Figure 5 and then we reproduce images with very high authenticity. The
structure of the right lung is preserved relatively intact while the remaining methods
reproduce low plausible images. The other methods generate images that lost so much
detailed information. The left lung in Figure 6 has degraded a lot when we use an arbitrary-
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shaped mask. However, thanks to the multi-task framework based on edge awareness and
organ boundary knowledge, our method can reproduce the image with a plausible result.
Especially, the structures of the right lung and left lung are pretty well reconstructed. The
left lung boundary area was reproduced quite sharply without any blurring or distortion,
while the rest of the methods were not capable.

Table 4 shows the comparison of results from different types of loss function using a
discriminator. By using binary cross-entropy loss, our model can only generate results with
37.00 and 41.78 dB in PSNR with the property of arbitrary-shaped mask and square-shaped
mask, respectively. These results are lower than the results of methods [4,16]. When we
change the binary cross-entropy loss with mean square error loss, our inpainting task
results are a little bit better, but these results in the property of square-shaped mask are
still lower than the method [16]. Finally, we replace the mean square error loss with Hinge
loss. Our inpainting results outperform others, with 43.44 and 38.06 dB in the property of
square-shaped and arbitrary-shaped masks, respectively. Figure 7 shows the qualitative
comparison of inpainting results between using binary-cross entropy loss, L2 (mean square
error) loss and Hinge loss in discriminators. For the best-generated results, we chose Hinge
loss as our discriminators during training the model. Figure 8 introduces the qualitative
comparison inpainting results between using the mono-task framework, multi-task with
organ boundary knowledge framework, multi-task with edge knowledge framework, and
multi-task with boundary combined with edge knowledge framework.

Figure 7. Qualitative comparison inpainting results between using binary cross entropy loss, L2 loss and Hinge loss in
discriminators. (a) Input masked image. (b) Result of using binary cross entropy loss. (c) Result of using L2 loss. (d) Result
of using Hinge loss. (e) Ground truth image.

We also examine the effect of SRM on our model. Table 5 shows the quantitative
results of the proposed method between using SRM and without using it. The results
show that generated images by the model with SRM are pretty much better in terms of
either square-shaped or arbitrary-shaped masks. This proved the positive effect of SRM
in making the model generate better high-resolution features with more useful details.
From the above comparison and analysis, we find that the proposed model has superior
performance in research on inpainting on medical CT images compared with other studies
in recent years.

Table 8 shows the detailed structure of the encoding part. The components of the
discriminator network are introduced in Table 9. The detailed information of the decoding
parts is given in Tables 10–12.
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Figure 8. Qualitative comparison inpainting results between using mono-task framework, multi-task
with organ boundary knowledge framework, multi-task with edge knowledge framework and multi-
task with boundary combined with edge knowledge framework. (a) Input masked image. (b) Result
of using mono-task framework. (c) Result of using multi-task with organ boundary knowledge
framework. (d) Result of using multi-task with edge knowledge framework. (e) Result of using
multi-task with boundary combined with edge knowledge framework. (f) Ground truth image.

Table 8. Architecture of encoding part in our network.

Layer Kernel Size Stride

ReflectionPad2d
Conv2d+IN+ReLU [7,7] [1,1]

Deep Block

Conv2d + IN [8,8] [1,1]
Conv2d + IN [8,8] [1,1]

Conv2d [1,1] [1,1]
Conv2d [1,1] [1,1]

Conv2d+IN+ReLU [4,4] [2,2]

Deep Block

Conv2d + IN [8,8] [1,1]
Conv2d + IN [8,8] [1,1]

Conv2d [1,1] [1,1]
Conv2d [1,1] [1,1]

8 × DRN blocks

Table 9. Architecture of discriminator network.

Layer Kernel Size Stride

Conv2d + LeakyReLU [4,4] [2,2]
Conv2d + LeakyReLU [4,4] [2,2]
Conv2d + LeakyReLU [4,4] [2,2]
Conv2d + LeakyReLU [4,4] [1,1]

Conv2d [4,4] [1,1]
Sigmoid
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Table 10. Architecture of decoding part 1 in our network.

Layer Kernel Size Stride

SRM

Conv2d + PReLU [6,6] [1,1]
Conv2d + PReLU [1,1] [1,1]

Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]

Conv2d + PReLU [3,3] [1,1]
Conv2d + PReLU [1,1] [1,1]

ConvTranspose2d + IN +ReLU [9,9] [2,2]

Deep Block

Conv2d + IN [8,8] [1,1]
Conv2d + IN [8,8] [1,1]

Conv2d [1,1] [1,1]
Conv2d [1,1] [1,1]

SRM

Conv2d + PReLU [6,6] [1,1]
Conv2d + PReLU [1,1] [1,1]

Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]

Conv2d + PReLU [3,3] [1,1]
Conv2d + PReLU [1,1] [1,1]

ConvTranspose2d + IN +ReLU [9,9] [2,2]

Deep Block

Conv2d + IN [8,8] [1,1]
Conv2d + IN [8,8] [1,1]

Conv2d [1,1] [1,1]
Conv2d [1,1] [1,1]

ReflectionPad2d
Conv2d [7,7] [1,1]

Table 11. Architecture of decoding part 2 in our network.

Layer Kernel Size Stride

SRM

Conv2d + PReLU [6,6] [1,1]
Conv2d + PReLU [1,1] [1,1]

Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]

Conv2d + PReLU [3,3] [1,1]
Conv2d + PReLU [1,1] [1,1]

ConvTranspose2d + IN +ReLU [9,9] [2,2]

Deep Block

Conv2d + IN [8,8] [1,1]
Conv2d + IN [8,8] [1,1]

Conv2d [1,1] [1,1]
Conv2d [1,1] [1,1]

SRM

Conv2d + PReLU [6,6] [1,1]
Conv2d + PReLU [1,1] [1,1]

Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]

Conv2d + PReLU [3,3] [1,1]
Conv2d + PReLU [1,1] [1,1]

ConvTranspose2d + IN +ReLU [9,9] [2,2]

Deep Block

Conv2d + IN [8,8] [1,1]
Conv2d + IN [8,8] [1,1]

Conv2d [1,1] [1,1]
Conv2d [1,1] [1,1]

ReflectionPad2d
Conv2d [7,7] [1,1]
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Table 12. Architecture of decoding part 3 in our network.

Layer Kernel Size Stride

SRM

Conv2d + PReLU [6,6] [1,1]
Conv2d + PReLU [1,1] [1,1]

Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]

Conv2d + PReLU [3,3] [1,1]
Conv2d + PReLU [1,1] [1,1]

ConvTranspose2d + IN +ReLU [9,9] [2,2]

Deep Block

Conv2d + IN [8,8] [1,1]
Conv2d + IN [8,8] [1,1]

Conv2d [1,1] [1,1]
Conv2d [1,1] [1,1]

SRM

Conv2d + PReLU [6,6] [1,1]
Conv2d + PReLU [1,1] [1,1]

Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]
Conv2d [3,3] [1,1]

Conv2d + PReLU [3,3] [1,1]
Conv2d + PReLU [1,1] [1,1]

ConvTranspose2d + IN +ReLU [9,9] [2,2]

Deep Block

Conv2d + IN [8,8] [1,1]
Conv2d + IN [8,8] [1,1]

Conv2d [1,1] [1,1]
Conv2d [1,1] [1,1]

ReflectionPad2d
Conv2d [7,7] [1,1]

4.4. Ablation Study

Binary Cross-Entropy (BCE), Mean Square Error (MSE), and Hinge loss are popular
loss functions for classification. Cross-entropy calculated a score that summarizes the
average difference between the actual and predicted probability distributions for predicting
class 1. The score is minimized, and the perfect cross-entropy value is 0. The range of BCE
output is from 0 to 1. MSE computes the sum of squared distances between the ground truth
value and the predicted value. The Hinge loss function emphasizes examples to have the
correct sign, adding more error when there is a difference in the sign between the ground
truth and the predicted value. Figure 5 shows qualitative comparison inpainting results
between using binary cross entropy loss, L2 loss and Hinge loss in discriminators. Table 4
compares the results from different types of loss functions used in discriminators with
the property of square-shaped and arbitrary-shaped regions. Our results outperformed
others when we chose Hinge loss for our discriminators during training the model. We also
validate the effectiveness of SRM in our model. Table 5 shows the quantitative results with
SRM and without using it, with the property of square-shaped and arbitrary-shaped regions.
The results show that generated images by the model with SRM are of better performance,
which proved the positive effect of SRM in making the model generate features with
useful details. Tables 6 and 7 show the quantitative comparison of PSNR/SSIM/MSE/UQI
between the multi-task and mono-task framework in the property of arbitrary-shaped and
square-shaped regions. Although we integrated the edge learning task or organ boundary
task, the results are slightly increased in the PSNR metric. Our method outperformed the
rest of the methods when we used a multi-task learning framework based on both edge
and organ boundary learning. It does prove the positive value of adding the auxiliary task
into the network. Figure 6 presents qualitative comparison inpainting results between
using the mono-task framework, multi-task with organ boundary knowledge framework,
multi-task with edge knowledge framework and multi-task with boundary combined with
edge knowledge framework.



Appl. Sci. 2021, 11, 4247 17 of 19

5. Conclusions

This paper presented an efficient multi-task learning network for medical image
inpainting based on organ boundary awareness. We utilized the auxiliary tasks of edge
and organ boundary prediction to make the model generate the sharp and clear images for
inpainting by learning the detailed structure of organs. Our model proved itself efficient in
the reconstruction of the degraded or distorted organs and generates plausible boundaries
for the inpainting. Based on detailed experimental evaluation, we demonstrated that the
proposed method outperforms the state-of-the-art methods on medical image inpainting.
It achieved the best results in literature so far, with the highest PSNR and lowest MSE
value for both of the arbitrary-shaped and the square-shaped regions. The proposed model
generates the sharp and clear images for inpainting by learning the detailed structure
of organs. Therefore, our method was able to show how promising the method is when
applying it in medical image analysis, where the completion of missing or distorted regions
is still a challenging task. The research is a good foundation for future medical imaging
analysis and helps the diagnostic and prognostic capabilities of medical experts. We hope
to extend the proposed method of handling other systems of medical images such as X-rays,
magnetic resonance, or ultrasound images. Additionally, in medical analysis, there are
so many datasets that are quite small in size. Therefore, it is essential to optimize the
model when applied to small datasets to achieve good results. Some research directions
use relatively small datasets but still achieve good performance, such as [41–43]. In the
future, we will optimize the proposed model to apply it to small datasets.
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