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Abstract: The COVID-19 pandemic requires the rapid isolation of infected patients. Thus, high-
sensitivity radiology images could be a key technique to diagnose patients besides the polymerase
chain reaction approach. Deep learning algorithms are proposed in several studies to detect COVID-
19 symptoms due to the success in chest radiography image classification, cost efficiency, lack of
expert radiologists, and the need for faster processing in the pandemic area. Most of the promising
algorithms proposed in different studies are based on pre-trained deep learning models. Such
open-source models and lack of variation in the radiology image-capturing environment make the
diagnosis system vulnerable to adversarial attacks such as fast gradient sign method (FGSM) attack.
This study therefore explored the potential vulnerability of pre-trained convolutional neural network
algorithms to the FGSM attack in terms of two frequently used models, VGG16 and Inception-
v3. Firstly, we developed two transfer learning models for X-ray and CT image-based COVID-19
classification and analyzed the performance extensively in terms of accuracy, precision, recall, and
AUC. Secondly, our study illustrates that misclassification can occur with a very minor perturbation
magnitude, such as 0.009 and 0.003 for the FGSM attack in these models for X-ray and CT images,
respectively, without any effect on the visual perceptibility of the perturbation. In addition, we
demonstrated that successful FGSM attack can decrease the classification performance to 16.67%
and 55.56% for X-ray images, as well as 36% and 40% in the case of CT images for VGG16 and
Inception-v3, respectively, without any human-recognizable perturbation effects in the adversarial
images. Finally, we analyzed that correct class probability of any test image which is supposed to be 1,
can drop for both considered models and with increased perturbation; it can drop to 0.24 and 0.17
for the VGG16 model in cases of X-ray and CT images, respectively. Thus, despite the need for data
sharing and automated diagnosis, practical deployment of such program requires more robustness.

Keywords: COVID-19; deep learning; adversarial attack; FGSM attack; radiology images

1. Introduction

The COVID-19 pandemic has had a devastating influence on the well-being and
health of the population worldwide, by the infection by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2). Effective screening of infected patients is a vital
step in the fight against COVID-19. Therefore, infected people can receive treatment
immediately and can be isolated to reduce virus spread. The polymerase chain reaction
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(PCR) method is the gold standard approach used to detect COVID-19 cases by detecting
SARS-CoV-2 RNA from collected samples or through pharyngeal or nasopharyngeal
swabs [1]. Radiography examination, another screening method for COVID-19, conducts
chest radiography imaging such as X-ray or computed tomography (CT) imaging, and
radiologists can analyze them for visual signs of SARS-CoV-2 viral infection. PCR testing
has high sensitivity, but it is a laborious, complicated, costly, and very time-consuming
manual process. Strict requirements for laboratory environment and limited supply delay
the precise diagnosis of suspected patients, posing challenges to preventing the spread of
the infection, mostly at the epidemic zone. On the other hand, the radiography examination
is faster and more widely available [2]. Thus, a chest X-ray or CT imaging can be performed
for a patient. If radiography and clinical situations are normal, patients can go home and
wait for the etiological test results. However, patients may be admitted to the hospital if the
X-ray film shows pathological conditions. Thus, radiography examination is very useful
approach over the PCR testing and comes out with higher sensitivity in some cases [3].

Several recent reports have emphasized chest CT as a key component of the diag-
nostic procedure for suspected COVID-19-affected patients [4–6]. Abnormalities in chest
radiography images exist for COVID-19-infected people [4,7]; therefore, it is a vital tool in
epidemic areas for COVID-19 screening [8]. The visual indicators can be elusive; therefore,
the lack of expert radiologists is a bottleneck to interpret the radiography images. Medical
diagnosis uses computer vision algorithms without the input of a human clinician in
many countries [9], and deep learning (DL) has been used successfully with remarkable
performance for the automatic diagnostics of diseases, including lung diseases [10,11].
Computer-aided diagnostic systems can support radiologists in the more accurate and
faster interpretation of radiography images for COVID-19 detection. Many proposed deep
learning-based artificial intelligence (AI) systems have presented promising accuracy to
detect COVID-19 symptoms in radiography imaging [12,13]. The Pre-trained Inception
model was utilized after fine-tuning followed by a fully connected network to classify viral
pneumonia and COVID-19 [14]. Along the same path, Narin et al. identified COVID-19
from lung CT images and chest X-ray images [15]. They also considered the transfer
learning-based Inception-v3 model. Pre-trained VGG16 was also used frequently, along
with other available pre-trained models in a transfer learning setting to detect COVID-19
from radiology images in several recent studies [16–18]. Due to the better performance and
common use throughout several relevant studies, we applied VGG16 and Inception-v3 as
representatives of popular transfer learning pre-trained models.

In parallel with the progress of medical DL, adversarial examples have uncovered
vulnerabilities in many state-of-the-art DL systems [19]. The need for automated diag-
nosis makes the process vulnerable to adversarial attack. Rare disease image sharing
to build big data repositories for COVID-19, sharing of pre-trained model parameters
and intruder access to diagnosis, and network-based diagnosis systems can create the
attack. Adversarial examples intentionally craft machine learning model inputs to force
the model to generate an incorrect diagnostic result. Adversarial examples typically tend
to attempt to reduce the prediction confidence of the target model, changing the output of
classification of some sample to any different class from the original class. Deployment of
deep learning models for COVID-19 diagnosis is also vulnerable to adversarial examples.
These radiology images are captured with well-established and pre-defined exposure and
positioning, making adversarial attacks comparatively easier than other computer vision
applications [20]. Moreover, most of the successful deep learning methods consisted of
the same set of pre-trained ImageNet models and a lack of architectural diversity. Due
to research transparency, these models are also available publicly. Additionally, data are
often shared among institutions to generate a big data repository for rare diseases such as
COVID-19. These reasons require extensive research on possible attacks and robust train-
ing approaches for these models. Cutting-edge techniques of adversarial attacks such as
FGSM attack use optimization principles to generate small perturbations to fool any target
model. Apart from exploring the limitations of current DL methods, this research received
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attention because of the security threats for deploying these diagnostic DL algorithms in
both physical and virtual settings [21–24].

In this paper, we demonstrated the state-of-the-art DL models used in a transfer
learning setting to classify COVID-19 samples that are vulnerable to adversarial attacks.
We crafted the FGSM attack for DL-based transfer learning algorithms that are commonly
used in chest radiology classification and CT imaging to detect COVID-19. We studies
the adversarial perturbation variation effect on the visual perceptibility as well as attack
performance. Extensive experiments were conducted to analyze potential vulnerability
in terms of degradation of the correct class probability score for correct classification and
quantifying misclassifications because of FGSM attack. We validated these findings using
publicly available COVID-19 patient data.

2. Materials and Methods

In this study, we used chest X-ray and CT images of different publicly available
respiratory syndromes including COVID-19-infected patients, and we have applied our
models to these datasets. We have briefly discussed our applied DL models and attack
design for radiology image classification.

2.1. Dataset Description

This dataset is a collection of radiology images of COVID-19 cases with chest X-ray and
CT images. It comprises COVID-19 cases as well as some other respiratory syndromes [25].
This dataset is publicly available and contains 100 COVID-19 images of frontal view X-rays
and prognostic data resource for research. According to the dataset reference, a senior
radiologist from Tongji Hospital, Wuhan, China, who is experienced in the diagnosis and
treatment of a large number of COVID-19 patients, confirmed the utility of this dataset.

Table 1 summarizes the collection of this dataset. Another dataset we used on CT
images consisted of labeled CT scan images (746 images) and is used frequently to develop
COVID-19 detection models. This COVID-CT-Dataset [26] had 349 CT images containing
clinical findings of COVID-19 from 216 patients.

Table 1. Image distribution in dataset.

COVID Non-COVID Total

Chest X-ray Images 141 127 268
Chest CT Images 349 397 746

2.2. Deep Transfer Learning for Radiology Images

All of the state-of-the-art deep learning-based COVID-19 detection algorithms are
based on the concept of transfer learning. Transferable knowledge in the form of expressive
features is extracted from the source domain by feature learning algorithms. The source
domain data can be denoted as DS = {(xS1; yS1), (xSn; ySn)}, where xSi ∈ XS is the data
instance, and the consequent class label is ySi ∈ YS. Likewise, the target-domain data is
denoted as DT {(xT1; yT1), (xTn; yTn)}, where the input xTi ∈ XT and the corresponding
output is yTi ∈ YT; in most cases, 0 < nT << nS. Given a learning task TS from source
domain DS and learning task TT at a target domain DT, transfer learning aims to develop
the learning of the objective predictive function fT(.) in DT using the knowledge in DS and
TS, where DS 6= DT, or TS 6= TT [27].

Convolutional neural networks (CNNs) are widely used to classify radiology images.
CNNs are made of three major types of layers: A convolutional layer, consisting of a
learnable kernel and three hyperparameters—depth, stride and setting zero padding. For
an input image X and a filter f, the convolution operation Z = X * f; The pooling layer
decreases the dimensionality of the representations and fully connected layers for input X,
weight W, and bias b; FC first computes a linear transformation on the data, followed by
some non-linear activation fa to capture the complex relationships Z = fa (WT.X + b). All
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the parameters are adjusted through different variations of gradient descent optimization
technique [28]. CNN learning the central concept behind deep learning tactics is the
automated discovery of abstraction.

2.3. Transfer Learning from VGG16 CNN Model

We adopted the frequently used VGG16 CNN architecture [29] for classification and
attack generation. This model has two parts, feature extractor and classifier. In the feature
extractor part, there is a stack of convolutional layers which uses filters with a small
receptive field of 3 × 3, and also use 1 × 1 convolutional filters where the convolutional
stride is fixed as 1. The feature extractor part of VGG16 is used to extract the feature
of the input images. The input radiology image dimension is kept as (224 × 224 × 3)
and it is passed through a stack of convolutional layers of the VGG16 pre-trained model
with corresponding Imagenet dataset-based pretrained weights. For the classifier part, an
average pooling 2D layer is concatenated with the last output layer of feature extractor
to reduce overfitting the model by reducing its parameter; it is then followed by a fully
connected layer of 64 nodes having an ReLU activation function. Afterwards, a dropout
layer of value 0.5 is used to reduce overfitting and the final output layer consists of a
softmax function which leads the classification. “Binary_crossentropy” is used as a loss
function, and “adam” is used as an optimizer to minimize the loss function. Per epoch, the
decay rate is reduced from the learning rate’s initial value of 1× e−3. The transfer learning
architecture is depicted in Figure 1.
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2.4. Transfer Learning from Inception-v3 CNN Model

Another model that we used is Inception-v3 [30] for classification and attack genera-
tion. It has been used to generate many state-of-the-art radiology images in classification
tasks. Inception-v3 is a successor to Inception-v1. The architecture contains a repeating
Inception Block with parameter hyper-tuning facility. Several convolutional filters ranging
from 1 × 1 to 7 × 7 extract features from the input with no local information loss. Similar
to the previous model, the input to the Inception-v3 model is also a 224 × 224 × 3-sized
image. The final model is depicted in Figure 2 and consists of this feature extraction part of
Inception-v3 and a full stack of convolutional layers concatenated with the first one.

All the layers except FC of this model were kept frozen. The dense layer contained
1024 nodes and the ReLU activation function. We used a dropout of 0.4 to reduce the
parameters to avoid overfitting the model. Finally, the output layer contained a softmax
function that resulted in the classification. “Binary_crossentropy” was used as a loss
function and “Adam” was used as an optimizer to minimize the loss function. In every
epoch, the decay rate was reduced from the learning rate’s initial value from 10 to 3. For
transfer learning, because the new dataset was small but different from the original dataset,
we prepared the feature extractor and trained a linear classifier in the FC layer.
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2.5. Adversarial Attack

An adversarial attack embodies subtle changing of an original image in such a way
that the changes are almost imperceptible to the human eye. Hence, the modified image
is named an adversarial image that is misclassified by the classifier. Adversarial noise
can significantly affect the robustness of deep neural networks for a wide range of image
classification applications. There are two types of adversarial attacks: in-distribution (IND)
adversarial attacks, and out-of-distribution (OOD) adversarial attacks [31]. While IND
adversarial attacks have extensively been studied including for wide range of applica-
tions, this paper demonstrates that attacks such as FGSM are sufficient to degrade the
performance of reliable DL models [32,33].

Fast Gradient Sign Attack

In a sentence, the fast gradient sign method works by using the gradients of the neural
network to create an adversarial example. Ian Goodfellow et al. (2014) first invented the
fast gradient sign method for producing the adversarial images [19]. The gradient sign
method applies the gradient of the underlying model to generate the adversarial examples,
according to Equation (1):

x′ = x + ε · sign(5x J(θ, x, y)) (1)

The original image is x, the original class of x is y, and θ is the model parameter vector.
Here, J(θ, x, y) is the loss function used to train the network. First, the gradient of the
loss function according to the input pixels is calculated. The 5 operator is one of the
mathematical ways of taking the derivatives of a function regarding different parameters
of the model. Hence, 5x J(θ, x, y) is the gradient vector from where the sign of it is
taken. The sign of the gradient can be positive or negative depending on the loss function.
The positive sign denotes that an increase in pixel intensity increases the loss, i.e., the
error that the model makes, and the negative sign represents a decrease in pixel intensity
which increases the loss. This vulnerability occurs when the model linearly deals with a
relationship between an input pixel intensity and the class score. The process is depicted in
Figure 3.

The ε · sign(5x J(θ, x, y)) stands for a multiplication of a very small epsilon value ε
with the signed value obtained from the gradient vector. Then, to create the adversarial
images X′, the result of the multiplication is simply added to the original image X.

x′ = x + η (2)

where η denotes ε · sign(5x J(θ, x, y)).
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Therefore, varying the value of epsilon ε, usually from 0 to 1, produces different
adversarial examples. These examples are mostly imperceptible to the human eye [34].

3. Results

The Tensorflow deep learning library and python programming language were used
to implement the code of DL models and FGSM attack. We experimented with four
different approaches. To start with, we analyzed the performance of the VGG16 algorithm
for COVID-19 classification from X-rays by using transfer learning followed by in-depth
analysis of the drop of performance of this model as it suffers from FGSM attack. Later,
we analyzed the performance degradation of VGG16 and the Inception-V3 algorithm for
COVID-19 classification from X-ray and CT images.

3.1. Transfer Learning to Diagnose COVID-19 from Chest X-ray

To understand the performance drop and vulnerability of VGG16 and Inception-v3
pre-trained DL models for COVID-19 detection, we first analyzed the performances of
these models in an attack-free environment. We resized the images to 224× 224× 3 and fed
them into the DL architecture. An 80:20 split was used to divide the images into training
and test sets for chest X-ray images. The total number of training images was small enough;
therefore, the training performance saturated quickly, as shown in Figure 4 through the
training and test accuracy.
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Tables 2 and 3 enlist the performance details of the VGG16 and Inception-v3 algorithm,
respectively, using a confusion matrix. Figures 4 and 5 show the corresponding accuracy,
precision, recall, F1 score and AUC. The VGG16 model classifies COVID-19 models with
high precision, recall, and F1 of 0.97, 1 and 0.98, respectively. Inception-v3 also came out
with a similar accuracy. In the AUC curve, validation data were the same as the test data
because we had very little data to train and test. From Figure 4, it can be seen that the
AUC for the performance is either equal to 1 or close to 1 during the best performance
for VGG16 and Inception-v3. Thus, the model is found to be reliable in absence of FGSM
attack to detect COVID-19-infected people.

Table 2. Confusion matrix for performance of the VGG16 model on chest X-rays.

Actual COVID-19 Actual Normal

Predicted COVID-19 28 1
Predicted Normal 0 25

Table 3. Confusion matrix for performance of the Inception-v3 model on chest X-rays.

Actual COVID-19 Actual Normal

Predicted COVID-19 28 0
Predicted Normal 0 25
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3.2. FGSM Attack Analysis for Chest X-ray

After developing the transfer learning-based models to classify COVID-19 samples,
we applied the FGSM attack on the developed models. For the FGSM attack, we focused
on the perturbation degree and corresponding perceptibility effect on chest X-ray images,
to see whether subtle perturbation could create an adversarial image that can fool a human
radiologist as well as a computer.

To illustrate the potential risk and performance drop due to the FGSM attack on
promising transfer learning models for COVID-19 detection, we experimented by varying
the amount of perturbation (ε) in the training images. In Figure 6, the left column figures are
original images, and the right-most column figures are corresponding adversarial images
generated by FGSM attack. Figure 6c,i clearly depict that misclassification can occur with a
very small perturbation and for both considered models. ε of 0.009 successfully generated
an adversarial image due to the FGSM attack, which is not recognizable by the human eye.
For ease of discussion, we can define such perturbation as safe perturbation magnitude
for the attacker. On the other hand, perturbation of 0.08 generated adversarial images that
could be distinguished from the original images by the human eye, as seen in Figure 6f,l.
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Table 4 and Figure 7 clarify, in detail, that as the ε increases, the number of incorrect
predictions increases for the considered representative transfer learning models. It is illus-
trated that very small perturbation of the FGSM attack is sufficient to cause a catastrophic
drop in diagnostic performance, while the adversarial images are safe to see in the human
eye. Table 4 and Figure 7 elucidate that for a safe perturbation magnitude such as 0.009,
the performance drops significantly to almost 16% for VGG16 and 55% for Inception-v3,
making these models unusable for COVID-19 detection purpose as long as no protective
screening or robust training is ensured. Figure 6f,l also shows that with increasing ε, the
noise in adversarial images becomes recognizable by the human eye and the misclassifica-
tion continues to occur for the mentioned model for these images. Experiments suggest
that at higher noise magnitudes, the performance fall was caused by the image corruption
from noise, although to a very small extent. Both human experts as well as a computer
can be fooled through detecting the noise. Thus, the FGSM attack shows the vulnerabil-
ity of state-of-the-art pre-trained DL COVID-19 detection models that were successfully
classifying COVID-19 samples. Some medical images have significantly high attention
regions. Rich biological textures in medical images often distract deep learning models
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to pay proper attention into the areas that are not important for the diagnosis. Subtle
perturbations in these regions results in significant changes in model prediction.

Table 4. Diagnostic performance drop for different ε of FGSM attack in chest X-ray images.

ε
VGG16 with Adversarial Image Inception-v3 with Adversarial Image

Total Correct Total Incorrect ACC (%) Total Correct Total Incorrect ACC (%)

0.0001 52 2 96.29 54 0 100
0.0003 52 2 96.29 53 1 98.15
0.0005 52 2 96.29 52 2 96.30
0.0007 52 2 96.29 51 3 94.44
0.0009 51 3 94.44 50 4 92.59
0.001 51 3 94.44 49 5 90.74
0.003 40 14 74.07 36 18 66.67
0.005 16 38 29.63 31 23 57.41
0.007 10 44 18.52 30 24 55.56
0.009 9 45 16.67 30 24 55.56
0.01 4 50 7.41 30 24 55.56
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Finally, we investigated the drop of class probability score for images belonging to the
correctly predicted class. The deep transfer learning approaches learn transferable features
with minimum perturbation; therefore, the model can classify some images successfully.
Despite correct classification, for FGSM attack, the probability decreased for an image
belonging to the correct class. We investigated and illustrated that the performance also
drops in terms of probability score for successfully classified images.

For an original image x, the correct classification probability was noted. For the same
image, the classification score of corresponding adversarial image x′ was investigated
if both x and x′ were correctly classified. Figure 8 shows that, for the same image, the
FGSM attack resulted in a degradation of the probability score for the image to belong
to a particular class. As shown in Figure 8 for a ε of 0.009, the probability for a COVID-
19-positive image belonging to COVID-19-positive decreases to 0.91 from that of 1.00
for the VGG16 network. Additionally, for the Inception-v3 model, the probability also
decreases, to 0.93 from that of 1.00. It is obvious that if the ε is further increased, the
probability will decrease and result in misclassification. Moreover, the decreased probability
value is also dangerous because medical imaging requires high-precision performance.
Figure 6c,i shows that ε of 0.009 can generate adversarial images where perturbations are
not recognizable in the human eye; Table 5 depicts that ε of 0.008 can cause an average
correct class probability drop of 0.24 for the VGG16 model. Thus, the confidence of the
classifier to predict the correct class of a sample is reduced, causing the model to be less
reliable. The Inception-v3 model was found to be robust to FGSM attack for this task.
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Table 5. Average drop of predicted correct class probability for adversarial chest X-ray images.

ε

VGG16 Inception-v3

Average
Original

Probability

Average
Adversarial
Probability

Average
Probability

Decrease

Average
Original

Probability

Average
Adversarial
Probability

Average
Probability

Decrease

0.0001 0.966888 0.962881 0.004008 1 1 0
0.0003 0.966888 0.953583 0.013305 1 0.999663 0.000337
0.0005 0.966888 0.942397 0.024491 0.999234 0.981813 0.017422
0.0007 0.966888 0.92935 0.037538 0.999215 0.981803 0.017413
0.0009 0.975621 0.930943 0.044678 0.999226 0.981413 0.017813
0.002 0.984782 0.867197 0.117585 1 0.979678 0.020322
0.004 0.993125 0.795419 0.197706 1 0.979668 0.020332
0.006 0.996665 0.810233 0.186431 1 0.979638 0.020362
0.008 0.997023 0.753577 0.243445 1 0.979528 0.020472

3.3. Performance of VGG16 and Inception-v3 in Diagnosing COVID-19 from Chest CT Images

In addition to analysis on chest X-ray image-based COVID-19 diagnostic approaches,
we analyzed the performance and vulnerabilities of the pre-trained models for chest CT-
based diagnosis approaches. Similar to the previous experiment, we used an 80:20 split
of data to divide the dataset into a training and test set. Figure 9 shows the training and
test accuracies for the VGG16 and Inception-v3 models during different training epochs. It
can also be seen from Tables 6 and 7, and Figures 9 and 10 that the AUC, precision, and
recall are the same in terms of the test sample classification for these models. Although the
amount of training data affects the learning performance, our experiment focuses on the
variation of performance due to the FGSM attack for any given volume of training data, as
illustrated in the next experiment.
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3.4. FGSM Attack Analysis for Chest CT Images

CT scans are more significant compared to X-rays because of high-quality, detailed
image generation capability. This sophisticated X-ray can take a 360-degree image of the
internal organs by rotating an X-ray tube around the patient and make internal anatomy
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clearer by eliminating overlapping structures. However, efficient adversarial images can
also be crafted for these images.

To illustrate the similar vulnerability of promising TL models for CT image-based
COVID-19 detection, we investigated the effect of perturbation (ε) variation in FGSM attack.
Figure 11c,i clearly show that misclassification can occur with a very minor perturbation
and for both considered models. ε of 0.003 or 0.0007 successfully generated adversarial
images due to the FGSM attack, where noise was imperceptible to human eye but caused
misclassification. On the other hand, perturbation of around 0.07 or 0.09 generated misclas-
sified adversarial images which could be detected by the human eye, as seen in Figure 11f,l.
Table 8 and Figure 12 elucidate that for an imperceptible perturbation (ε) such as 0.003,
the classification performance drops significantly to 36% for VGG16, and for ε of 0.0007,
performance drops to 40% for Inception-v3, making these models unusable for COVID-19
detection purposes.
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Table 8. Diagnostic performance drop for different ε of FGSM attack in chest CT images.

ε
VGG16 with Adversarial Image Inception-v3 with Adversarial Image

Total Correct Total Incorrect ACC (%) Total Correct Total Incorrect ACC (%)

0 126 24 84.00 126 24 84.00
0.0001 125 25 83.33 120 30 80.00
0.0003 118 32 78.67 95 55 63.33
0.0005 108 42 72.00 74 76 49.33
0.0007 106 44 70.67 60 90 40.00
0.0009 103 47 68.67 52 98 34.67
0.001 102 48 68.00 47 103 31.33
0.003 54 96 36.00 32 118 21.33
0.005 27 123 18.00 32 118 21.33
0.007 13 137 8.67 32 118 21.33
0.009 5 145 3.33 32 118 21.33
0.01 2 148 1.33 32 118 21.33
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0 126 24 84.00 126 24 84.00 
0.0001 125 25 83.33 120 30 80.00 
0.0003 118 32 78.67 95 55 63.33 
0.0005 108 42 72.00 74 76 49.33 
0.0007 106 44 70.67 60 90 40.00 
0.0009 103 47 68.67 52 98 34.67 
0.001 102 48 68.00 47 103 31.33 
0.003 54 96 36.00 32 118 21.33 
0.005 27 123 18.00 32 118 21.33 
0.007 13 137 8.67 32 118 21.33 
0.009 5 145 3.33 32 118 21.33 
0.01 2 148 1.33 32 118 21.33 

 

  
(a) VGG16. (b) Inception-v3. 

Figure 12. Performance for different ε of FGSM attack in chest CT images. Figure 12. Performance for different ε of FGSM attack in chest CT images.

Finally, we investigated the drop in class probability score for correctly classified CT
images based COVID-19 detection. Figure 13 shows that for same image, FGSM attack
resulted in a decrease in probability score for the image to belong to any class. As shown
in Figure 13, for a ε of 0.009, the probability of a COVID-19-positive image belonging to
COVID-19-positive decreases to 0.93 from that of 0.99 when VGG16 is used. The probability
also decreases to 0.98 from that of 1.00 for the Inception-v3 network in the presence of
adversarial images that are not recognizable by the human eye. Therefore, it proves the
models to be vulnerable to physical deployment in medical systems. Table 9 depicts that ε
of 0.008 can cause an average probability drop of 0.17 for the VGG16 model, reducing the
confidence of the classifier to predict the correct class of a sample which also makes the
model vulnerable. The Inception-v3 model was found to be comparatively robust for the
correctly classified samples.
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Table 9. Average drop of predicted correct class probability for adversarial chest CT images.
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Average
Original

Probability

Average
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Probability

Average
Probability

Decrease

0.0001 0.970143 0.95651 0.013633 1 0.999243 0.000757
0.0003 0.979453 0.943228 0.036225 0.9998 0.9965 0.0033
0.0005 0.984652 0.935994 0.048657 1 0.994946 0.005054
0.0007 0.990419 0.930707 0.059711 1 0.994075 0.005925
0.0009 0.995197 0.938476 0.056721 0.997934 0.986894 0.01104
0.002 0.997335 0.903967 0.093368 1 0.981473 0.018527
0.004 0.999686 0.864664 0.135021 0.99249 0.973294 0.019196
0.006 1 0.836082 0.163918 1 0.972294 0.027706
0.008 1 0.826898 0.173102 1 0.971526 0.028474

4. Discussion

The COVID-19 pandemic is a danger to global health and requires the development
of models to identify infected people and isolate them. To automate the diagnosis process
from chest radiology images, deep learning-based artificial intelligence techniques provide
a promising method to address the problem and can be quickly and inexpensively used in
a pandemic situation.

However, the most promising deep learning-based approaches require vulnerability
analysis to adversarial attacks such as FGSM attack before deployment. Most frequently
used pre-trained models to develop radiology image-based COVID-19 diagnosis techniques
are publicly available with all relevant parameters. Moreover, these images are captured in
a well-defined standard environment for which attack generation is also easier. Sharing
of the images to build big data environment for rare disease such as COVID-19, the
sharing of reusable pre-trained deep learning model parameters and access of the intruders
to computerized and network-based diagnosis systems play a vital role to make the
system vulnerable to adversarial attack. Therefore, there are widespread relevant research
opportunities.

We developed transfer learning-based deep learning methods from popular pre-
trained models VGG16 and Inception-v3. For both X-ray and CT images, these models
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showed trustworthy performance in terms of various metrics such as accuracy, precision,
recall, F1 score, and AUC. Apart from that, this research investigated the vulnerability of
the developed deep learning models which are representative of transfer learning-based
models for COVID-19 detection from radiology images. For X-ray images, the VGG16
model accuracy dropped significantly by more than 90%, and for the Inception-v3 network,
it dropped by 30% if the perturbation increased from 0.0001 to 0.09. Similarly, for CT
images, the FGSM attack also revealed potential risks such as misclassification. Moreover,
our study shows that the degree of perturbation considerably affects human perceptibility
of attacks. This study depicted that for small perturbations, although no noise can be
visible in the adversarial images, misclassification as well as class probability reduction can
happen for these images. Rich textures in COVID-19 X-ray images often cause the deep
learning models to focus on unimportant regions of the features. Therefore, the adversarial
attack needs to be considered for these image-based COVID-19 diagnosis techniques before
they are practically deployed. The FGSM attack can be crafted from open-source resources;
therefore, this research utilized open-source pre-trained models, parameters, and datasets
for COVID-19 detection.

Analyzing the vulnerability for other attacks and examining existing defense method
suitability can be an important future work. Existing defense techniques include network
distillation to extract knowledge from deep neural networks for robustness [21], adversarial
training that trains the network with adversarial examples [19], and detecting adversar-
ial examples in the testing stage [35] as well as designing novel training methods such
as IMA that increase the margins of training samples in the input space for improved
robustness [36]. Additionally, because of multi-faceted adversarial examples, multiple
defense strategies can be performed together. More data for training the pre-trained models
that improve the classification and reduce vulnerability can be analyzed in versatile set-
tings. Moreover, a robust training method design to overcome FGSM attack for COVID-19
detection algorithms could be an interesting extension for this research.
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