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Abstract: Delay-based reservoir computing (RC), a neuromorphic computing technique, has gathered
lots of interest, as it promises compact and high-speed RC implementations. To further boost the
computing speeds, we introduce and study an RC setup based on spin-VCSELs, thereby exploiting
the high polarization modulation speed inherent to these lasers. Based on numerical simulations,
we benchmarked this setup against state-of-the-art delay-based RC systems and its parameter space
was analyzed for optimal performance. The high modulation speed enabled us to have more virtual
nodes in a shorter time interval. However, we found that at these short time scales, the delay time and
feedback rate heavily influence the nonlinear dynamics. Therefore, and contrary to other laser-based
RC systems, the delay time has to be optimized in order to obtain good RC performances. We
achieved state-of-the-art performances on a benchmark timeseries prediction task. This spin-VCSEL-
based RC system shows a ten-fold improvement in processing speed, which can further be enhanced
in a straightforward way by increasing the birefringence of the VCSEL chip.

Keywords: VCSEL; semiconductor lasers; nonlinear dynamics; delay systems; machine learning;
neuromorphic computing; reservoir computing

1. Introduction

Reservoir computing (RC) is a neuromorphic computing technique which is gaining
popularity rapidly in our age of Big Data and Digital Sustainability, because there is an
urgent need for high-speed and energy-efficient computing techniques [1]. RC employs the
transient dynamics of a nonlinear reservoir to map input data unto a high dimensional state
space. An output layer can be constructed by sampling from this high dimensional state
space and trained to perform tasks that are notoriously difficult for CPU-based algorithmic
computing approaches, such as speech and pattern recognition, system identification and
timeseries prediction [2–5]. The main advantage of RC is the simplification of the training
procedure, as only a single layer of nodes needs to be trained and the larger part of the
network (the reservoir) is left as it is.

The reservoir of an RC system can be any dynamical system that has an accessible
high dimensional state space. Typically, the reservoirs are categorized into spatially and
temporally distributed reservoirs. In spatially distributed reservoirs, the individual neurons
(or nodes) can be accessed individually to read out their state value, very much like
neural networks. Some successful examples of spatially distributed reservoirs are echo
state networks [6,7], liquid state machines [8,9], a network of memristors [10], a network
of on-chip ring resonators [5,11,12] or an array of VCSELs [13]. RC with temporally
distributed reservoirs is generally known as a delay-based RC system [14]. A single
nonlinear dynamical system is subjected to feedback, which creates a recurrent network.
The nonlinear response of the RC system is enriched by preprocessing the input data with
a step-wise constant mask. The nodes in this case can be accessed indirectly by sampling
the temporal stream, hence we speak of virtual nodes. Photonic systems are especially
interesting to this end, because of their high-speed response and energy efficiency. Some
examples of photonic delay-based reservoir computing systems are a semiconductor laser
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subjected to feedback with electrical data injection [15,16] or optical data injection [17–20].
Delay-based RC lends itself very well for integrated design and the first results were
achieved in [21,22]. An overview of all the (photonic) RC systems can be found in [3,5,21].

Due to the time-multiplexed nodes in a delay-based RC setup, the processing speed is
inversely proportional to the duration of a single sample. This duration is determined by
the number of nodes and the length of these nodes in the time domain. In [17], processing
speeds around 10 MSa/s could be achieved, limited by the relaxation oscillations in the
intensity. Follow-up research in [18] showed that the length of the nodes could be shortened
thanks to phase dynamics occurring in the system, leading to speeds of 0.25 GSa/s. In [19],
it was suggested to further increase the processing speed by spreading the number of nodes
over different longitudinal modes available in the laser cavity.

Recently, ultra-fast modulation techniques have been demonstrated by relying on
the polarization dynamics of spin-VCSELs [23–25]. Modulation speeds of up to 200 GHz
were achieved in [26]. We conjecture that this fast modulation speed can be used to speed
up delay-based RC systems. In this work, we numerically investigated a delay-based RC
system using a spin-VCSEL and injecting the data via the pump ellipticity, such that we can
employ the ultra-fast polarization dynamics to increase the processing speed. Previously,
there have been numerical studies on delay-based RC systems using VCSELs, but they
rather rely on the phase dynamics and the polarization modes only serve to increase the
state diversity in the output layer via polarization multiplexing [27,28].

In the next section, we describe the model we used for the spin-VCSEL and we
provide details on our RC setup. Afterwards, we present the results obtained from different
parameter scans, accompanied by a discussion, followed by the conclusions.

2. The Theoretical Model
2.1. The Spin-VCSEL

The spin-flip model as described in [26] is used to simulate the spin-VCSEL, as it has
been shown to correctly describe the experimentally observed behavior of these lasers.
We extend the model to incorporate the optical feedback, which gives us the following
rate equations:

Ė± =
1

2τp
(1 + iα)(N ± n− 1)E± −

(
γa + iγp

)
E∓

−
(
εa + iεp

)∣∣E±∣∣2E± + ηeiΩE±(t− τD)

(1)

Ṅ = γ
[

J+(t) + J−(t)−N − (N + n)
∣∣E+

∣∣2 − (N − n)
∣∣E−∣∣2] (2)

ṅ = γ
[

J+(t)− J−(t)− (N + n)
∣∣E+

∣∣2 + (N − n)
∣∣E−∣∣2]− γsn (3)

Here, E± stands for the right (+) and left (-) circularly polarized components of the
slowly varying amplitudes of the electric field, N is the total population inversion in the
laser with a decay rate γ and n is the population difference between the spin-up and
spin-down electrons with a decay rate γs due to spin relaxation. The photon lifetime and
linewidth enhancement factor are given by, respectively, τp and α. The amplitude and
phase anisotropies of the laser cavity are given by γa and γp. The term

(
εa + iεp

)
|E±|2E±

takes into account saturation effects associated with the amplitude and phase of the field.
In the last term of Equation (1), E±(t− τD) is the optical feedback after a delay τD, Ω is the
constant feedback phase and η is the feedback rate. J± are the time-dependent pumping
rates of spin-up (+) and spin-down (-) electrons. In practice, as mentioned in [26], the spin-
VCSEL has an electrical pump J0 and a pulsed optical spin injection. The electrical pump
contributes equally to the spin-up and spin-down populations, whereas the individual
populations can be pumped separately with the optical spin injection. The pumping
mechanism is further explained in Section 2.2, since it is also the mechanism used to
inject data.
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The values used for the different parameters are summarized in Table 1. The parame-
ters of the spin-VCSEL were chosen to be the same as in [26], where a bitstream was being
modulated at speeds of 240 Gbit/s. The electrical pump and optical pump amplitude were
chosen after a few exploratory trials and in Section 3.3 an extensive scan was performed to
find the optimized values. The number of nodes was scanned from 5 to 100, as the typical
number lies in this range [19–21]. The node spacing is scanned over a range from 0.5 ps to
10 ps, which is centered around the period of the polarization oscillation π

γp
, because the

node spacing is typically of the same order of magnitude as the fastest time scale present in
the system [3,14].

Table 1. List of paramaters, designation and values used in the simulations for delay-based RC using
the SFM.

Parameter Symbol Value

Linewidth enhancement factor α 5
Carrier decay rate γ 1 ns−1

Photon lifetime τp 1.54 ps
Spin decay rate γs 450 ns−1

Linear dichroism γa −1.16 ns−1

Linear birefringence γp 200π GHz
Amplitude saturation factor εa 1.6

Phase saturation factor εp −3.2
Electrical pump J0 2Jth, unless mentioned otherwise.

Optical pump amplitude δJ 6Jth, unless mentioned otherwise.
Constant feedback phase Ω 0

Mask length τM τM = Nθ
Delay time τD scanned from 2.5 ps to 1 ns

Feedback rate η scanned from 1 to 100 ns−1

Number of nodes N scanned from 5 to 100
Node spacing θ scanned from 0.5 to 10 ps

2.2. The RC Setup

A schematic overview of the simulated theoretical model is shown on the left in
Figure 1. A spin-VCSEL is connected to a delay line, which has a round-trip time τD. Data
are injected in the VCSEL through the optical spin injection, such that we achieve the
following pump rates:

J+ =
J0

2
+ δJA(t) and J− =

J0

2
, (4)

where J0 is the previously mentioned electrical pump, δJ is the amplitude of the optical
spin injection and A(t) is the normalized masked data that is to be processed. The masked
data A(t) are obtained via the product I(t)M(t), where I(t) is the input data and M(t) is a
sequence periodically repeating a mask. The masked data A(t) are normalized between 0
and 1. The mask consists of N step-wise constant levels of duration θ. Each datapoint in
I(t) is held constant for a duration τM = Nθ that corresponds to the mask length, as shown
on the right in Figure 1. The purpose of the different levels in the mask is to create diversity
in the nonlinear response of the VCSEL, such that we obtain a diverse set of virtual nodes
spread along the delay line. The mask length τM is often matched to the delay time τD,
however, in this paper, this is not the case and τM can be much larger than τD, such that a
single masked datapoint is spread over multiple roundtrips of the delay line. A principal
mask is generated for a maximum of 100 nodes by randomly selecting each mask level
from the following set, (0, 0.25, 0.5, 0.75, 1). If N < 100, we used the first N values from this
principal mask to obtain our mask. The principal mask is kept fixed. We only inject data in
the spin-down carrier population, which contributes to the left circularly polarized mode.
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Figure 1. (left) Schematic overview of our setup, consisting of a spin-VCSEL connected to a feedback
line with delay τD. The spin-up and spin-down populations are pumped separately by J+ and J−,
respectively. (right) A simplified plot showing the input data I(t) in blue, the masked input data
A(t) in red and the timescales of τM and θ.

We do not have fixed values for the node separation θ, the number of nodes N, nor
the delay time τD or mask length τM, because this is the first time that delay-based RC
using spin-VCSELs is being investigated and we will scan these parameters for optimal
RC performance. Typically, θ is closely related to the fastest timescale of the laser-based
reservoir, which in this case is the polarization oscillation, which on its turn is linearly
dependent on the inverse of the birefringence γp. Hence, we expected θ to be in the range
of 1–10 ps, which is a substantial improvement in comparison with node spacings of 20 ps
used in other laser-based RC systems [19].

There are several ways in which the output layer of the RC can be constructed.
The virtual nodes Vi, shown in Figure 1, can either be formed by sampling the output
power P = |E|2 in a single mode (E+ or E−) or by concatenating the virtual nodes from
both modes

(
P+ = |E+|2 and P− = |E−|2

)
, resulting in 2N nodes in contrast with the N

nodes introduced by the mask. One could instead also construct an output layer consisting
of the output polarization

(
POLout =

P+−P−
P++P−

)
as virtual node values, but we found that

the performance was negatively affected by this added hyperbolic nonlinearity. We briefly
discuss this in our results in Section 3.1.

The training phase consists of feeding the setup with m masked datapoints and
sampling the virtual nodes, so that we obtain the state matrix Q (m× 2N). We already
know the expected output yexpected for the m datapoints and hence, the 2N weights of the
output layer can be calculated with the Moore–Penrose inverse Q+, such that:

w = Q+yexpected. (5)

The obtained weights are then kept constant, such that unseen data can be fed to the
system in order to test the performance. In this paper, the performance was benchmarked
by the Santa Fe timeseries prediction task [29]. The data were from the Santa Fe timeseries
competition [29] and consist of a univariate chaotic timeseries obtained from a NH3 laser.
The goal of the task was to predict the chaotic timeseries one step ahead. This task is
frequently used to benchmark RC setups [17,18,22,27]. The first 3000 datapoints were used
for the training and 1000 for testing. The performance was measured and indicated by the
normalized mean square error (NMSE):

NMSE(y, yexpected) =

〈
||y(n)− yexpected(n)||2

〉
〈
||yexpected(n)−

〈
yexpected(n)

〉
||2
〉 , (6)

where y(n) is the value predicted by the RC, yexpected is the expected value for the given
input and the symbols || . . . ||| and 〈. . .〉 stand for the norm and time average, respectively.
The lower the NMSE is, the better the system performs. For the Santa Fe timeseries predic-



Appl. Sci. 2021, 11, 4232 5 of 12

tion task, the state-of-the-art performances for numeric RC simulations ranges between
0.01 and 0.1 [4,19,21,22].

3. Results and Discussion

Our setup has many parameters that affect the RC performance, hence we will perform
scans along certain parameter spaces to obtain optimal parameter values.

3.1. The Role of Delay Time τD

In previous studies, the delay time τD is often matched to the mask length τM [14,17–19].
Initially, we did the same, such that (τD = τM). This allowed us to observe the effects of
feedback-induced dynamics (related to τD) on the performance and at the same time we
could find a combination of N and θ that might work for our benchmark task (τM = Nθ).
In Figure 2a,b, we saw the results of these scans for a low feedback rate η = 1 ns−1 and for a
high feedback rate η = 100 ns−1, respectively. For the system with a low feedback rate, we
saw a rather large area with good performance (lighter colors) in contrast with the results
for the system with a high feedback rate. We would expect the best performing regions to
be aggregated at higher values of N and around a particular value of θ, because the node
state diversity becomes poor at low N and the node spacing has to be around the period of
the polarization oscillations. Here, we see two contrasting plots for the different feedback
rates. For η = 1 ns−1, the absolute best performance was achieved at N = 50 and θ = 3
ps with NMSE = 0.044. For η = 100 ns−1, the absolute best performance was achieved at
N = 30 and θ = 0.5 ps with NMSE = 0.071. These best points were shown as red crosses
in Figure 2a,b.

Figure 2. Santa Fe timeseries prediction performance, indicated by the NMSE, color-coded unto the
parameter space spanned by N and θ for (a) η = 1 ns−1 and (b) η = 100 ns−1. The delay time was
fixed to match the mask length, τD = τM. The red crosses denote the minimum NMSE achieved
over the scanned space and the white dashed lines are a guide to the eye, denoting a constant delay
time τD and hence constant mask length τM.

On both plots, we see the regions with good performances (lighter colors) that coa-
lesce around hyperbolic curves, corresponding to constant mask length τM and the delay
time τD, as τD = τM. For the low feedback system, we found the best performance at
τD = τM = 150 ps and a larger region of good performance at τD = τM = 228 ps. These
are shown as white dashed lines in the left plot. For the strong feedback system, we found
the best performance at τD = τM = 15 ps, shown as a white dashed line in the right plot.
We observe that longer delay lines are required to obtain good performance for a low
feedback rate and vice versa. Furthermore, for low feedback rates, the best performances
are found near the middle of the hyperbolic line, showing a trade-off between the number
of nodes N and the node spacing θ. For high feedback rates, a similar trend is seen, where
the performance worsens as the number of nodes N is decreased. This makes sense as the



Appl. Sci. 2021, 11, 4232 6 of 12

diversity of states of the virtual nodes is reduced if N is too small and hence the nonlinear
memory capacity of the system will deteriorate [30].

It seems that the delay time, in combination with the feedback rate, has a very pro-
found effect on the performance of our setup via feedback-induced dynamics. This is in
stark contrast with previous delay-based RC setups using edge-emitting semiconductor
lasers, where the delay time τD had no such significant role in the RC performance [20,31].

The results indicate that τD and η affect the dynamical regime of the VCSEL consider-
ably. This observation was supported by the findings in [32], where the nonlinear dynamics
of the spin-VCSEL subjected to feedback was studied. The authors found that VCSELs
connected to longer delay lines quickly move towards chaotic regimes with increasing
feedback rates, whereas VCSELs connected to shorter delay lines would have various
plateaus of steady state behavior, interspersed between chaotic regions, as the feedback
rate is increased.

To further investigate the effect of τD and η on the dynamical regime, we prepared two
RC systems with the optimal parameters corresponding to the red crosses in Figure 2a,b.
We studied the modal output power as the system was injected with a constant value
instead of masked data. The resulting orbit diagrams of the modal output power, as the
feedback rate was varied, are shown in Figure 3a,b. In Figure 3a, we see the orbit diagram
for a long delay time τD = 150 ps. The laser has a steady state behavior for the lowest
feedback rate, but it quickly moves towards a chaotic regime via a period-doubling route.
In contrast, for a shorter delay line τD = 15 ps (orbit diagram shown in Figure 3b), we
see plateaus of steady state behavior, interspersed by periodic regimes, similar to findings
in [32].

Figure 3. Orbit diagram of the modal output power as the feedback rate η is varied for (a) τD = 150 ps
and (b) τD = 15 ps. The NMSE for the Santa Fe timeseries prediction task as the feedback is varied
for (c) τD = 150 ps and (d) τD = 15 ps.

In Figure 3c,d, we show the Santa Fe timeseries prediction performance as a function
of the feedback rate for τD = 150 ps and τD = 15 ps, respectively. Furthermore, we show
the performance for each possible output layer. From both plots, it is clear that the best
performances were achieved when the output layer consists of virtual nodes from both P+

and P−, whereas training on virtual nodes from a single mode gives the worst outcome.
Training on the output polarization

(
POLout =

P+−P−
P++P−

)
is not recommended either, since

its performance is almost always worse. We see a brief interval for η ∈ [50, 80] in Figure 3c,d
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where the output layer formed by the output polarization has a better performance than
the rest. However, this performance is nowhere near the minimum NMSE.

From the literature, we know that the best performing reservoirs are typically tuned
to be at the edge of a periodic or chaotic dynamical regime before data are injected into
the system [3,33,34]. It is at η = 1 ns−1 for τD = 150 ps and η = 100 ns−1 for τD = 15 ps,
where we see a switch from a steady state to a periodic regime. These are also the feedback
rates with which we achieve the best NMSE values. Another local minimum NMSE was
found around η = 15.5 ns−1 for τD = 15 ps in Figure 3d, which corresponds to a switch
from a steady state regime to a periodic regime in Figure 3b.

The findings from Figure 3 confirm our assumption that the delay time τD and feed-
back rate were intrinsically linked to the RC performance as opposed to previous RC setups,
where the delay time is several orders of magnitude larger, and where the delay can be
kept fixed when the feedback rate is changed [14,17,18,27].

3.2. Decoupling τD and τM

Now that we established that the delay time τD is intrinsically linked to the RC
performance, we decouple the mask length τM from the delay time τD, such that we can
find the optimal number of nodes N and optimal node spacing θ. There have already been
studies where the delay time was longer than the mask length (τD > τM), with state-of-
the-art performances [16,20,31]. This mismatch between mask length and delay time is
favorable for RC performances, because the interconnection between nodes over multiple
round trips becomes more complex. In our case, however, the delay time τD is already
fixed at rather low values. For the reservoir with weak feedback, the delay time is fixed at
τD = 150 ps and for the reservoir with strong feedback at τD = 15 ps. Here, we expect that
the case where τD < τM will be favored, since τM = Nθ and we need a sufficient number
of nodes N to be able to perform the tasks.

We did the same parameter scan as in Figure 2, but this time with constant delay
times (τD = 150 ps for η = 1 ns−1 and τD = 15 ps for η = 100 ns−1, corresponding to
the white lines in Figure 1) and the results are shown in Figure 4. We again see the best
performing regions coalesce along hyperbolic curves only corresponding to a constant mask
length τM this time. For the reservoir with low feedback, we find the best performance
NMSE = 0.025 at θ = 5.5 ps and N = 95, corresponding to τM = 522.5 ps. This point
was depicted with a red cross in Figure 4. The mask length at this point corresponds to a
processing speed of approximately 2 GSa/s.

Figure 4. Santa Fe timeseries prediction performance, indicated by the NMSE, color-coded unto the
parameter space spanned by N and θ for (a) τD = 150 ps and η = 1 ns−1, and (b) τD = 15 ps and
η = 100 ns−1. The red crosses denote the minimum NMSE achieved over the scanned space and the
white dashed lines are a guide to the eye, denoting a constant mask length τM 6= τD.

For the reservoir with strong feedback, shown in Figure 4b, we have a considerably
larger part of parameter space which gives excellent performance. The best performance
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for this reservoir is NMSE = 0.012, found at θ = 7.5 ps and N = 55, corresponding to
τM = 412.5 ps. This point is depicted with a red cross. However, we observe another
region with similar performances (NMSE around 0.015) around the hyperbolic curve
corresponding to τM = 188 ps (shown as a white dashed line). The points on this white
curve have a shorter mask length and hence a higher processing speed as compared to the
red cross. The processing speed for the points on this white line is 5.3 GSa/s, almost three
times faster than that of the RC with low feedback. Both based on the NMSE as well as the
processing speed, we found that our RC has superior qualities when operated with strong
feedback rates.

It is worth noting for the discussion later on, that at the best processing speed, a single
masked datapoint traverses the delay line τM

τD
= 3.5 times for the low feedback setting and

12.5 times for the high feedback setting.
We also note that the lower left corner of Figure 4 shows high NMSE values, i.e., worse

performances, which corresponds to the area where τD < τM. In this region, either the
number of nodes are not sufficient to deliver the nonlinear memory capacity needed to
perform the task or the node spacing becomes too small for the laser to be able to follow
the input data. These findings are similar to those in [20]. Similarly, in Figure 4b, we see
the lower left corner turn darker, indicating worsening performances. This area is smaller,
given that the delay time τD = 15 ps is smaller than τD = 150 ps in Figure 4a.

3.3. The Role of Pumping Parameters

Two other important parameters of the RC system are the electrical pump J0 and
the optical pump amplitude δJ. We scanned these two parameters, for a reservoir with
weak feedback and a reservoir with strong feedback corresponding to the red crosses in
Figure 4a,b. The result of this scan is shown in Figure 5a,b, respectively. We observe that
the best performance for the reservoir with weak feedback is found at higher electrical bias
as well as higher spin pump amplitude. For the reservoir with strong feedback, the best
performances are found at lower electrical biases and a fairly wide interval of optical pump
amplitudes (between 2Jth and 8Jth). The points of best performances are indicated by the
red crosses. For the low feedback reservoir, this point, corresponding to an NMSE of 0.015,
was found at an electrical pump of 7.5Jth and an optical pump amplitude of 9.5Jth. For the
high feedback reservoir, the lowest NMSE = 0.013 was found at an electrical pump of 3Jth
and an optical pump amplitude of 8Jth.

Figure 5. Santa Fe timeseries prediction performance, indicated by the NMSE, color-coded unto
the parameter space spanned by the electrical pump J0 and the optical pump amplitude δJ for
(a) η = 1 ns−1, τD = 150 ps, N = 95 and θ = 5.5 ps and (b) η = 100 ns−1, τD = 15 ps, N = 55 and
θ = 7.5 ps. The red crosses denote the minimum NMSE achieved over the scanned space.

The pump parameters are optimized to rather high values for the reservoir with weak
feedback and to low values for the reservoir with strong feedback. We presumed that these
optimized parameter sets are such that there is a balance between the linear and nonlinear



Appl. Sci. 2021, 11, 4232 9 of 12

memory capacity needed for the Santa Fe task. In Ref. [31], in the case of a standard
semiconductor laser, Köster et al. showed that the linear memory capacity drastically
decreases as the mask becomes longer than the delay time. In our reservoirs, both with
weak and strong feedback, the mask is longer than the delay time, namely τM = 3.5τD
for weak feedback and τM = 12.5τD for strong feedback. The nonlinear memory capacity
in these systems increases, since nodes related to one data sample (i.e., within one mask
length) strongly mix with each other due to the mask looping around the delay line
multiple times. This increase in nonlinear memory capacity comes at the expense of linear
memory capacity, which is typically due to the interaction between nodes of subsequent
data samples (i.e., over subsequent mask lengths). However, contrary to the system studied
in [31], which have two characteristic timescales (namely the nodal response timescale
and the feedback dynamics timescale), our system has three characteristic timescales that
can couple nodes with each other. The first of these is the timescale introduced by the
polarization dynamics, which governs the nodal response. The second is the timescale
introduced by the feedback dynamics, which couples nodes separated by the delay time
τD and lastly, we have the timescale introduced by relaxation oscillations (ROs). The RO
frequency and damping are strongly influenced by the pumping parameters.

We prepared two reservoirs to look at the effect of ROs on the interaction between
nodes. One reservoir was set up with a weak feedback rate ( η = 1 ns−1 and τD = 150 ps)
and another with a strong feedback rate (η = 100 ns−1 and τD = 15 ps). The other
parameters of these reservoirs were optimized for best performance in the Santa Fe task.
Both systems were injected with a constant stream of zeros until they reached a steady state
regime. Then, we applied a perturbation of length θ and observed how this perturbation
rippled through the system into the sum of the modal intensities.

The result is shown in Figure 6, where we showed the total output intensity response
for the reservoir with weak feedback (in blue) and for the reservoir with strong feedback (in
orange). For the sake of the discussion, we plotted the output versus the time in multiples
of the mask length (τM), meaning that the blue curve (τM = 522.5 ps) is slightly compressed
compared to the orange curve (τM = 412.5 ps). In addition, we noted that the perturbation
has a duration θ, which was different for both optimized systems, namely θ = 5.5 ps for
the weak feedback reservoir (blue curve) and θ = 7.5 ps for the strong feedback reservoir
(orange curve). The oscillations found in the output of the weak feedback reservoir and
strong feedback reservoir had frequencies of around 10 GHz and 5 GHz, respectively.
This corresponds to typical RO frequencies found for VCSELs operated at given pump
parameters. Furthermore, we see that the RO frequency and the damping increase as the
pump parameters are increased.

For the reservoir with weak feedback (blue curve in Figure 6), we see that the response
to the perturbation is short-lived. The perturbation introduced at the start of the data
sample has an effect over approximately one mask-length. This means that the nodes
related to one data sample (i.e., within one mask length) were interacting with each other
thanks to the RO, but also nodes between subsequent samples (i.e., over subsequent mask
lengths) interact with each other at the edges of the samples. The linear memory capacity
that is lost due to the mask looping 3.5 times around the delay line is somewhat reinstated
by the interaction between nodes of subsequent samples due to the RO.

For the reservoir with strong feedback (orange curve in Figure 6), we see that the
response lingers in the system for at least two subsequent data samples. The mask loops
for 12.5 times around the delay time, drastically decreasing the linear memory capacity
according to Ref. [31], however, we see that the pumping parameters were optimized such
that the RO damping rate was low and hence nodes over multiple samples could still
interact with each other, which will counteract the decrease in linear memory capacity.

To conclude this section, we observed that the weak and strong feedback reservoirs
could be fine tuned to give better performances, by adjusting the pumping parameters
that affect the relaxation oscillations, which on its turn affects how nodes within (and over
multiple) mask lengths interact with each other. Further detailed research into the linear
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and nonlinear memory capacities of the system can be useful to further interpret these
results, but such a study is outside the scope of this paper.

Figure 6. A reservoir with weak and another one with a strong feedback rate are prepared with a
constant injection of zeros. A perturbation is introduced in the first node of the second datapoint
and we observe how this perturbation ripples through the sum of the modal intensities. Parameters
for the reservoir with weak feedback: η = 1 ns−1, τD = 150 ps, N = 95, θ = 5.5 ps, J0 = 7.5Jth and
δJ = 9.5Jth and for the reservoir with strong feedback: η = 100 ns−1, τD = 15 ps, N = 55, θ = 7.5 ps,
J0 = 3Jth and δJ = 8Jth.

4. Conclusions

We numerically investigated a delay-based reservoir computer using a spin-VCSEL,
taking advantage of the high modulation speeds achievable with these lasers. We sys-
tematically scanned the RC performance as a function of the delay time, the mask length
and the pumping parameters. In contrast with known photonic delay-based RC systems,
this RC with spin-VCSELs shows a rather strong relation between the delay time and
feedback rate on one hand and the RC performance on the other hand. A reservoir with
weak feedback has better performances at longer delay times and vice versa for a reservoir
with strong feedback. We further observe that the weak (strong) feedback regimes also
favor different pumping parameters. We found that the reservoir with strong feedback has
superior qualities, both based on the RC performance and the processing speed.

The RC system is benchmarked using the Santa Fe timeseries prediction task and
has shown performances comparable to state-of-the-art delay-based RC systems, but at
a considerable faster processing speed. The speed reached with this setup is around
5 GSa/s, an improvement by a factor of 10 compared to delay-based RC using single-mode
semiconductor lasers [18,20], while maintaining the same error rate. The optimal node
spacing is found to be between 5 and 8 ps, which is of the same order of magnitude as
the inverse of the used birefringence (5 ps). Since the speed of this system is linked to the
birefringence of the lasing cavity, the processing speeds can be increased in the future as
the expertise on tuning the birefringence improves.
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