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Abstract: Renewable energy forecasts are critical to renewable energy grids and backup plans,
operational plans, and short-term power purchases. This paper focused on short-term forecasting of
high-frequency global horizontal irradiance data from one of South Africa’s radiometric stations. The
aim of the study was to compare the predictive performance of the genetic algorithm and recurrent
neural network models with the K-nearest neighbour model, which was used as the benchmark
model. Empirical results from the study showed that the genetic algorithm model has the best
conditional predictive ability compared to the other two models, making this study a useful tool for
decision-makers and system operators in power utility companies. To the best of our knowledge
this is the first study which compares the genetic algorithm, the K-nearest neighbour method,
and recurrent neural networks in short-term forecasting of global horizontal irradiance data from
South Africa.

Keywords: Giacommini–White test; global horizontal irradiance; genetic algorithm; Lasso; machine
learning; Murphy diagram

1. Introduction
1.1. Background

Renewable energy sources (RES) are rising rapidly in different countries, powered
by the cost reduction of wind turbines and photovoltaic (PV) panels [1]. They are in-
creasingly becoming the future’s dominant energy source, but harvesting them requires
an understanding of the mechanisms of their volatility and the ability to predict various
environmental processes over a scale ranger [2]. Such understanding of the environment
is the key to renewable energy processing, in particular solar and wind power. When the
global population and industrialisation continue to rise exponentially, the fossil fuels used
to generate electricity are also rapidly depleting [3]. The ongoing overuse of fossil fuels
in the production of electricity continues to inflict environmental problems such as global
warming. RESs are environmentally friendly and inexpensive [4].

Solar energy is one of the most critical sources of renewable energy that can contribute
to addressing current environmental and energy issues on the electrical grid [5]. It is widely
regarded to be the world’s best-growing energy industry [6]. Nonetheless, for proper and
effective management of the electrical grid, the integration of solar energy onto the electrical
grid requires detailed forecasting [7]. Policy-makers for power utilities face the challenge
of balancing demand and electricity supply in a cost-effective way which also benefits
future economic growth and environmental sustainability. Solar irradiance forecasting
is critical for backup programming, strategic planning, short-term power procurement,
shifting other energy sources, backup utilisation planning, and peak load demand [8]. It is
relevant for various other activities along with photovoltaics (PVs), agriculture, medical
study applications, and desalination by seawater [9]. The steadily increasing integration
of solar systems around the world is an indication of the need for accurate knowledge
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and understanding of solar resources in the design of solar electric grids. Solar irradiance
studies are therefore of great importance for the optimal project and power forecasting of
PV grid-connected plants.

A modelling framework to determine the statistical distribution of the daily total solar
radiation at different locations is discussed in [10]. Researchers have since been paying
attention to solar irradiance, using many modelling techniques. Solar irradiance forecasts
consist primarily of physical models and data driven models [11,12]. Physical models are
based on numerical weather forecasts. The data driven models consist of statistical and
machine learning models.

2. An Overview of the Literature on Solar Forecasting

Current research on solar irradiance forecasting is focussing to a very large extent
on the use of machine learning techniques such as artificial neural networks (ANNs) [13]
and support vector machines (SVMs) [14]. ANNs can map relationships between various
variables given there is available information to learn from [15].

In a study by [16], hybrid neural networks and metaheuristic algorithms are applied
to short-term forecasting of solar energy. Cadenas and Rivera [17] used ANN for short-
term wind forecasting in La Venta, Oaxaca, and Mexico. Capizzi et al. [18] proposed the
application of a recurrent neural network (RNN), which was based on the control strategy
for storage of the battery energy in systems generation with intermittent renewable energy
sources. Tsai et al. [19] applied a neural network to the short-term load and wind power
forecasting based on prediction intervals.

Yang et al. [20] suggested a combined autoregressive and dynamic system (CARDS) for
the 1 hour ahead global solar irradiance prediction. The suggested approach improves the
global solar irradiance forecast accuracy by 30% compared to ANNs models. Andrade and
Bessa [1] used a system of numerical weather predictions (NWP) to conduct their research
on enhancing renewable energy forecasting. Throughout their report, they suggested a
feature engineering approach to obtain further details for wind and solar energy forecasts
from an NWPs grid. They considered that adequate processing of direct NWP data elements
can boost the forecasting capability and that the renewable energy forecaster could invest
time in this knowledge discovery process. The use of ANN as a new strategy for assessing
future energy consumption levels in SA is suggested by [21]. In their study, particle swarm
optimisation (PSO) was used to train ANNs. Estimates of the annual electricity demand
were determined per scenario, and it was noted that the proposed ANN approach attains
a comparatively better energy demand forecast within acceptable errors. Sigauke [22]
discussed the implementation of generalised additive models (GAMs) to the prediction
of medium-term demand for electricity utilising data from SA. In the study, the variable
selection was carried out using Lasso (least absolute shrinkage and selection operator) via
hierarchical interactions. Marwala and Twala [23] used autoregressive moving average
(ARMA), Neural networks (NNs), and Neuro-Fuzzy (NF) systems to model and forecast
non-linear processes. They found that NF has a better ability than ARMA and NNs to
model the system, while NNs are better than ARMA.

King et al. [24] proposed a genetic algorithm (GA) framework using ‘negative load’
and the ‘inclusive’ strategy. They emphasized that, as wind power cost for the ‘negative
load’ approach is presumed to be zero, the results do not show the actual cost. The actual
cost of wind power should therefore be in the ‘zero-fee’ strategy. They also discovered
that the use of wind power in the economic load dispatch (ELD) computation affects
cost, load volatility pictured by some other plants, and reserve necessity because of the
expected error. Mellit and Shaari [25] proposed an RNN-based approach for forecasting the
regular production of electricity from a PV power system (PVPS). In the study, three RNN
models were compared where the proposed third RNN-II provided more reliable daily
forecasts for generating electricity compared with the other proposed MLP and RNN-I
models. A combination approach technique for short-term forecasting of solar irradiance
and photovoltaic (PV) power is presented in [18]. The solar irradiance prediction was
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carried out with the help of physical techniques named clear-sky techniques. Short-term
PV forecasting is then carried out with the help of an auto-associative kernel regression
(AAKR) strategy that is typically implemented for the detection of faults. The findings of
the proposed model showed increased efficacy in forecasting solar irradiance.

A GA approach is used by [26] to achieve optimal wind turbine location for higher
production capacity when limiting the number of turbines fixed and land used for every
wind farm. They considered two cases, which are: non-uniform wind with variable direc-
tion, and the uniform wind with direction. Khan and Byun [27] presented an application of
GA rooted optimised feature engineering and machine learning to the forecasting of energy
consumption. The work focussed on comparing various forecasting methods including
XGBoost, support vector regression, and K-nearest neighbour regressor algorithms. The
work looked at various meteorological features which are temperature, wind speed, rain,
humidity, and time lags. In this work, it is concluded that combinations of prediction
methods yield good results.

Table 1 presents a summary of some previous studies on modelling and forecast-
ing solar irradiance using genetic algorithms, recurrent neural networks and K-nearest
neighbour.

Table 1. Summary of some previous studies on modelling and forecasting solar irradiance using GA, RNN, and KNN.

Authors Data Models Main Findings

Gardes and Girard
[28]

France hourly rainfall
data from 1993 to 2000 Nearest neighbour model.

Empirical results show that the nearest
neighbour hill estimator gives the same weight

to all largest observations.

VanDeventer et al.
[29]

Hourly solar
photovoltaic data

A genetic algorithm-support
vector machine

(GASVM) model.

Based on the RMSE and MAPE, GASVM had
greater predictive ability compared to SVM.

AI-Iahham et al.
[30]

Sky image data from
2004 to 2020

KNN and random
forest models.

The results show that KNN achieves good
computational complexity reduced by 30% of the

state-of-the-art algorithms.

Pattanaik et al. [31] Solar data from 2000
to 2017

Genetic algorithm and
Artificial neural
network models.

The results show that GA forecasting is much
more convenient and also produces

accurate results.

Benamrou et al.
[32]

Hourly GHI data from
2015 to 2017

Xgboost, LSTM RNN and
random forest network

models.

Deep LSTM is found to be the best model in
forecasting one hour ahead GHI.

Brahma and
Wadhvani [33]

Daily solar irradiance
data from 1983 to 2019

LSTM, Bidirectional LSTM,
GRU, XGBoost, and CNN

LSTM.

Results show that the forecasting tasks of shorter
horizons give better accuracy while longer

horizons require more complex models.

The one-hour and regular wind power generation forecasting using Bayesian neural
networks is discussed in [34]. Results from this study show that the NNs based on Bayesian
neural networks exhibit comparable predictive performance to maximum likelihood neural
networks for both one hour and a day ahead forecasts. Mpfumali et al. [35] used data
from Tellerie radiometric station, South Africa for the period between August 2009 to April
2010 for a probabilistic prediction of 24 h ahead of global horizontal irradiance (GHI). They
used different techniques in forecasting, including quantile regression averaging (QRA)
and machine learning techniques, and it is concluded that QRA gives higher accuracy
than the machine learning techniques based on the probabilistic error measures. In a
study of the classification of solar energy resources in SA using new index measured
solar radiation resources, [5] used eight stations and five distinct groups. Results from
the study showed that the solar utility index (SUI) has higher solar resources, which
discriminate groups compared to other indices such as the probability of persistence
(POPD) and the fractal dimension. Apart from typical interplanetary radiation and hours of
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sunshine [36], presented a report on the prediction of global solar radiation using multiple
linear regression models. The study was undertaken in all nine provinces of South Africa.
The study revealed that the use of weather parameters for some locations increases the
accuracy and efficiency of solar radiation models.

Research Highlights

This current study differs from previous studies in that it compares genetic algorithm
(GA), recurrent neural networks (RNN), and the K-nearest neighbours (KNN) models in
short-term forecasting of high-frequency global horizontal irradiance using South African
data. To the best of our knowledge, this is the first paper to carry out such a comparative
study of the models using South African data. South Africa receives sunlight throughout
the year, so the natural advantage of South Africa is that it is included in the world’s
highest in renewable energy. The global average annual 24-h solar radiation for South
Africa has been about 220 W/m2, 150 W/m2 for parts of the US, and about 100 W/m2

towards Europe and the United Kingdom [37].
The following is a summary of the highlights and findings of this study.

1. Based on the RMSE and rRMSE, GA was found to be the best model. However, based
on MAE and rMAE, RNN was the best model.

2. From the Diebold–Mariano tests, the null hypothesis that the forecast accuracy be-
tween a pair of forecasts from the two methods is the same was rejected for all the
three pairs.

3. Based on the Murphy diagrams, the GA dominated both RNN and KNN, meaning
that it provides the greatest predictive ability.

4. Based on the Giacomini–White tests, GA was found to have the best conditional
predictive ability compared to the other two models.

5. The results from this paper yield improved results from the previous papers.
6. To the best of our knowledge, this is the first paper to compare the genetic algo-

rithm, the K-nearest neighbour method, and recurrent neural networks in short-term
forecasting of global horizontal irradiance data from South Africa.

The rest of the following paper is as follows: Section 3 is the materials and methods
used in this paper. The empirical results and discussion are in Section 4. The conclusion is
provided in Section 5.

3. Models
3.1. Genetic Algorithm

The GAs follow the theory of Darwin of the survival of the fittest and links the natural
selection and genetics experiment with random operators to form searching mechanisms
for improved results [38]. It was mentioned in the previous chapter that, in the late 1960s,
Holland proposed GAs, and Goldberg (1989) implemented the algorithm for the first time
to address engineering optimisation problems. Goldberg (1989) later illustrated the utility
of GAs for structural optimisation by solving the classic ten-bar truss issue. A small group
of researchers then implemented the algorithm to explore its use in structural optimisation.
In forecasting the evolution of one and two-dimensional non-linear systems over time,
Darwin (1960) showed magnificent results.

Implementation of the Genetic Algorithm

• Initially, the time sequence {x(ti), ti = 1, . . . , N} with the sequence of equations for
candidate population is given at random.

• Normally, such equations are of the form x(t) = (A
⊗

B)
⊗
(C

⊗
D), with the parameter

variables A, B, C, and D are the earlier state variables (x(t− τ), x(t− 2τ), . . . , x(t−mτ)),
with τ being the discrete time unit), or the actual values constant, so that the

⊗
symbol is

one of the known four basic arithmetic operators (+,−,× and ÷).
• Other mathematical operators may be achievable, but increasing the number of

accessible operators makes the functional optimisation method difficult.
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• A parameter that measures the results of equation strings in a training set is its fitness
to the information described by:

R2 = 1− Θ
σ

, (1)

where σ is the variance and where Θ is implied by:

Θ2 =
N

∑
t=m+1

(x(t)− p(x(t− τ), x(t− 2τ), ..., x(t−mτ)))2. (2)

• Values of R2 close to one show highly accurate forecasts, whereas low positive or
negative values indicate the algorithm’s weak forecast capability.

• The equation strings with a higher number of R2 would be taken to exchange the
character string parts among them (reproduction and crossover) in discarding the few
unsuitable individuals.

• The offspring is more difficult to produce than the parents.
• The total number of characters throughout the equation strings is upper bounded to

avoid the generation of offspring with unreasonable frequency.
• A small proportion of the strong fundamental components, individual operators and

variables, of the strings of the equation are progressively mutated at random.
• The process is performed several times to enhance the fitness of the developing

population, and the empirical method to estimate function p(.) is obtained at the edge
of the evolutionary process.

3.2. Recurrent Neural Networks

Mathematically, the RNNs are defined as:

yj(t + 1) = ϕ(
m+n

∑
i=1

wjizi(t)), (3)

zi(t) =

{
yi(t) (i ≤ n)
ui−n (i > n),

(4)

where m stand for the proportion of inputs, n for the proportion of hidden and output neurons,
ϕ is for the arbitrary differential component, generally a sigmoid function, yj determines the
output of the jth neuron, and wji the relationship between the ith and the jth neurons. For
simplicity, the external inputs ui and recurrent inputs yi are represented as zi [39].

RNNs are defined as the networks with loops in them that enable the continuity of
data [40]. They are used for modelling data reliant on time. The information is supplied
one after the other to a network and at a single point, the network nodes save their state
and then use it to alert the following step. Not the same way as multilayer perceptron
(MLP), RNNs use input data temporally, making them more suitable for time series data.
An RNN realises the ability through recurrent neuronal connections. A basic equation
which provided an input sequence x = (x1, x2, ..., xT) for the RNN hidden state ht is:

ht =

{
0, if (t = 0)
φ(ht−1, xt) otherwise,

(5)

where the Φ function is non-linear. Recurrent hidden state update is realised as follows:

ht = g(wxt + uht−1), (6)

where g is a function of the hyperbolic tangent. Generally, this generic environment of
RNN with no neurons often suffers from gradient issues that are going away.
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3.3. Benchmark Models
3.3.1. Implementation of the K-Nearest Neighbours

The KNN algorithm is a direct, simple, supervised machine learning algorithm that
is used to solve problems of both classification and regression [41]. The supervised ma-
chine learning algorithm (opposed to an unsupervised machine learning algorithm) is
an algorithm that depends on the labelled input data when training the function that
will be used to produce acceptable results when the data that is not labelled is provided.
Hence, supervised machine learning algorithms are also used to address regression or
classification problems.

The strengths and weaknesses of the the proposed models, GA, RNN and KNN are
presented in Table 2.

Table 2. Model comparisons.

Models Strengths Weaknesses

M1 (GA) 1. The concept is simple to explain. 1. Implementation remains an art.
2. Works well with a combination of 2. It takes a long time to compute.
discrete/continuous problems. 3. It requires less knowledge about
3. It’s ideal for a noisy environment. the problem, but it can be difficult
4. Write robustly to local to design an objective function
minima/maxima. and get the representation and

operators correct.

M2 (RNN) 1. It can process inputs of any length. 1. It can be challenging to train it.
2. The model size does not increase 2. The computation is sluggish
as the input increases. because of its recurrent existence.
3. Weights can be shared between 3. Problems like exploding and
time steps. gradient vanishing are common.
4. It is designed to remember each piece 4. When using relu or tahn as
of information over time, which is activation functions, processing
extremely useful in any time series long sequences becomes
predictor. extremely difficult.

M3 (KNN) 1. There is no need for a training period. 1. It is ineffective when dealing
2. It is simple to implement. with large dataset.
3. Inference is based on the 2. With high dimensions, it does
approximation of a large number of not work well.
samples. 3. Sensitive to noisy data, missing
4. New data can be easily added. values, and outliers.

3.3.2. The KNN Algorithm

1. load the solar data from USAid Venda,
2. initialise K to the specified number of neighbours,
3. for every example in the data,

• calculate the distance between a query example and the current example,
• add the distance and an example index to an ordered set,

4. order the set of distances and indices by distances (in ascending order) from the
smallest to the largest,

5. choose the first K entries in the list which has been sorted,
6. get the labels for K entries which have been chosen,
7. returns the K label mean if a regression occurs,
8. returns the K label mode if it is classified.

3.4. Variable Selection, Parameter Estimation
3.4.1. Variable Selection

In the variable selection, we involve the selection of function variables that determines
the target variables when limiting the number of variables from the system. The variable
selection framework plays an important role in terms of avoiding over-fitting, promoting
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analysis of the patterns, and computational time reduction. We have various variable
selection methods, but in this paper, we use least absolute shrinkage and selection operator
(Asso) [42].

3.4.2. The Prediction Intervals

A prediction interval (PI) by its nature is a useful tool for modelling uncertainty. It
is composed of lower and upper boundaries which cover the unidentified target value
of the future value with any probability (1− a)% called confidence level. They are more
appropriate and more valuable information than point forecasts for decision-makers [43].
The width of the prediction interval (PIW) is given as:

PIWt = ULt − LLt, (7)

where ULt and LLt are the upper and lower bounds, respectively. In this study, probabil-
ity density plots, and box and whisker plots were used to find the model which yields
narrower PIW.

3.4.3. Evaluation of the Prediction Intervals

For a prediction interval (PI) with nominal confidence (PINC) of (1− a)100%, it is
formulated as the probability with which ŷt,τ belonging to the predictive interval (LLt, ULt).
We provide PINC as follows:

PINC = P(ŷt,τ ∈ (ULt, LLt) = (1− a)100%). (8)

This study uses the prediction interval normalised average width (PINAW) and the
prediction interval coverage probability (PICP). The PICP is described by [43]:

PICP =
1
m

m

∑
t=1

It, (9)

with m being the number of the forecasts and I being the binary variables given by:

It =

{
1, if yt ∈ (ULt, LLt)

0, if otherwise.
(10)

PINAW is another measure used to assess the accuracy of forecast intervals and is
provided as [43]:

PINAW =
1

m(max(yt)−min(yt))

m

∑
t=1

(ULt − LLt). (11)

3.5. Evaluation Metrics

The Mean absolute error (MAE), Mean square error (MSE), Root mean square er-
ror (RMSE), Relative MAE (rMAE), and Relative RMSE (rRMSE) used to evaluate the
performance of the models. They are defined as follows:

MAE =
1
n

n

∑
t=1
|yt − ŷt|, (12)

rMAE =
1
n

n

∑
t=1

[
ŷt − yt

yt
], (13)

MSE =
1
n

n

∑
t=1

(yt − ŷt)
2, (14)



Appl. Sci. 2021, 11, 4214 8 of 19

RMSE =

√
∑n

t=1(yt − ŷt)2

n
, (15)

rRMSE =
100
ȳ

√
∑n

i=1(yi − ŷi)2

n
, (16)

in which yt and ŷt are the actual and predicted values, ȳt is the mean value of yt, t = 1, . . . , n,
k is the dummy variable time, and n is the number of data elements. The smaller value
error is estimated closer to the true values.

3.6. The Tests for Predictive Accuracy
Diebold–Mariano and Giacomini–White Tests

Under the Diebold–Mariano test, the null hypothesis is that of equal predictive accu-
racy of two competing forecasts [44,45]. One of the main advantages of this test is that it
takes into account the sampling variability in the average losses [46].

The Giacomini–White (GW) test which is a generalisation of the DM test, tests for
equal conditional predictive ability of two competing models [47]. The test accounts for
uncertainty in the estimation of parameters [47], making it a better test compared to the
DM test.

3.7. Murphy Diagram

It is built on the concept that “if something wrong can happen, it’s going wrong”.
It is close to other methods of analysis such as fault trees, as they evaluate errors based
on the possible causes of such errors. The Murphy diagram works by comparing the
mean forecasts. Hence, the mean of the forecast distribution is acquired by minimising the
squared error loss function, S(x, y) = (x− y)2, where x is the point forecast and y is the
actual observation [48]. With the equation:

E(Y) = argminxS(x, y), (17)

it is given that any scoring function meeting the constraint can be defined as:

S(x, y) =
∫ ∞

−∞
Sθ(x, y)dH(θ) (18)

with H as a non-negative indicator and

Sθ(x, y) =

{
|y− θ| i f min(x, y) ≤ θ < max(x, y)
0 otherwise.

Various H assessments offer different scoring functions, but for all such scoring
functions, Sθ(x, y) is the same.

If the point forecasts for n events is given, then we are able to get the average value of
Sθ(x,y) for each θ:

s(θ) =
1
n

n

∑
i=1

Sθ(xi, yi), (19)

and plot this as a θ function. This is what [48] call the “Murphy diagram”. The same
approach can be applied for quantile and expertise forecasts.

3.8. Data and Features

The GA, RNN, and the benchmark model, which is the k-nearest neighbour (KNN)
models will be implemented using global horizontal irradiance (GHI) data from the Vuwani
radiometric station in the Limpopo province of SA.
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3.8.1. Data

The data used in this paper is obtained from the USAid Venda radiometric sta-
tion measured at one-minute intervals accessible at Vuwani radiometric station (USAid
Venda) (https://sauran.ac.za/, accessed 3 May 2020). Figure 1 shows the pyranometer at
the USAid Venda radiometric station, which is on an inside enclosure at Vuwani in the
Limpopo province.

Figure 1. Picture showing the location of the Vuwani radiometric station (USAid Venda). Source:
https://sauran.ac.za/, accessed 3 May 2020.

3.8.2. Features

Models developed in this chapter will use GHI as the response variable and the
predictor variables are air temperature (Temp), barometric pressure (BP), rainfall (Rain),
relative humidity (RH), wind direction (WD), wind direction standard deviation (WD
StdDev), and wind speed (WS).

4. Results

The GA, RNN, and KNN algorithms implemented using the Keras deep learning
package (https://keras.io/, accessed 3 May 2020). All models were implemented using
Python packages. Both Python and R [49] are used in this paper.

4.1. Empirical Results and Discussion

This section presents the data analysis using the algorithms discussed in the methodology.

4.1.1. Exploratory Data Analysis

Data covering the period 4 January 2020 to 31 October 2020 were used in this study.
The data were obtained from Vuwani radiometric station. We can see from Figure 2 and
Table 3 that the GHI values are right-skewed and platykurtic.

In this work, a non-linear trend was extracted by fitting the cubic smoothing spline
function provided by the equation:

π(t) =
n

∑
t=0

(yt − f (t))2 + λ
∫
{ f ′′(t)}2dt, (20)

where λ is the smoothing parameter that is predicted using the generalised cross-validation
(GCV) criterion. Figure 3 illustrates the cubic smoothing spline and non-linear trend fitted
with the projected lambda value. The non-linear trend values extracted, used to model
solar irradiance.

https://sauran.ac.za/
https://sauran.ac.za/
https://keras.io/
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Figure 2. Time series plot of GHI, Density plot, Quantile-Quantile(qq) plot, and Box and whisker plot.

Table 3. The descriptive statistics of the GHI measured in W/m2.

Min Max Median Mean St.Div Skewness Kurtosis

0.0032 1481.6300 307.6562 388.0439 324.1666 0.6130 −0.7568

Figure 3. Plot of global horizontal irradiance from 04/01/2020 to 31/10/2020 (green) superimposed
with a fitted cubic smoothing spline trend (red).
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4.2. Variable Selection

In this work, variable selection is done using Lasso, which uses the ` loss function penalty:

β̂Lasso(λ) = arg min ||~y− Xβ̂||22 + λ||β̂||1. (21)

Table 4 shows parametric coefficients of the Lasso regression. Based on these results, all
variables except rainfall (Rain), which has a zero coefficient, are important predictor variables.

Table 4. Parametric coefficients.

Variables Coefficients

Intercept −2.158294× 104

Temp 3.815809× 101

RH −1.326136× 100

WD 1.645751× 10−1

Rain 0.000000
WS 1.866991× 100

WD StdDev 7.173793× 100

BP 2.215658× 101

4.3. Forecasting Results

Similar to other works done previously, performance measures such as MAE and
RMSE will be used to select the best model for short-term forecasting of GHI. Table 5
presents a summary of the evaluation metrics used in this study. Based on the RMSE and
rRMSE, GA is found to be the best model. However, based on MAE and rMAE, RNN is the
best model. With these results, it is then difficult to select the best model. More evaluation
metrics will have to be used to come up with the best model out of the three presented in
this study.

Table 5. Assessment of models.

GA RNN KNN

RMSE 35.50 56.89 57.48
rRMSE 5.96 7.54 7.58
MAE 26.74 20.18 20.94
rMAE 5.17 4.49 4.58

Figure 4 shows a plot of GHI superimposed with forecasts from RNN, GA, and KNN
models. It appears as if GA tends to over-predict GHI on sunny days compared to cloudy
and rainy days (where the volatility is very high).

Figure 5 illustrates the density plot of the actual GHI (solid lines) and model’s forecasts
(dashed lines). The forecasts from the models appear to be different from the actual
observations, with RNN being the one that is closer to the actual observations.

4.4. Models’ Comparative Analysis

In this section, the evaluation of the fitted models centred on the empirical pre-
diction intervals (PIs) together with the forecast error distributions from each model
forecast discussed.

4.4.1. Evaluation of Predictive Interval

A comparison of the best models using PICP, PINAW, and PINAD is shown in Table 6.
The PINC is taken to be a 95 percent level of confidence, where it is valid for all the models.
All the models have valid PICPs. They are all greater than 95%. A model with the narrowest
PINAW and smallest PINAD is recognised to be the best fitting model [50]. In this case, the
best fitting model is RNN.
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Figure 4. Plot of GHI superimposed with forecasts from RNN, GA, and KNN models.

Figure 5. Density plots of the actual GHI (solid lines) and model’s forecasts (dashed lines) where
Top left panel: Actual GHI and forecasts of GA Top right panel: Actual GHI and forecasts of RNN
Bottom left panel: Actual GHI and forecasts of KNN and Bottom right panel: Actual GHI and
forecasts of RNN, GA, and KNN where the actual GHI and forecasts of GA are shown by solid lines.
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Table 6. Comparative analysis of the best models with the confidence interval (CI) ( PICP, PINAW
and PINAD) at 95%.

Models PICP PINAW PINAD

GA 98.00% 11.81% 0.07%
RNN 98.60% 11.47% 0.05%
KNN 98.12% 15.09% 0.08%

4.4.2. Residual Analysis

Table 7 provides descriptive statistics of the residuals for models GA, RNN, and KNN
with a confidence level of 95% for the PINC value. From the table, we can see that GA
model is the one with the smallest standard deviation compared to other models, which
tells us that it has a smaller error distribution. So, GA makes it the best model compared
to others. For the GA, RNN, and KNN, the error distributions are approximately normal
because their skewness is close to zero. The values for kurtosis are greater than 3 for all the
models, except for GA model.

Figure 6 shows the box plots of the forecast errors for the entire fitted models ResGA,
ResRNN, and ResKNN, where ResGA, ResRNN, and ResKNN are the residuals from GA,
RNN, and KNN, respectively. The box plot for the prediction errors from the GA model
shows that the distribution has shorter tails an indication of a smaller error distribution
compared to those of the other two models.

Table 7. Residual comparison of the models.

Mean Median Min Max StDev Skewness Kurtosis

GA −26.74 −19.25 −83.12 −0.10 23.36 −0.54 −1.14
RNN 3.78 −0.24 −688.63 764.30 56.76 0.48 41.14
KNN −5.44 −4.33 −747.01 796.95 57.22 0.08 43.48

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●●

●

●●●

●

●●
●●●●

●

●

●
●●

●

●

●
●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●●

●

●
●

●
●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●●
●

●

●

●

●
●

●

●●●

●

●●

●●

●

●

●●●

●

●
●●

●

●

●

●

●

●●

●●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●●

●

●●

●

●●●
●●

●

●

●
●

●
●

●

●
●
●●●●

●

●

●
●●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●●●●●

●●●●

●
●

●

●●

●●●●●

●
●

●
●

●●●
●●●●●●

●

●
●●

●●

●
●

●

●

●

●

●

●

●●●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●●●

●
●

●

●
●●●●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●
●
●
●

●

●●

●●●●
●●
●●

●

●

●

●

●
●

●

●●●●●●●●●●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●
●
●

●

●
●
●●
●●●
●

●

●

●●

●
●
●

●

●

●
●

●

●

●●●
●
●

●
●

●

●

●

●
●
●●●
●

●●●●
●

●
●
●●

●●
●

●

●●

●

●

●

●●●●
●●●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●
●●●●

●●

●

●●

●
●

●●
●●●●●●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●
●●

●

●
●

●●
●
●●●●●●●●●●●●●●●●●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●●●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●
●●
●●●
●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●●●●●

●

●

●

●

●

●

●

●●
●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●
●

●●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●●●●●
●

●
●
●●

●●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●●●●
●

●●●●●
●

●

●

●
●

●

●

●

●

●

●
●●
●●●●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●●
●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●
●●●●●●●●●
●●●●
●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●●●●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●●●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●
●●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●●●●

●

●

●

●

●

●
●●●●●

●

●

●

●

●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●

●●●●●●
●●●●●●●●●●●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●
●●●●●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●●●●●●

●

●

●

●

●●●
●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●●
●●●

●

●
●●

●
●

●
●
●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●
●●●
●●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●●

●●●●

●●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●
●

●●●
●
●

●●●
●●●●●

●●●
●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●●●●●
●

●

●

●

●

●●●

●

●

●

●

●●
●●
●●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●●

●

●
●●●

●

●

●●●

●
●

●●
●
●●●●●

●

●
●

●

●●

●

●
●

●●

●

●
●
●●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●

●●●●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●●●●

●

●

●

●

●

●

●●

●
●●
●●●●

●

●

●

●
●
●●

●

●●

●

●

●●●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●●●●

●
●●

●

●

●●

●

●

●
●
●
●●

●

●

●

●●

●

●

●

●

●

●
●●●
●●●

●●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●●
●●●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●●●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●●●

●

●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●●
●

●

●

●

●●

●●

●●●

●

●
●●●

●●

●●●
●●●●

●

●●

●●

●
●●
●
●

●

●
●●

●

●
●

●●

●

●
●
●
●
●●●
●●●

●●●●

●

●
●●

●
●
●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●
●

●
●

●

●

●
●●●
●●●●●
●
●●●●●●●●

●

●●●

●

●

●

●●

●
●
●

●●

●

●●

●

●●

●●
●●
●●

●
●●●●●

●

●●●●
●

●●●●●●●●

●
●

●

●●
●●●
●●●●
●●●●

●

●●●●

●

●●

●

●
●●●

●
●

●

●●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●
●●

●

●

●

●

●●●
●
●●

●

●

●●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●●

●

●●
●

●

●
●

●●●

●

●

●

●

●

●●

●●
●

●●

●

●●

●
●

●

●●●●
●

●●●●
●

●

●●
●●●●●●
●●

●
●●

●●●●●●
●●

●●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●●●

●

●●

●

●

●

●●●
●●●

●

●●

●●●●
●●
●●●●●

●

●

●●

●

●

●

●●

●

●●●
●

●●●●●●●

●●●●●●●●●●●●

●●●

●●

●●

●

●

●●

●

●●

●●
●●
●

●●

●●

●●●●

●●

●●●●●●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●

●

●
●●●●

●
●

●

●

●●

●

●●●●●
●

●

●●●●●

●
●
●

●
●

●●●●

●

●●

●

●

●

●
●●
●●●
●●●●

●

●●

●●
●●●●●●●

●●●●●●●
●●●

●●●
●●

●
●
●●

●●
●

●

●

●

●

●●●

●

●

●●

●●●●
●
●

●●
●

●

●
●

●

●

●●
●●●
●●●●●

●●
●●
●

●
●●●
●●
●

●●
●

●

●

●

●●

●
●

●●
●
●●●●●●
●●●●●●
●

●●●●

●●

●
●

●

●

●●●●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●●●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●●●●●

●●●

●

●●

●●●●

●●

●●●●●

●
●

●

●
●
●●

●●
●
●●●●●

●
●

●

●●

●
●

●

●
●

●

●●●●●

●●

●

●

●

●

●
●●

●●

●●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●●●●●●●

●

●

●

●

●
●●●●●
●
●●●●●●●●●●●●●

●

●

●

●

●

●
●

●
●●●
●
●●●●
●●●●●●●●●●
●●●●●●
●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●●

●

●

●
●●
●●
●●●●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●
●●●●●●●●●●●●●

●●●●●
●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●
●●●

●●

●

●

●

●

●

●
●●●●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●
●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●

●

●
●
●●●
●●●●

●●●●●
●

●

●●
●

●

●

●
●

●

●
●

●

●●

●
●●●

●

●

●

●●●●●

●

●

●

●

●

●
●●●●●●●
●●

●
●●●●●●●●
●

●
●

●
●

●

●

●

●

●

●
●●●
●●●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●
●●●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●
●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●●●

●

●●

●

●●

●

●

●

●●

●

●●●
●

●

●

●

●●●●●●●●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●
●

●

●

●

●

●

●●

●
●

●
●

●

●●●●●●●

●

●

●

●●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●
●●●●●●●●●●●
●●●
●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●●

●
●●

●

●

●

●

●●●●

●

●●

●
●

●●●

●

●

●

●

●●

●

●
●
●

●
●
●●

●

●

●

●

●●
●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●●
●

●●

●

●●●●●●
●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●●

●
●
●
●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●
●
●●●●●
●●●

●●

●●●●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●●●●●●●●●
●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●●●●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●
●●●●●●●

●●

●
●

●

●

●

●

●

●
●●●

●

●

●

●
●
●

●

●

●

●●
●●
●●●

●

●

●

●

●
●●
●
●●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●
●●

●●

●●●

●●
●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●●

●

●

●
●●

●

●●

●●●●●
●

●

●
●

●

●
●
●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●
●
●

●

●

●

●

●

●

●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●
●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

ResRNN ResGA ResKNN

−
50

0
0

50
0

R
es

id
ua

ls
 (

W
/m

^2
) 

Figure 6. Box plots of the residuals from ResGA, ResRNN, and ResKNN.
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4.4.3. Diebold–Mariano Test

The null hypothesis is that the forecast accuracy between a pair of forecasts from
the two methods is the same. Results presented in Table 8 show that we reject the null
hypothesis of equal forecast accuracy between pairs of the models.

Table 8. Diebold-Mariano test.

Statistic p-Value

GA −37.795 <0.00001
RNN −47.789 <0.00001
KNN −47.312 <0.00001

4.4.4. Murphy Diagrams

Murphy diagrams (MDs) are comparable to several other methods of analysis, such
as fault trees, because they analyse errors based on the possible causes of those errors. It is
not essential to identify a particular scoring function before forecast evaluation when using
MDs to compare forecast results [51]. Figures 7–9 are the Murphy diagrams where, for the
difference between the models, the shaded area displays 95% point wise confidence intervals.

The GA curve (in red colour) in Figure 7 dominates the RNN curve (in blue colour)
suggesting that GA provides a greater predictive ability. The curves in Figure 8 are very
close to each other. This suggests that neither of the two methods (RNN and KNN)
dominate each other. The score differences fluctuate between positive and negative values
and include zero for all values of θ. As for GA and KNN models, it is seen in Figure 9
that the forecasts from the GA model dominate those from the KNN model. This is an
indication that the forecast accuracy from GA is better. Since GA dominates both RNN and
KNN, we can conclude that the GA provides the greatest predictive ability.
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Figure 7. Plots of the RNN and GA forecasts showing the relationship between their empirical scores
(left panel) and the differences in empirical scores with 95% confidence intervals (right panel).
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Figure 8. Plots of the RNN and KNN forecasts showing the relationship between their empirical
scores (left panel) and the differences in empirical scores with 95% confidence intervals (right panel).
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Figure 9. Plots of the GA and KNN forecasts showing the relationship between their empirical (left
panel) and the differences in empirical scores with 95% confidence intervals (right panel).

4.4.5. Giacommini–White Test

Giacomini-White (GW) test is a test of equal conditional predictive ability.
From Table 9, GA dominates RNN, meaning that GA has better predictive ability.

It is also seen that RNN has a better predictive ability compared to KNN and that GA
dominates KNN. From these results, it can be deduced that GA dominates RNN which
dominates KNN. Therefore, GA has the best conditional predictive ability compared to the
other two models. These results are consistent with those from the Murphy diagrams.

Table 9. Model comparisons: Giacommini–White test.

Models Test Statistic p-Value Result

RNN = GA 323.925 <0.0001 Sign of mean loss is (+). GA dominates RNN
RNN = KNN 4.569 0.1018 Sign of mean loss is (−). RNN dominates KNN
GA = KNN 294.676 <0.0001 Sign of mean loss is (−). GA dominates KNN

Figure 10 shows GHI superimposed with GA, RNN, and KNN forecasts during clear
sky days (top panels) and during cloudy days (bottom panels) on four selected days during
the testing period. For the selected days, the GA tends to over-predict GHI during sunny
days compared to the other two models, RNN and KNN. However during cloudy days
GA appears to perform better.
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Figure 10. GHI superimposed with GA, RNN, and KNN forecasts Top panels: Clear sky days
Bottom panels: Cloudy days.

4.4.6. Discussion of Results

This paper focused on forecasting GHI at one radiometric station in South Africa
using high-frequency data (measured at one-minute intervals) obtained from the Vuwani
radiometric station (USAid Venda). The data is from January 2020 to October 2020. Based
on the RMSE and rRMSE, the GA model was found to be the best model. However, based
on MAE and rMAE, RNN was the best model. With these results, it was then difficult to
select the best model. Further evaluation of the forecasts were then done based on the
Diebold–Mariano tests, Giacomini–White tests, and Murphy diagrams. From the Diebold–
Mariano tests, the null hypothesis that the forecast accuracy between a pair of forecasts
from the two methods is the same was rejected for all the three pairs. Based on the Murphy
diagrams, the GA dominated both RNN and KNN, meaning that it provides the greatest
predictive ability. Similarly, with the Giacomini–White tests, GA was found to have the
best conditional predictive ability compared to the other two models.

Motivated by previous research by other authors such as [13,52], among others, a GA
model was developed and compared to RNN and KNN models. Using South African
hourly GHI data from University of Pretoria radiometric station, [52] used the long short-
term memory (LSTM) network, feed forward neural network (FFNN), support vector
regression (SVR), and principal component regression (PCR). Based on the RMSE, the GA
model used in the current paper has a smaller evaluation metric value compared to those
of the models used in [52].

5. Conclusions

The paper presented the application of forecasting high frequency solar irradiance data
using genetic algorithm (GA), recurrent neural network (RNN), and k-nearest neighbour
(KNN) models. The least absolute shrinkage and selection operator was used for variable
selection. Based on the evaluation metrics used in the study GA was found to have the
greatest conditional predictive ability compared to RNN and KNN. The study could be
useful to decision makers in power utility companies such as Eskom in aligning electricity
demand and its supply in an efficient way that promotes potential economic growth and
environmental sustainability.
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Abbreviations

The following abbreviations are used in this manuscript:
GA Genetic Algorithm
RNN Recurrent Neural Network
KNN K-Nearest Neighbour
MAE Mean Absolute Error
RMSE Root Mean Square Error
MSE Mean Square Error
rMAE relative Mean Square Error
rRMSE relative Root Mean Square Error
QRA Quantile Regression Averaging
DM Diebold-Mariano
RES Renewable Energy Source
PV Photovoltaic
NWP Numerical Weather Prediction
ANN Artificial Neural Network
SVM Support Vector Machine
CARDS Combined Autoregressive Furthermore, Dynamic System
PSO Particle Swarm Optimisation
GAM Generalised Additive Model
LASSO Least Absolute Shrinkage Furthermore, Selection Operator
NF Neuro-Fuzzy
ARMA Autoregressive Moving Averaging
NN Neural Network
GHI Global Horizontal Irradiance
SUI Solar Utility Index
AAKR Auto-Associative Kernel Regression
MLP Multilayer Perceptron
PI Prediction Interval
PINC Prediction Interval With Nominal Confidence
PIW Prediction Interval Width
PICP Prediction Interval Coverage Probability
PINAW Prediction Interval Normalised Average Width
GCV Generalised Cross Validation
MD Murphy Diagram
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