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Abstract: Using gestures can help people with certain disabilities in communicating with other
people. This paper proposes a lightweight model based on YOLO (You Only Look Once) v3 and
DarkNet-53 convolutional neural networks for gesture recognition without additional preprocessing,
image filtering, and enhancement of images. The proposed model achieved high accuracy even in a
complex environment, and it successfully detected gestures even in low-resolution picture mode.
The proposed model was evaluated on a labeled dataset of hand gestures in both Pascal VOC and
YOLO format. We achieved better results by extracting features from the hand and recognized hand
gestures of our proposed YOLOv3 based model with accuracy, precision, recall, and an F-1 score
of 97.68, 94.88, 98.66, and 96.70%, respectively. Further, we compared our model with Single Shot
Detector (SSD) and Visual Geometry Group (VGG16), which achieved an accuracy between 82 and
85%. The trained model can be used for real-time detection, both for static hand images and dynamic
gestures recorded on a video.

Keywords: convolutional neural network; hand gesture; digital image processing; YOLOv3; artifi-
cial intelligence

1. Introduction

The interaction between humans and computers has increased widely, while the
domain is witnessing continuous development, with new methods derived and techniques
discovered. Hand gesture recognition is one of the most advanced domains in which
computer vision and artificial intelligence has helped to improve communication with deaf
people but also to support gesture-based signaling systems [1,2]. Subdomains of hand
gesture recognition include sign language recognition [3–5], recognition of special signal
language used in sports [6], human action recognition [7], pose and posture detection [8,9],
physical exercise monitoring [10], and controlling smart home/assisted living applications
with hand gesture recognition [11].

Over the years, computer scientists have used different computation algorithms and
methods to help solve our problems while easing our lives [12]. The use of hand gestures in
different software applications has contributed towards improving computer and human
interaction [13]. The progress of the gesture recognition systems plays a vital role in the
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development of computer and human interaction, and the use of hand gestures in various
domains is growing more frequent. The application of the use of hand gestures can now be
seen in games [14], virtual reality [15,16] and augmented reality [17], assisted living [18,19],
cognitive development assessment [20], etc. The recent development of hand gesture
recognition in different sectors has grabbed the attention of industry, too, for human-robot
interaction in manufacturing [21,22], and control of autonomous cars [23].

The main aim of this real-time hand gesture recognition application is to classify
and recognize the gestures. Hand recognition is a technique in which we use different
algorithms and concepts of various techniques, such as image processing and neural
networks, to understand the movement of a hand [24]. In general, there are countless
applications of hand gesture recognition. For example, for deaf people who cannot hear,
we can communicate with their familiar sign language.

There are many object detection algorithms that help to detect and determine what
the gesture is that each algorithm targets. This paper explores a few algorithms and
detects which algorithm is better than the others, providing better accuracy with fast
and responsive results. To achieve this detection, You Only Look Once (YOLO) v3 and
Single Shot Detector (SSD) algorithms were used to evaluate the structure and mechanism
deduction of hand gesture recognition.

YOLO is a convolutional neural network algorithm, which is highly efficient and
works tremendously well for real-time object detection [25,26]. A neural network not only
helps in feature extraction, but it can also help us understand the meaning of gesture, and
help to detect an object of interest. A similar approach was adopted in [27], but the main
difference is that in [27] it was done through Light YOLO, which is completely different
from YOLOv3. Light YOLO is preferred for applications built on RaspberryPi. It achieves
a good frame per second (fps) rate as compared to YOLOv3. However, the accuracy of
YOLOv3 is 30% better when compared to Light YOLO, and as the application is not focused
on the Internet-of-Things (IoT) product, YOLOv3 is preferred.

The main contributions of this study are summarized as follows:

• A lightweight proposed model where there is no need to apply as much preprocessing
which involves filtering, enhancement of images, etc.;

• A labeled dataset in both Pascal VOC and YOLO format;
• This is the first gesture recognition model that is dedicated to the mentioned gestures

using YOLOv3. We use YOLOv3 as it is faster, stronger, and more reliable compared to
other deep learning models. By using YOLOv3, our hand gesture recognition system
has achieved a high accuracy even in a complex environment, and it successfully
detected gestures even in low-resolution picture mode;

• The trained model can be used for real-time detection, it can be used for static hand
images, and it also can detect gestures from video feed.

The organization of our study is as follows: Section 2 presents the related work and
reviews the latest studies on hand gesture recognition. The materials and methods that
were used in this study are in Section 3. Section 4 presents the results of the Real-Time
Hand Gesture Recognition Based on Deep Learning YOLOv3 Model. The discussion of
the results of the proposed Real-Time Hand Gesture Recognition Based on Deep Learning
YOLOv3 Model are discussed in Section 5. Finally, Section 6 concludes the study directions
and future works.

2. Related Work

There are various studies on hand gesture recognition as the area is widely expanding,
and there are multiple implementations involving both machine learning and deep learning
methods aiming to recognize a gesture that is intonated by a human hand. Further, some papers
are reviewed to understand the mechanism of the hand gesture recognition technique.

The study [28] demonstrated that with insignificant computational cost, one of the
normal and well-known designs, CNN, accomplished higher paces of perceiving com-
ponents effectively. The proposed strategy focused only on instances of gestures present
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in static images, without hand location, and followed the instances of hand impediment
with 24 gestures, utilizing a backpropagation algorithm and segmentation algorithm for
preparing the multi-layer propagation, and for the backpropagation calculation having its
influence, sorting out the blunder proliferated on the contrary request [29]. Moreover, it
utilized a convolutional neural organization, and sifting incorporated a distinctive division
of image division and recognition.

Among these techniques and methods there is a popular method which is used by
several other detection applications, and that is Hidden Markov Models (HMM). There
are different detection variants that are often used by an application, which we have come
across, and the application this paper refers to checks and works with all of it by learning
and looking towards other papers. This application deals with all three mediums: image,
video, and webcam [30]. Going through a general paper written by Francois, in which he
refers to an application that detects posture, the detection is through video and uses the
HMM. The process that the paper of Francois and other researchers worked on is related to
this application, which this paper refers to first by extracting the information from either
image, video, or real-time detection using webcams. These features are detected by the
three methods mentioned, but the main concern of all the methods, whether they are
CNN-related, RNN-related, or using any other technique, is that all of them use fitting
techniques, and these techniques refer to the bounding box that this paper discussed.
The box represents the information that is detected, from which they gain a confidence
value, and the value that is the highest is the output of what image is being displayed.
Besides this, all other information varies depending upon the method that others are using;
despite that, some other devices and techniques that are related to segmentation, general
localization, and even fusion of other different partials help achieve the tasks of detecting
and recognizing.

Nyirarugira et al. [31] proposed Social Touch Gesture Recognition using CNN. He
utilized various calculations such as Random Forest (RF), boosting algorithms, and the
Decision Tree algorithm to recognize gestures, utilizing 600 arrangements of palmar images
with 30 examples utilizing convolutional neural organization, and finding an ideal method
on the premise of the framework of an 8 × 8 network. The casing length is variable
anyway so the outcome decides the ideal casing length. It is performed using a dataset
as of late assessed with different subjects that perform changing social gestures [32]. A
system that gathers contact gestures in a practically constant manner using a deep neural
organization is favorable to present. The results showed that their strategy performed
better when differentiated, and the previous work was reliant on leave-one-subject-out
cross-endorsement for the CoST dataset. The proposed approach presents two points of
interest differentiated from those in the current writing, acquiring an accuracy of 66.2%
when perceiving social gestures.

In the study of Multiscale CNNs for hand detection, excited by the headway of article
recognition in the field of PC vision, numerous techniques have been proposed for hand-
distinguishing proof in the latest decade [33]. The most untroublesome procedure relies
upon the recognition of skin tone, which works on hands, faces, and arms, yet moreover
has issues because of the affectability for brilliant changes. The contributing components of
this multifaceted nature fuse substantial hindrance, low objectivity, fluctuating illumination
conditions, various hand gestures, and the incredible coordinated efforts among hands
and dissents or various hands. They further presented a Multiscale Fast R-CNN approach
to manage to correctly recognize human hands in unconstrained pictures. By merging
staggered convolutional features, the CNN model can achieve favored results over the
standard VGG16 model, accomplishing practically 85% of 5500 images for the testing and
5500 for the preparing set.

Saqib et al. [34] used a CNN model augmented by edit distance for the recognition
of static and dynamic gestures of Pakistani sign language, and achieved 90.79% accuracy.
Al-Hammadi et al. [35] proposed a 3DCNN model to learn region-based spatiotemporal
features for hand gestures. The fusion techniques to globalize the local features learned
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by the 3DCNN model were used to improve the performance. The approach obtained
recognition rates of 98.12, 100, and 76.67% on three color video gesture datasets.

Do et al. [36] proposed a multi-level feature LSTM with Conv1D, the Conv2D pyramid,
and the LSTM block. The proposed method exploited skeletal point-cloud features from
skeletal data, as well as depth shape features from the hand component segmentation
model. The method achieved accuracies of 96.07 and 94.40% on the Dynamic Hand Ges-
ture Recognition (DHG) dataset with 14 and 28 classes, respectively. The study extracted
diversity of dynamic hand gestures from 14 depth and 28 skeletal data through the LSTM
model with two pyramid convolutional blocks. The accuracy of 18 classes was 94.40%.
Elboushaki et al. [37] learned high-level gesture representations by using Convolutional
Residual Networks (ResNets) for learning the spatiotemporal features from color images,
and Convolutional Long Short-Term Memory Networks (ConvLSTM) to capture the tem-
poral dependencies between them. A two-stream architecture based on 2D-ResNets was
then adopted to extract deep features from gesture representations.

Peng et al. [38] combined a feature fusion network with a ConvLSTM network to
extract spatiotemporal feature information from local, global, and deep aspects. Local
feature information was acquired from videos by 3D residual network, while the ConvL-
STM network learned the global spatiotemporal information of a dynamic gesture. The
proposed approach obtained 95.59% accuracy on the Jester dataset, and 99.65% accuracy on
the SKIG (Sheffield Kinect Gesture) dataset. Tan et al. [39] proposed an enhanced, densely
connected convolutional neural network (EDenseNet) for hand gesture recognition. The
method achieved 99.64% average accuracy on three hand gesture datasets. Tran et al. [40]
suggested a 3D convolution neural network (3DCNN) that could extract fingertip locations
and recognize hand gestures in real-time. The 3DCNN model achieved 92.6% accuracy on
a dataset of videos with seven hand gestures.

Rahim et al. [41] analyzed the translation of the gesture of a sign word into text. The
authors of this paper performed the skinMask segmentation to extract features along the
CNN. Having a dataset of 11 gestures from a single hand and 9 from double hands, the
support vector machine (SVM) was applied to classify the gestures of the signs with an
accuracy of 97.28%. Mambou et al. [42] analyzed hand gestures associated with sexual
assault from indoor and outdoor scenes at night. The gesture recognition system was
implemented with the combination of the YOLO CNN architecture, which extracted hand
gestures, and a classification stage of bounding box images, which lastly generated the
assault alert. Overall, the network model was not lightweight and had a lower accuracy.

Ashiquzzaman et al. [43] proposed a compact spatial pyramid pooling (SPP) a CNN
model for decoding gestures or finger-spelling from videos. The model used 65% fewer
parameters than traditional classifiers and worked 3× faster than classical models. Benitez-
Garcia et al. [44] employed a lightweight semantic segmentation FASSD-Net network,
which was improved over Temporal Segment Networks (TSN) and Temporal Shift Modules
(TSM). They demonstrated the efficiency of the proposal on a dataset of thirteen gestures
focused on interaction with touchless screens in real-time.

Summarizing, the biggest challenge faced by the researchers is designing a robust
hand gesture recognition framework that overcomes the most typical problems with fewer
limitations and gives an accurate and reliable result. Real-time processing of hand gestures
also has some limitations, such as illumination variation, background problems, distance
range, and multi-gesture problems. There are approaches to hand gesture recognition that
use non-machine-learning algorithms, but there is a problem in that the accuracy varies,
and in different environments such as light, it overlaps one gesture with another, which
makes the approach less flexible and unable to adapt independently, when compared to
the machine-learning approach. Therefore, the machine-learning approach was used for
developing the system.
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3. Material and Methods

This section is dedicated to the materials and the methods that were used in this study
to achieve the gesture recognition that this paper aimed for. Section 3.1 explains the dataset
and all the information related to the material. Section 3.2 deals with the algorithm and the
methods that we used to solve the problem.

3.1. Dataset

Our dataset consisted of 216 images. These images were further classified into 5 dif-
ferent sets. Each set held an average of 42 images which were labeled using the YOLO
labeling format. The dataset was labeled using a labeling tool, which was an open-source
tool used to label custom datasets. We used the YOLO format, which labels data into text
file format and holds information such as the class ID and class to which it belongs. Our
classes started from 0 to 4, where 0 class ID is labeled as 1 and 4 class ID is labeled as
5. There were a total of 5 sets that our application detected, which were finger-pointing
positions of 1, 2, 3, 4, and 5. Figure 1 displays the hand gestures in our collected dataset.
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Figure 1. Hand gesture set to be detected.

3.2. Data Preprocessing

Data preprocessing is an important part of the before training and testing phase. Using
a YOLO configuration with a total of 200+ images of the dataset, where 30 were used for
the affine transformation by increasing 2-fold, each image was duplicated for reading
and training, both left and right hand, by flipping it horizontally and sometimes taking
the respective image of those hands for making the set more accurate. Furthermore, an
additional 15 images were taken and labeled for the testing set. The data preprocessing step
is important before moving towards post-processing, because we have to look at what type
of data we have collected and which part of it will be useful for the purpose of training,
testing, and for obtaining better accuracy. Table 1 shows the instances of five classes with
the features of the YOLO-labeled data.

Table 1. Summary of data obtained from YOLO-labeled data file.

Class ID X-Cord Y-Cord Width Height

0 0.531771 0.490234 0.571875 0.794531
1 0.498437 0.533203 0.571875 0.905469
2 0.523438 0.579297 0.613542 0.819531
3 0.526563 0.564453 0.473958 0.819531
4 0.498611 0.587891 0.977778 0.792969

The above example is the representation of how these files will look when we label
our dataset for training it on the desired model. Each line contains 5 different attributes,
and all these attributes have their importance. Looking at the left first, we have class ID,
followed by the next two, which are the labeled box co-ordinates of a gesture with the
x-axis and y-axis values, followed by the width and height of that annotated image.
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Figure 2 represents the correlation heat map of the YOLO-labeled dataset. Here, we
can see the diversity of values among different labels, explaining the concentration and
depth of our images represented in the form of a multi-dimensional matrix.
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Figure 2. Heat map of the YOLO-labeled dataset.

3.3. Proposed Method

To understand the method which we are proposing, we need to look at the diagram
presented in Figure 3 to understand better, generally, what and how our application
is detecting objects. It is a kind of a general overview of the application that we have
developed. The training process first requires collecting the dataset, and after that the next
step is to label it, so we use YOLO annotation to label our data, which gives us some values
that are later explained in the model process. After that, when the data is labeled, we then
feed it to the DarkNet-53 model, which is trained according to our defined configuration.
The image is captured through the camera that can be an integrated (primary) camera or it
can be any external (secondary) camera. Other than that, the application can also detect
gestures from a video input as well.
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After capturing real-time objects with the help of the OpenCV [45] module, which is
an open-source computer vision library, we can capture images and after that, we send
them frame by frame from the real-time objects. Because of incorrect filtering, our dataset
of collected images currently has a variable number of images. These images are labeled
according to the classes we have stored for our YOLO algorithm, so we have successfully
attained the coordinate and the class for our image set. After that, we can now set towards
the training section. We then pass this set to our training algorithm, which is a deep neural
network model YOLO.

Further, we discuss the methodology how YOLO deals with the network desired
output which is achieved by using a formula which takes different co-ordinates, such as
pw, ph, tx, ty, tw, th, cx, and cy. These are the variables which we use for the bounding
box dimensions. Obtaining the values of the boundary box (x-axis, y-axis, height, and
width) is described by Equation (1).

bx = α (tx) + Cx
by = α

(
ty
)
+ Cy

bw = pwetw
bh = pheth

(1)

where bx, by, bw, and bh are the box prediction components, x and y refer to the center co-
ordinates, and w and h refer to the height and width of the bounding box. Equation (1) used
in the YOLOv3 algorithm shows how it extracts the values from the image in the bounding
box, and below is the diagram of how these values are extracted from the bounding box.

From Figure 3, we can understand how each value of the bounding box from the
algorithm provides us with the co-ordinates of the center, x and y. From the prediction
here the next important thing comes, which is the sigmoid function, which we have
already discussed above, which filters out data except for the main part which is going to
be recognized.

From Figure 4, we can understand the backend of the algorithm. When we pass an
input, it first comes into the input layer, and after that it is further rendered and passes into
the hidden layers, that are several in number and size, and are interconnected convolutions.
These convolutional layers determine a special value, which is the value of confidence. In
our case, if the value of the confidence threshold is greater than 0.5, then we assume that
the application has successfully determined what object it has encountered.
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3.4. Implementation

Figure 5 explains how the YOLO algorithm plays its part when it acquires the image
with the help of the OpenCV module. The image is then passed to the YOLO network,
which then further identifies the required target. After doing that it sends it forward to the
feature map prediction block, where it further extracts the information which is required
to identify the gesture, then, after predicting it, sends it to the decoding part, where the
output predicted is mapped onto the image and then displayed, as shown in Figure 5.
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We changed the configuration of YOLO and defined the activation according to the
stride and the pad. For the YOLOv3 model, we set the mask to 0.5. The learning rate was
set to 0.001, and the value of jitter was set to 0.3.

For the exploratory study of the best alternatives to implement the gesture recognition
system, we use some other models to check which algorithm works best for gesture
detection which will be discussed in the next section.

The developed neural network model is summarized in Table 2. Our input layer is
just a typical CNN, which has convolutional layers, and other than that, it has a special
layer, which is a max-pooling layer, and a very simple layer, which is the output layer. The
general architecture of the application, which includes both the training and testing set,
can be seen in Figure 6.
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Table 2. Model Summary.

Layer (Type) Output Shape Parameters

Conv2d_133 (Conv2D) (None, 126, 254, 64) 1792
Max_pooling_132 (Max Pooling) (None, 63, 127, 64) 0

Conv2d_134 (Conv2D) (None, 61, 125, 64) 36928
Max_pooling_133 (Max Pooling) (None, 20, 41, 64, 0) 0

Conv2d_135 (Conv2D) (None, 18, 39, 64) 36928
Max_pooling_134 (Max Pooling) (None, 6, 13, 64) 0

Conv2d_136 (Conv2D) (None, 4, 11, 64) 36928
Max_pooling_135 (Max Pooling) (None, 1, 3, 64) 0

Flatten_33 (Flatten) (None, 192) 0
Dense_151 (Dense) (None, 128) 24704

Dropout_36 (Dropout) (None, 128) 0
Dense_152 (Dense) (None, 64) 8256
Dense_153 (Dense) (None, 32) 2080
Dense_154 (Dense) (None, 8) 264

Total params: 147,880. Trainable params: 147,880. Non-trainable params: 0.
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4. Results

In this section, we present, discuss, and evaluate our results.

4.1. Environmental Setup

To carry out this experiment Python 3.7 was used to train the algorithm on the personal
computer with local 4GB GPU. Other important parameters are presented in Table 3. The
training of the neural network model on our dataset took more than 26 h on a GPU of
24 GB.
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Table 3. Parameters and values for environment setup.

Hyper Parameter Value

Learning Rate 0.001
Epochs 30

No. of Classes 5
Algorithm DarkNet-53 and YOLOv3
Optimizer Adam
Activation Linear, Leaky
Filter Size [64,128,256,512,1024]

Mask 0–8
Decay 0.0005

4.2. Results and Performance of YOLOv3

Figure 7 shows the output of the developed application that performs real-time hand
gesture recognition. As you can see, the bounding box is a little bit large, which is because
it was left intentionally as 416 × 416 for covering the maximum part, then scattered, and
all unnecessary information was removed from the image so we could obtain a larger
coverage area. This also helps in the zoom case when the object is too large, as it will
cleverly identify which gesture is being represented, and it then returns the class ID with
the best match.
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Figure 8 shows the training performance of the proposed deep learning model. The
results are 98% correct, as measured by experiments. The experiment is in real time because
we trained our model with YOLO and Pascal VOC [46] configurations and tested it with
live images. We added the YOLO-annotated labels into a CSV file and re-ran training tests
to confirm the accuracy of the model by plotting the curve, as we can find the accuracy of
an individual gestation in the real-time experiment. The fault was seen in the transitions
between one gesture to another, because the application is in real-time, so the system can
detect dynamic objects too, as proven by our experiments.
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Figure 8. The performance of the proposed model.

We used several different algorithms to test which was the best method for the gesture
recognition application. We compared YOLOv3 [47] with other deep learning models
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(VGG16 [48] and SSD [49]). In the end, YOLOv3 produced the best results and was chosen,
with an accuracy of 97.68% during training and an outstanding 96.2% during testing.
DarkNet-53 was used to train the dataset, and for the detection, YOLOv3 was used. As
we know, in real-time experiments it is not quite possible to replicate the gestures exactly,
so in order to determine the accuracy of the model, so we generated a CSV file of a few
YOLO-annotated labels and re-ran the code with some modifications for the accuracy curve.

Table 4 explains the accuracy of the individual models, where the stochastic gradient
descent gave the lowest value because the real-time motion stochastic could not identify
moving objects correctly, compared to the other algorithms. We evaluated the performance
of deep learning models using the precision, recall, F-1 score, and accuracy measures,
achieving an accuracy of 97.68% for YOLOv3.

Table 4. Comparison of the accuracy results for the deep learning models used for hand gesture
recognition. Best results are shown in bold.

Models Learning
Rate Images Precision

(%) Recall (%) F-1 Score
(%)

Accuracy
(%)

VGG16 0.001 216 93.45 87.45 90.3 85.68
SGD 0.1 216 70.95 98.37 82.4 77.98
SSD 0.0001 216 91.25 84.30 87.6 82.00

YOLOv3 0.001 216 94.88 98.68 96.7 97.68

Table 5 shows the comparison of the state-of-the-art works of Chen et al. [28], Nyiraru-
gira et al. [31], Albawi et al. [32], Fong et al. [50], Yan et al. [51], and Ren et al. [52] with our
proposed model, which produced better results with higher accuracy.

Table 5. Comparison of the state-of-the-art works with our proposed model.

Reference Model Dataset Accuracy (%)

Chen et al. [28] Labeling Algorithm
Producing Palm Mask 1300 images 93%

Nyirarugira et al. [31]
Particle Swarm Movement
(PSO), Longest Common

Subsequence (LCS)
Gesture vocabulary 86%

Albawi et al. [32]
Random Forest (RF) and

Boosting Algorithms, Decision
Tree Algorithm

7805 gestures frames 63%

Fong et al. [50]

Model Induction Algorithm,
K-star Algorithm, Updated

Naïve Bayes Algorithm,
Decision Tree Algorithm

50 different attributes total of 9000
data instance 7 videos 76%

Yan et al. [51]
AdaBoost Algorithm, SAMME
Algorithm, SGD Algorithm,

Edgebox Algorithm

5500 images for the testing and
5500 for the training set 81.25%

Ren et al. [52]
FEMD Algorithm, Finger

Detection Algorithm,
Skeleton-Based Matching

1000 cases 93.20%

Proposed model YOLOv3 216 images (Train)
15 images (Test) 97.68%

5. Discussion

Real-time hand gesture recognition based on deep learning models has critical roles in
many applications due to being one of the most advanced domains, in which the computer
vision and artificial intelligence methods have helped to improve communication with
deaf people, but also to support the gesture-based signaling systems]. In this study, we
experimented with hand gesture recognition using YOLOv3 and DarkNet-53 deep learning
network models [47]. The dataset, which we used, was collected, labeled, and trained by
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ourselves. We compared the performance of YOLOv3 with several other state-of-the-art
algorithms, which can be seen in Table 5. The achieved results were good, as YOLOv3
achieved better results when compared to other state-of-the art algorithms. However, our
proposed approach was not tested on the YOLO-LITE model. The YOLOv3 model was
trained on a YOLO-labeled dataset with DarkNet-53. YOLOv3 has more tightness when it
comes to bounding boxes and generally is more accurate than YOLO-LITE [53].

Moreover, the aim of our study was not to apply real-time hand gestures on limited
computing power devices, since we collected hand images of different size and used
different angles for diversity. Hence, we focused only on performance criteria rather than
YOLO-LITE [54] criteria to recognize hand gestures of speed. Complex applications such
as communication with deaf people, gesture-based signaling systems [55], sign language
recognition [4], special signal languages used in sports [56], human action recognition [7],
posture detection [57], physical exercise monitoring [10], and controlling smart homes for
assisted living [58], are where GPUs could perform better through YOLOv3.

In future work we can apply mixed YOLOv3–LITE [59] on our datasets and new
datasets of 1–10 numbers for all kind of applications for GPU and non-GPU based comput-
ers to achieve real-time object detection precisely and quickly. Furthermore, we can have
enhanced our images through oversampling and real-time augmentation [60] as well. The
major contribution is that there is no such dataset available in YOLO-labeled format and the
research on, specifically, YOLOv3 and onwards requires the YOLO-labeled dataset so by
our contribution that dataset will be readily available for future research and improvement
as the domain of hand gesture recognition is very much wide there is a need of dataset that
should be readily available in the YOLO format also.

6. Conclusions

In this paper, we have proposed a lightweight model based on the YOLOv3 and
DarkNet-53 deep learning models for hand gesture recognition. The developed hand ges-
ture recognition system detects both real-time objects and gestures from video frames with
an accuracy of 97.68%. Despite the accuracy obtained there is still room for improvement
in the following model, as right now the model proposed detects static gestures. However,
the model can be improved for detecting multiple gestures and can be improved by de-
tecting more than one gesture at a time. The proposed method can be used for improving
assisted living systems, which are used for human–computer interaction both by healthy
and impaired people. Additionally, we compared the performance and execution of the
YOLOv3 model with different methods and our proposed method achieved better results
by extracting features from the hand and recognized hand gestures with the accuracy,
precision, recall, and F-1 score of 97.68, 94.88, 98.66, and 96.70%, respectively. For future
work, we will be focusing on hybrid methods with smart mobile applications or robotics
with different scenarios. Furthermore, we will design a more advanced convolution neural
network with data fusion, inspired by recent works [61–63], to enhance the precision of
hand gesture recognition.
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