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Abstract: The optical effects of turbulence are directly related to turbulence integral parameters,
which are integrals of the refractive index structure constant over a whole path with different path-
weighting functions (PWFs). We describe a method that utilizes measurable turbulence integral
parameters, such as angle-of-arrival fluctuations and scintillation, to estimate turbulence integral
parameters that cannot be measured directly. The estimates of the turbulence integral parameters
are based on the linear combination of the PWFs of those measurable quantities. New measurable
quantities and their PWFs under different propagation conditions were studied. Some interesting
and meaningful results have been obtained. This method shows the prospect of characterizing
anisoplanatism in adaptive optics and allows for the estimation of some optical turbulence parameters
under non-ideal conditions, such as an isoplanatic angle in a finite distance.

Keywords: atmospheric optics; atmospheric turbulence; remote sensing and sensors; statistical optics

1. Introduction

A wave propagating through a turbulent atmosphere is subject to perturbations of
its phase and amplitude due to the fluctuations of the refractive index along the whole
propagation path. These perturbations, known as wavefront distortions, severely influence
the performance of optical systems that operate in or through the atmosphere, such as
adaptive optics systems, interferometers, optical wireless communication systems, and
laser radar systems [1–3]. Therefore, it is important to understand how the effects of
atmospheric turbulence on the propagation of a light wave can be quantified.

Clearly, the turbulence strength at each position of the propagation path contributes
to the wavefront distortion. Therefore, the optical turbulence parameters that describe
the optical effects of turbulence are often related to turbulence integral parameters, i.e.,
integrals of the refractive index structure constant Cn2(z) (z denotes the position along
the propagation path with the receiver plane at z = 0) over a whole path with different
path-weighting functions (PWFs). For example, the atmospheric coherence length for
plane waves r0,p has a PWF of z0, the atmospheric coherence length for spherical waves
r0,s has a PWF of (L-z)5/3, and the isoplanatic angle θ0 has a PWF of z5/3 [3]. In a practical
situation, these optical turbulence parameters are often measured indirectly using only
one measurable turbulence integral parameter, such as in the case of the differential image
motion monitor (DIMM) [4], where angle-of-arrival fluctuations are measured, and in the
case of the stellar scintillation isoplanometer [5,6], where intensity fluctuations (scintillation)
are measured. However, in many applications, some of the desired optical turbulence
parameters cannot be estimated using only one measurable quantity, especially due to the
anisoplanatic problems in adaptive optics [7,8], where the expression of related PWFs is
more complex and can only be evaluated numerically. For example, in the angular or focal
anisoplanatic problems in adaptive optics, the PWF of the effective phase variance (the
total phase variance with the piston removed or both the piston and the tilt removed) is
neither z0 nor z5/3, so it cannot be estimated properly by r0 or θ0 [7–9].
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In this paper, we relate the optical effects of turbulence to the path-weighting functions
(PWFs) and describe a method (referred to as the linear combination method) that uses
more than one measurable turbulence integral quantity to estimate the turbulence integral
parameters that cannot be measured directly. We generalize the PWFs of measurable
integral parameters and investigate their characteristics in both a plane wave model
and a spherical wave model for the common case where one source is used and the
receive apertures are unobscured circles. Some interesting and meaningful results have
been obtained. These results may enable us to measure r0 not only at near-field but
also at far-field using the covariance of tilt, and to measure θTA using a small-aperture
telescope instead of a large-aperture telescope using the covariance of intensity rather
than scintillation.

2. Materials and Methods

The turbulence integral parameter noted as P is written as follows:

P = CL
∫ 1

0
C2

n(uL)W(u)du (1)

where C is a constant related to P, L is the propagation path length through turbulence, Cn
2

is the turbulence strength, W(u) is the PWF, and u = z/L denotes the normalized position
along the path with propagation from u = 1 to u = 0 at the receiver. The principle of the
linear combination method is that any linear combination of turbulence integral parameters
corresponds to the linear combination of their PWFs. The desired integral parameter Pd
can be estimated from measurable integral parameters Pi if only the PWF of Pd, noted as
Wd(u), can be approximated by linear combination of the PWFs of Pi, noted as Wi(u), i.e.,

Wd(u) ≈
N

∑
i=1

aiWi(u) (2)

where ai are the coefficients of Wi(u), and N is the number of measurable integral parameters
used in this method. In practical applications, one should first select a suitable Wi(u) based
on the shape of Wd(u) and then fit Wi(u) to Wd(u) using the least square fitting method.
Equation (2) shows that the more measurable integral parameters and their PWFs we know,
the more desired PWFs we can approximate using this method and, thus, the more integral
parameters we can estimate. Therefore, it is important to investigate more measurable
quantities and their PWFs.

Atmospheric turbulence causes phase and amplitude perturbations, and at present,
only the tilt phase and piston amplitude, corresponding to the angle of arrival and the
intensity of the light collected with an aperture, can be measured directly and relatively
easily. In practice, the variance of the angle of arrival and the variance of intensity are
used to obtain turbulence information through their PWFs, which is exactly the case in the
DIMM and the stellar scintillation isoplanometer, respectively. However, the covariance
functions for the angle of arrival or intensity provide more turbulence information due to
their potentially large number of PWFs. The covariance of the tilt phase can be measured
from the covariance of the angle of arrival [3,4], and the covariance of the piston amplitude
can be measured from the covariance of intensity [6,10].

Assuming the Rytov approximation and Kolmogorov turbulence, using the analytic
approach developed by Sasiela [3], the covariance functions for the phase and the log-
amplitude related quantities can be derived as follows:[

Cφ(d)
Cχ(d)

]
= 0.132π2k2L

∫ 1

0
C2

n(uL)
[

WC,φ(u)
WC,χ(u)

]
du (3)

where φ and α denote the phase and the log-amplitude related quantities, respectively; d is
the center-to-center distance of two receive apertures; the optical wavenumber k = 2π/λ,
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where λ is the wavelength of the observed beacon; and WC,φ(u) and WC,χ(u) are path-
weighting functions which are given by the following:[

WC,φ(u)
WC,χ(u)

]
=
∫ ∞

0
κF(γκ)J0(γκd)κ−11/3

[
cos2( κ2γuL

2k )

sin2( κ2γuL
2k )

]
dκ (4)

where κ is the spatial wavenumber transverse to the z direction; γ is the propagation
parameter, which depends on the geometric divergence of the light wave and has the
simple value of γ = 1 for plane waves and γ = 1−z/L for spherical waves; Jn is the nth
order Bessel function of the first kind; and F(γκ) is the filter function, which depends on
propagation geometry, such as the size of the receive aperture and the distributed source,
and measured related quantities, such as the tilt phase or piston amplitude. For circular
apertures with diameter D, the filter function for Zernike tilt and piston are as follows [3]:

Ft(γκ) = [8 J2(γκD/2)/γκD]2 (Tilt) (5)

Fp(γκ) = [4 J1(γκD/2)/γκD]2 (Piston) (6)

For a uniformly illuminated circular source with diameter Ds located at a distance
LS, considering that the uniform circular source consists of incoherent point beacons, the
source filter function is as follows [3]:

Fs(γκ) = [4Ls J1(κDsz/2Ls)/κDsz]2 (7)

The final filter function is the product of any produced filter functions. Make a
change to the variables by replacing κD with x and use the replacement FN = D2/λL,
where FN is the Fresnel number, to simplify the final expression of the PWFs for the tilt
phase (i.e., substituting F(γκ) = Ft(γκ) * Fs(γκ) into Equation (4)) and piston amplitude
(i.e., substituting F(γκ) = Fp(γκ) * Fs(γκ) into Equation (4)), noted as WC,T(u), WC,P(u), to
the following:[

WC,T(u)
WC,P(u)

]
= D

5
3

∫ ∞

0

[
[8 J2(γx/2)/γx]2

[4 J1(γx/2)/γx]2

][
2

J1(
xuDs L
2DLs

)
xuDs L
2DLs

]2

J0(γx
d
D
)x−

8
3

 cos2( x2γu
4πFN

)

sin2( x2γu
4πFN

)

dx (8)

From Equation (8), it is clear that the PWFs for the tilt phase and piston amplitude
depend on four variables: γ, d/D, FN, and DSL/DLS (i.e., the ratio of the angular diameter of
the source to that of the receive aperture observed at plane z = L). In the following sections
DSL/DLS will be noted as R for simplicity. Any change in these four variables will result in
a new PWF. Obviously, we can obtain more PWFs by using the covariance function instead
of the variance function, which is the special case of the covariance function for d = 0. The
geometry and variables of the covariance functions are shown in Figure 1 for reference.

For convenience later, denote WT(u) as the normalized PWF for the covariance of the
tilt phase, and WP(u) as the normalized PWF for the covariance of piston amplitude. To
obtain qualitative knowledge of the effects of these four variables on the PWFs, next we
will give the PWFs in a range of typical conditions by numerical evaluation.
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Figure 1. The geometry and variables for the covariance functions. 

For convenience later, denote WT(u) as the normalized PWF for the covariance of the 
tilt phase, and WP(u) as the normalized PWF for the covariance of piston amplitude. To 
obtain qualitative knowledge of the effects of these four variables on the PWFs, next we
will give the PWFs in a range of typical conditions by numerical evaluation.

3. Results
3.1. PWFs for Plane Waves

Consider Plane Waves (LS Well above the Turbulent Atmosphere) for Which γ = 1.
WT(u) for Different d, FN, and R is Plotted in Figure 2 

For a point source such as a star, for which R = 0, the WT(u) for different FN and d 
values is shown in Figure 2a. It can be seen that FN influences the PWF of the tilt phase 
variance (WT(u) for d = 0) as expected. Due to the effect of diffraction [3,4], the WT(u) for d 
= 0 decreases slowly with u, which deviates from the near-field value that is constant 
along the path, and the deviation becomes notable when FN < 1, suggesting that the 
smaller the FN is, the bigger the deviation is. This explains why the DIMM operates at 
the near-field approximation (big FN). Comparing WT(u) for FN = 1, d = 0D (dash line) and 
FN = 1, d = 2D (dash dot line) shows that the effect of diffraction on the tilt covariance is 
far smaller than that on the tilt variance, which indicates that the effect of diffraction 
appears to be partly counteracted by the covariance term J0(γκ d/D) (see Equation (8)). 
For a distributed source such as a planet, the WT(u) for different R and d values with a 
fixed Fresnel number FN = 1 is shown in Figure 2b. It can be seen that the WT(u) for d = 0 
decreases significantly with u. For larger R values, the downward trend of WT(u) is more 
obvious (dot line versus solid line). By comparing the WT(u) for d = 0 and d = 2D with the 
same R value, again we can see that the effect of diffraction on the tilt covariance is
smaller than that on the tilt variance.

Figure 1. The geometry and variables for the covariance functions.

3. Results
3.1. PWFs for Plane Waves

Consider Plane Waves (LS Well above the Turbulent Atmosphere) for Which γ = 1.
WT(u) for Different d, FN, and R is Plotted in Figure 2.
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which is needed to calculate the isoplanatic angle [5,6]. In Figure 3a, there is a remarka-
ble place where the curves of WP(u) for d = 0.5D, FN = 1 and d = 0D, FN = 5 seem almost 
identical, both approximating u2, which is needed to calculate the tilt isoplanatic angle 
(θTA) [1,3]. For a distributed source such as the sun or a planet, the WP(u) for different R 
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when FN = 1.

For a point source such as a star, for which R = 0, the WT(u) for different FN and d
values is shown in Figure 2a. It can be seen that FN influences the PWF of the tilt phase
variance (WT(u) for d = 0) as expected. Due to the effect of diffraction [3,4], the WT(u) for d
= 0 decreases slowly with u, which deviates from the near-field value that is constant along
the path, and the deviation becomes notable when FN < 1, suggesting that the smaller the
FN is, the bigger the deviation is. This explains why the DIMM operates at the near-field
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approximation (big FN). Comparing WT(u) for FN = 1, d = 0D (dash line) and FN = 1, d = 2D
(dash dot line) shows that the effect of diffraction on the tilt covariance is far smaller than
that on the tilt variance, which indicates that the effect of diffraction appears to be partly
counteracted by the covariance term J0(γκ d/D) (see Equation (8)). For a distributed source
such as a planet, the WT(u) for different R and d values with a fixed Fresnel number FN = 1
is shown in Figure 2b. It can be seen that the WT(u) for d = 0 decreases significantly with u.
For larger R values, the downward trend of WT(u) is more obvious (dot line versus solid
line). By comparing the WT(u) for d = 0 and d = 2D with the same R value, again we can see
that the effect of diffraction on the tilt covariance is smaller than that on the tilt variance.

For plane waves, the WP(u) values for different d, FN, and R values are plotted in
Figure 3.
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For a point source such as a star, for which R = 0, the WP(u) for different FN and d
values is shown in Figure 3a. It can be seen immediately that the asymptotic behavior of the
WP(u) for d = 0 with respect to FN is consistent with well-known asymptotic behavior [5],
i.e., the PWFs of stellar scintillations (WP(u) for d = 0) are approximate to u5/6 for a small D
(i.e., small FN when λL is fixed) and u2 for a large D. When the selected FN is satisfactory
(approximately equals one, dash line), the WP(u) for d = 0 is approximate to u5/3, which
is needed to calculate the isoplanatic angle [5,6]. In Figure 3a, there is a remarkable place
where the curves of WP(u) for d = 0.5D, FN = 1 and d = 0D, FN = 5 seem almost identical,
both approximating u2, which is needed to calculate the tilt isoplanatic angle (θTA) [1,3]. For
a distributed source such as the sun or a planet, the WP(u) for different R and d values with
a fixed Fresnel number FN = 1 is shown in Figure 3b. It can be seen that the peak position
of WP(u) with the same d value moves toward the start of the path with the increase in the
R value, and that the peak position of WP(u) with the same R value shifts slightly toward
the end of the path with the increase in the d value. When the receiver size D is very small
and the distributed source is the sun or the moon, we will obtain the PWFs that are used in
SHABAR [11] (SHAdow BAnd and Ranging) or LuSci [12] (Lunar Scintillometer), both of
which are used to measure surface layer turbulence.

3.2. PWFs for Spherical Waves

Now Consider Spherical Waves (i.e., LS equal to L) for Which γ = 1−u. WT(u) for
Different d, FN, and R is Plotted in Figure 4.
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For a point source, the WT(u) for different FN and d values is shown in Figure 4a. Not
surprisingly, for d = 0, the WT(u) for a large FN value (dot line) has the form (1−u)5/3 that
can be used to measure r0,s; the WT(u) for a small FN value deviates slightly from (1−u)5/3

due to the effect of diffraction. The two curves of WT(u) for d = 0D, FN = 5 and d = 2D,
FN = 1 almost coincide with each other, as the effect of diffraction on the tilt covariance
is smaller than that on the variance. For a distributed source, the WT(u) for different R
and d values and a fixed Fresnel number FN = 1 is shown in Figure 4b. It can be seen that
the WT(u) for a finite-size source deviates significantly from (1−u)5/3; therefore, the larger
the R value is, the faster the decline in WT(u) is. When comparing the WT(u) for d = 0 and
d = 2D, again we can see that the effect of diffraction on the tilt covariance is smaller than
that on the tilt variance.

For spherical waves, WP(u) for different d, FN and R values are plotted in Figure 5.
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One can see that the peak position of WP(u) for fixed d and R values moves towards
the end of the path with an increasing FN value, as shown in Figure 5a; that the peak
position of WP(u) for fixed FN and d values moves towards the start of the path with an
increasing R value, as shown in Figure 5b; and that the peak position of WP(u) for fixed FN
and R values moves towards the end of the path with an increasing d value, as shown in
Figure 5a,b.

4. Discussion

From the above numerical results, we can see how each of the four variables (γ, d/D,
FN, and R) influence the curve shapes of PWFs, which is helpful in the creation of a desired
PWF using the linear combination method (Equation (2)). When we focused on the PWFs
for different FN values without changing the other variables, we found that the effect of
diffraction on the covariance of the tilt phase or piston amplitude is far smaller than that
on the variance.

Note that the PWFs investigated here only considered the common case where one
source is used and the receive apertures are unobscured circles. When the shape of the
receive aperture is changed or two sources are used, the curve shapes of the related
PWFs will also change, as in the case of MASS [13] (Multi-Aperture Scintillation Sensor),
where the receive aperture is annulus, or SloDAR [14] (Slope Detection And Ranging) and
SciDAR [15,16] (Scintillation Detection And Ranging), where two sources are used. Thus,
there are potentially a large number of various Wi(u) values that we can obtain, which
would make the linear combination method more powerful.

In some applications, the PWFs of Pd (the desired turbulence integral parameter)
have complex analytic expressions, most of which can only be evaluated numerically,
and Pd is often difficult to measure at present. For example, in the angular or focal
anisoplanatic problems in adaptive optics, the effective phase variance σ2

Eff (the total phase
variance σ2

φ with the piston removed or both the piston σ2
P and the tilt σ2

TA removed, i.e.,
σ2

Eff = σ2
φ−σ2

P (−σ2
TA)) is such a Pd [3,7–9]. For natural guide star adaptive optics (NGS

AO), it is well known that σ2
φ = (θ/θ0)5/3, and one can easily derive σ2

P = 4.25 σ2
TA = 4.25

(θ/θTA)2 for small angles, where θTA is the tilt isoplanatic angle [1,3,17]. Therefore, if θTA
can be measured along with θ0, one can obtain the effective phase variance in NGS AO
using the relationship σ2

Eff = (θ/θ0)5/3 − 4.25(θ/θTA)2 (−(θ/θTA)2). As far as we know, the
direct measurement of θTA has not been reported. Based on the linear combination method
proposed in this paper, we have proposed one direct measurement scheme of θTA in our
other accompanying manuscript [18].

In some other applications, though expressions for the PWF of Pd are simple, it cannot
be measured under non-ideal conditions. For example, r0,p and θ0 in a finite distance cannot
be measured using the conventional method (DIMM and stellar scintillation isoplanometer)
since the light wave propagating in the turbulence path is not a plane wave. Generally, the
light wave is a spherical wave for a point beacon in a finite distance. Then, the parameter
measured using DIMM is actually r0,s rather than r0,p, and the parameter measured using
the conventional isoplanometer has a PWF with a curve shape similar to the red dashed
line in Figure 5a rather than the red dashed line in Figure 3a (i.e., the well-known u5/3).

The linear combination method shows promise of estimating the real-time Pd with
high accuracy if the suitable Wi(u) can be found. As an application example of this method,
one can measure the isoplanatic angle in a finite distance through the combination of one
spherical wave scintillation and two covariances of intensity in three receive apertures [10],
and the validity of this method was proven by real data from the validation experiment [19].

One can also roughly estimate Pd through the optical turbulence profile obtained from
those turbulence profilers [12–16]. Nevertheless, the linear combination method offers
another feasible solution.
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5. Conclusions

It was found that the path-weighting functions (PWFs) for covariance depend on four
variables: γ, d/D, FN, and DSL/DLS. In other words, the optical effects of turbulence are
influenced by not only the turbulence strength but also these four variables. Numerical
results show that the effect of diffraction on the variance of the tilt phase or piston amplitude
ismore significant than it is on the covariance, e.g., the two curves of WT(u) for d = 0D,
FN = 5 and d = 2D, FN = 1 almost coincide with each other, and it is possible to measure
the tilt isoplanatic angle through the covariance of intensity rather than scintillation. More
specifically, the curve of the PWFs for the tilt phase shifts upwards as the value of d/D or
FN increases, or the value of R (R = DSL/DLS) decreases (see Figures 2 and 4). The peak
position of WP(u) shifts to the start of the path as the value of d/D or FN decreases, or the
value of R increases (see Figures 3 and 5).

In the future, work will be conducted to prove the validity of measuring the tilt isopla-
natic angle through the covariance of intensity and to investigate more suitable PWFs for
practical applications. The linear combination method is an effective and powerful method
for measuring the turbulence integral parameters of interest as there are a potentially large
number of various PWFs that we can obtain.
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