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Abstract: In this study, a microgrid scheme encompassing photovoltaic panels, an energy storage
system, and a diesel generator as a backup supply source is designed, and the optimal placement for
installation is suggested. The main purpose of this microgrid is to meet the intrinsic demand without
being supplied by the upstream network. Thus, the main objective in the design of the microgrid is
to minimize the operational cost of microgrid’s sources subject to satisfy the loads by these sources.
Therefore, the considered problem in this study is to determine the optimal size and placement
for generation sources simultaneously for a microgrid with the objectives of minimization of cost
of generation resources along with mitigation of power losses. In order to deal with uncertainties
of PV generation and load forecasting, the lognormal distribution model and Gaussian process
quantile regression (GPQR) approaches are employed. In order to solve the optimization problem,
the lightning attachment procedure optimization (LAPO) and artificial bee colony (ABC) methods are
employed, and the results are compared. The results imply the more effectiveness and priority of the
LAPO approach in comparison with ABC in convergence speed and the accuracy of solution-finding.

Keywords: microgrid; optimization; lightning attachment procedure optimization (LAPO) algorithm;
photovoltaic panel; uncertainty

1. Introduction

In recent years, the increase in electrical demand, the rise of crude oil and natural
gas prices, restructuring and the growth of privatization, and the advent of modern
technologies have been led to revolutionary changes in the electricity industry and the
assumption of specific attention to distributed generation (DG) technologies [1–3]. DG
sources or small-scale electricity sources can generate power in the range of 1 kW to 10 MW
in the location of the load or in the vicinity of consumption centers. DG technologies
bring tangible benefits such as peak clipping (peak shaving), improvement of reliability
indices, reduction in power losses due to being close to consumption places, alleviation
of voltage drops and improvement of voltage profile, etc., for distribution networks. In
addition, the integration of renewable clean energy sources, such as solar, wind, and fuel
cell sources, has promoted the power system planners and experts to use these DG units as
much as possible [4,5]. The increase in the pervasiveness of DGs and the combined use of
various types of DG sources has resulted in the emergence of the microgrid concept. The
microgrids are generally defined as small-scale power systems in distribution voltage level
encompassing some DGs and some electrical and thermal loads usually accompanied by
energy storage systems (ESS) [6,7].
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In traditional power systems, the power generation was used to be centralized, and the
power flow was always unidirectional from generation and transmission systems toward
distribution systems and loads. However, in the recent decade, the structure of power
systems has evolved so that modern power systems are experiencing more interest in the
use of DG systems at the distribution level [8]. According to the rules and regulations in
different countries, various definitions are given based on the place of DG installation,
the purpose of use of DG, and their scale of generation (DG sizing). However, a common
definition that overlaps all those definitions can be expressed as a small-scale generating
unit with limited scalability, which is intended to be used in a distribution network or
demand-side [9–16].

Determination of the optimal size of DG units and the optimal place for installation
of them is distribution network subject to satisfy all constraints of the grid and minimize
the incurred cost to the grid’s operation have assumed particular attention since the last
decade. In this regard, a wide diversity of studies is conducted on this subject, and various
methods are proposed in order to solve and assess this problem. In [17], a microgrid
scheme including a photovoltaic (PV) system is proposed, in which the microgrid works in
grid-connected and isolated modes. In this work, the objective of the study is to minimize
the power losses in the distribution grid. The authors in [18] have proposed an isolated
microgrid scheme, which includes PV, wind turbine, diesel generator units, and the object
is to minimize the overall cost. A hybrid system model is presented in [19], in which
various types of DGs are used. However, as a critique, in this study, the places of DG
units are supposed to be fixed, and no optimal placement for DGs has been done. In
such a circumstance, by altering the installation location, the determined sizes are not
valid as optimized scale anymore. Another research is carried out on the design of hybrid
energy systems in [20]. The downside of this study is that the size, installation placement,
and optimal performance are not considered into account simultaneously, and they are
assessed separately. Such an evaluation cannot assure the optimal design and the optimal
performance point of the hybrid system. Thus, all the optimization variables attributable
to the design of hybrid systems and microgrids must be optimized at the same time
rather than separately. Another critical factor is the consideration of uncertainties in PV
generation and demand forecasting, which is not well addressed in the previous works.
The authors in [21] have investigated a multi-objective DG placement and sizing problem
subject to reduce loss and to enhance the voltage profile using the shuffled frog leap
algorithm. Optimal sizing of renewable energy resources with the goal of loss reduction in
distribution grids using the ant lion optimization method is presented in [22]. A battery
placement problem is also presented in [23], in which it is objected to reducing losses in
a distribution grid with high penetration of solar sources. In [24], optimal allocation and
sizing of renewable distributed generation are investigated. Reference [25] has delved
into the optimal sizing and placement of RESs in distribution systems considering load
growth. The optimal allocation of DG units for a distribution network is presented in [26].
In addition, optimal sizing renewable and dispatchable DGs in distribution networks
has been investigated in [27]. The authors in [28] have proposed a new method to deal
with the optimization problem of optimal placement and sizing of energy storage systems
subject to improve the reliability of hybrid power distribution networks encompassing
renewable energy sources. In [29], a multi-objective dynamic and static reconfiguration
model with the optimized placement of solar unit and battery storage system is proposed.
A meta-heuristic algorithm is employed to find the optimal size and installation location of
DG sources with the objective of loss reduction in [30,31]. As it is clear, none of the works
in the literature has paid attention to the uncertainties of distribution-side resources. In
other words, the uncertainties of load and demand-side generation sources can have a
great impact on the operation and planning of the distribution sector as well as microgrids
that should be taken into account. In [32,33], lightning attachment procedure optimization
is employed to solve a non-smooth and non-convex dispatch problem, including uncertain
variables pertaining to wind power sources. The authors in [34] also have presented a



Appl. Sci. 2021, 11, 4156 3 of 21

novel method to deal with the uncertainty of load forecasts as well as the uncertainty of
renewable generation sources to solve a placement problem. Similar studies are conducted
in which the uncertainty of load, price, and renewable sources are investigated [35–37].

In this paper, a hybrid energy system is designed, which is regarded as a microgrid in
a distribution network. The costs of operation, maintenance, and investment are also taken
into account. In order to deal with uncertain variables of solar generation, the lognormal
distribution model is employed to exploit the trends and patterns of solar irradiance. In
addition, the Gaussian process quantile regression is applied as the forecasting approach
to deal with uncertainties of load forecasting. A novel optimization algorithm is employed
in order to optimize the performance and to find the optimal location for the installation
of DGs. It is supposed that the microgrid is connected to the upstream network. Hence,
the cost of energy exchange with the main grid is also taken into consideration in the
objective function. The proposed scheme is implemented on the 69-bus IEEE test system
in order to evaluate the effectiveness of the model. In Section 2, the problem outlines are
described. In this section, the objective function and the constraints of the problem are
expressed. In Section 3, the employed optimization algorithm is explained, and in Section 4,
the simulation and results are discussed. Ultimately, in the last section, the conclusions
are drawn.

2. Problem Outlines

As declared, the purpose of this study is to design a microgrid scheme subject to
supply the loads in a distribution feeder or network. This microgrid consists of a PV
panel, an energy storage system, and a diesel generator as a backup source of energy. The
primary goal of this study is to determine the optimal size of the PV panel, diesel generator,
and the sufficient quantity of batteries to maintain an uninterrupted supply for the loads
with respect to the objective function of the problem. Hence, at first, the demand for the
microgrid must be specified.

2.1. Microgrid’s Demand

The contemplated microgrid is a local distribution network that has a variable load
during a day. With regard to the incremental trend of consumption of residential and
industrial loads at the early hours of the evening, the peak of the demand curve is supposed
to be in the evening. In addition, with regard to the consumption pattern of industrial loads,
another peak exists around midday hours. Thus, in order to consider the load pattern of
the microgrid, a 24 h load profile with two peaks is taken into account as figured out as
follows. Figure 1 demonstrates the normalized demand of the microgrid. It is noteworthy
to assert that the load of the distribution network is also determined in a similar way.

Figure 1. The normalized demand curve of the microgrid.

2.2. Microgrid’s Supply Strategy

The first goal of size determination of microgrid’s generation sources is to supply the
loads in this micro-scale grid. The PV panels have a vital role in power provision for the
loads. However, when PV panels cannot generate sufficient power, the energy storage unit
and diesel generator unit are responsible for meeting the loads. Thus, the optimal supply
strategy can be express as follows:
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2.2.1. Enjoying Photovoltaic Panel’s Power

A. If the PV generation is more than the grid’s demand and the batteries are not fully
charged, the excess PV generation should be stored in the batteries;

B. If the PV generation is more than the grid’s demand and the batteries are fully charged,
the excess generation of PV panels must be sold to the distribution network;

C. If the PV generation is lower than the grid’s demand, a portion of the loads will
be supplied through PV generation, and the rest of the demand must be procured
through the energy storage system;

D. If the PV generation is lower than the grid’s demand and the battery system is not
adequate to supply the loads entirely, the loads will be satisfied by PV panels and
energy storage units as much as possible, and the rest of the loads must be met by the
diesel generator;

E. If the total generation by PV panels, batteries, and the diesel generator is not suf-
ficient for satisfying the load, the load-shedding measure must be imposed for the
excessive demand.

2.2.2. Being Deprived of PV Generation

A. If the batteries’ capacity is adequate to supply the demand, the loads will be served by
the batteries solely;

B. If the batteries’ capacity is not sufficient to supply the demand, the rest of the loads
must be served by the diesel generator;

C. If the demand is more than the combined capacity of PV panels and the diesel genera-
tor, the rest of the loads must be remained unsupplied by load shedding.

It should be noted that the unsupplied load cannot be higher than 25% of the total
demand of the grid. In addition, the capacity of the diesel generator must be so determined
that it is not allowed to operate less than 20% of its maximum capable generation.

2.3. The Objective Function

When the suggested capacities for the generation sources are adequate to supply the
microgrid’s loads properly, the excess generated power can be sold to the distribution
network. However, it must be determined which bus in the distribution network must be
chosen, from which the excess generation will be injected into the distribution grid. The
injection point has a considerable impact on the performance of the distribution grid. Thus,
the location of the microgrid is an important item. Hence, the optimal placement of the
microgrid must be investigated. The objective function for the optimal placement of the
microgrid can be expressed as follows:

min f = CPV + Closs + Cbat + Cdg − Bex (1)

2.3.1. Power Losses

In order to model the power losses, the losses are supposed to be as a power, which
must be bought from the upstream network. Thus, it is modeled as a cost in the overall
objective function equation. This objective can be expressed as follows:

Closs =
365

∑
d=1

24

∑
t=1

Nb

∑
i=1

Pi,t,d
loss
× ρt,d (2)

In the above equation, ρt,d denotes the price of electricity on the day of d at hour t, and
Pi,t,d

loss stands for the number of losses on the day of d at hour t in the ith line. It is noticeable
that the price of electricity at peak, mid-peak, and off-peak hours is different.

2.3.2. The Cost Related to the Photovoltaic System

Deployment of solar energy incurs installation cost of PV panels, operation and
maintenance cost, and replacement cost. Thus, the cost pertaining to PV panels can be
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modeled as below. The subscript of PV a is a symbol for a photovoltaic unit, O&M addresses
operation and maintenance cost, inv indicates investment cost, and rep corresponds with
replacement cost.

CPV = CPV_inv + CPV_O&M + CPV_rep (3)

2.3.3. The Battery Cost

The energy storage facility in this work is a set of batteries that have similar costs,
such as the PV panel, and can be formulated as Equation (4). The subscript of bat stands
for battery energy storage system, O&M addresses operation and maintenance cost, inv
indicates investment cost, and rep corresponds with replacement cost.

Cbat = Cbat_inv + Cbat_O&M + Cbat_rep (4)

2.3.4. The Cost Pertaining to Diesel Generator

The cost of such equipment consists of investment cost, maintenance cost, and replace-
ment cost. The subscript of dg stands for the diesel generator, O&M addresses operation and
maintenance cost, inv indicates investment cost, and rep corresponds with replacement cost.

Cdg = Cdg_inv + Cdg_O&M + Cdg_rep (5)

2.3.5. The Cost Pertaining to Load Shedding

If the load-shedding measure has to be imposed, this matter incurs a cost to the model,
which must be included in the objective function of the problem.

2.3.6. The Profit Yielded by Excess Generation Selling

If the power generated by the PV panel is higher than the demand of the microgrid and
charging capability of batteries, the excess power can be sold to the distribution network
and earn a profit. The obtainable benefit (profit) can be calculated by the following equation:

Bex =
365

∑
d=1

24

∑
t=1

Pt,d
ex × ρt,d (6)

In above, Bex is the benefit (profit) gain by the sale of surplus generation, and Pt,d
ex

shows the amount of surplus power on the day of d and at hour t.

2.3.7. Constraints

The optimization problem is accompanied by a set of technical constraints that restrict
the solution space and must be considered in the model. These constraints can be defined
as follows:

The power balance equality constraint during all intervals of a day:

24

∑
t=1

Pt
PV + Pt

dg + Pt
bat − Pt

D_mic = 0 (7)

The maximum permissible load shedding in the microgrid:

24

∑
t=1

Pt
sh ≤ 0.25×

24

∑
t=1

Pt
D_mic (8)

Generation balance in the distribution network must be observed.

24

∑
t=1

Pt
g + Pt

ex + Pt
slack − Pt

loss − Pt
D_dis = 0 (9)
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The boundaries of the photovoltaic panel and diesel generator must be met.

0 < PPV < Pmax
PV (10)

0 < Pdg < Pmax
dg (11)

The voltage of buses must be restricted within their permissible range.

Vmin < V < Vmax (12)

The power flow passing through the lines must be restricted.

Fb < Limitb (13)

In the above equations, Pt
PV , Pt

dg, and Pt
bat represent power generation of PV panel,

diesel generator, and batteries, respectively. Moreover, Pt
D_mic indicates the consumption

of the microgrid at hour t. The shed load of the microgrid is shown by Pt
sh. In addition,

Pt
g, Pt

ex, Pt
slack, Pt

loss, and Pt
D_dis represent the power generated by the generators in the

distribution network, the exchanged power of the microgrid with the distribution network,
the power maintains from the slack bus of the distribution network, the power losses in the
distribution network, and the consumption of the distribution network at hour t. Moreover,
Pt

PV , Pt
dg, V, Vmin, Vmax, Fb, and Limitb stand for the maximum capable power generation by

PV panel, the maximum capable power generation by a diesel generator, bus voltage, the
minimum and maximum permissible voltage of buses, the flow passing through branch b,
and the thermal limit of branch b.

The prevailing constraints of the problem can be divided into two general categories
of network constraints and storage constraints that must always be observed when seek-
ing for optimal point in the solution space. Network constraints include the following
two constraints:

As the thermal limit constraints express, the feeder power flow is not allowed to
violate a specific cap.

Sk ≤ limitk (14)

The hourly constraints pertaining to the energy storage unit consist of two constraints
of the maximum storage capacity and charge/discharge rate limits. This limitation ex-
presses that the storage charge level must always be below the maximum storage capacity
and can be formulated as follows:

Pmin_ch × Ich(t) ≤ Pch(t) ≤ Pmax_ch × Ich(t) (15)

Pmin_dch × Idch(t) ≤ Pdch(t) ≤ Pmax_dch × Idch(t) (16)

SoCmin ≤ SoC(t) ≤ SoCmax (17)

SoC(t + 1) = SoC(t)− Pdch(t)× Idch(t) + Pch(t)× Ich(t) (18)

Ich(t) + Isch(t) ≤ 1 (19)

In this equation, t represents the time, Pch and Pdch denote the charge and discharge
rates, and SoC stands for the state of charge of the storage unit that has a maximum storage
capacity limit and a minimum storage capacity boundary owing to the long-run operation
and maintenance facets. Each storage unit can be charged or discharged by a limited
amount within an hour. The last equation also ensures that the storage unit cannot operate
at charge and discharging modes simultaneously. In this equation, I(t) is a binary variable.

2.3.8. The Uncertainty Modeling for PV Sources

The nature of solar power and photovoltaic irradiance can be represented by various
types of distribution functions. One of the most efficient types for this purpose is the
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lognormal probability distribution function (PDF), which effectively and precisely charac-
terizes the intensity of irradiance on a typical day. The PDF of solar irradiance (ζs) trailing
the lognormal distribution function with a mean value of µs and standard deviation of σs
that is presented in Equation (20).

f
(

ζs

∣∣∣µs, σ2
s

)
=

1
σ2

s
√

2π
exp

{
−
(
(log(ζs)− µs)

2

2σ2
s

)}
∀ζs > 0 (20)

The solar power generation (PPV) depends on the solar radiation intensity, also known
as solar irradiance, which is shown by ζs. The generation curve can be different based on
different items such as the location and type of installation, the technology of solar panels,
as well as the ambient temperature. A typical photovoltaic irradiance-power curve is given
in Equation (21).

PPV(ζs) = APVηpvζs (21)

ηpv = η0[1− 0.0042 (
ζs

18
+ Ta − 20)] ηinv (22)

The amount of power generation by a solar panel depends on different factors, which
can be estimated by Equations (21) and (22). Above, η stands for efficiency, and Ta denotes
the ambient temperature.

In order to model the intermittencies, a dataset of historical records associated with
the solar radiation. Such irradiance datasets can effectively be matched with a lognormal or
Weibull distribution function. These distribution models usually have high mathematical
compatibility with various natural phenomena. The PDF helps to generate randomly
derived samples within the occurrence range while specifying a confidence range to
eliminate low-probable cases. For each scenario, a random value is derived from the
lognormal model. If the number of scenarios is high, various scenario reduction techniques
can be employed that merge similar cases into one class. Based on the model objectives,
the operation state can be adjusted within the confidence range with respect to the level of
risk chosen by the operator. The operator can arrange the operation point in a risk-averse
zone to ensure a reliable and secure operation, although it incurs higher costs. On the other
hand, the operation of the grid, with respect to the whole uncertainties, can be stated in
a high-risk zone by ignoring less-probable incidences to boost the profitability and the
economy of the model.

2.3.9. Load Forecast Uncertainty

Load forecasting is a critical item in many planning applications in power systems.
Load forecasting can also be performed in different intervals for various purposes. Load
forecasts are dependent on weather conditions (temperature, humidity, air brightness,
wind speed). In addition, each day of the week has its own load curve. Load consumption
curves on holidays and non-holidays are also different from each other. In different seasons
of the year, according to the factors specific to each season, such as day length, the load
consumption pattern will be different. Short-term load forecasting is a pivotal data needed
for running a day-ahead market. The results of STLF are employed by GENCOs to discover
prices with regard to the way other market participants may act. Price forecast signals are
also applied to bidding strategy techniques to maximize profitability. The system operator
will clear the market for the next-day delivery according to the forecasted values along with
the bids from GENCOs. ISO is responsible for balancing the market between generation
level and the forecasted demand at each interval. However, with regard to the inaccuracy
of forecasts, there is always a violation that must be redressed by storage units or other
controlling actions such as load shedding.

There are multiple approaches to deal with load forecasting. The most common meth-
ods are the time series method, regression methods, and intelligent methods. Intelligent
methods are also classified into several categories such as artificial neural networks, fuzzy
logic-based methods, also ANFIS models, wavelet transformation methods, as well as



Appl. Sci. 2021, 11, 4156 8 of 21

support vector machines. In order to deal with uncertainties, probabilistic models can
be integrated into the employed load forecasting paradigm. In this study, the Gaussian
process quantile regression (GPQR) is employed to deal with uncertainties [38]. Due to
the stochastic nature of load patterns as well as various external factors such as weather
conditions, calendar effects, and seasonal factors, the power demand signals exhibit in-
termittent and volatile characteristics. Hence, a prediction scheme is needed to provide
the most probable distribution of power demand patterns rather than a crisp value. A
Gaussian process model is a set of random variables, in which any member corresponds
with a probability distribution that can be represented by the following function:

f (l) ∼ GP
(
µ(l), COV

(
l, l′
))

(23)

In this equation, µ(l) and COV(l,l′) denote the mean and covariance functions that can
be calculated as follows:

µ(l) = E{ f (l)} (24)

COV
(
l, l′
)
= E

{
[ f (l)− µ(l)]×

[
f
(
l′
)
− µ

(
l′
)]T
}

(25)

The covariance function illustrates the similarity between data points. One of the most
widely-used functions for describing covariance is the squared exponential (SE) model that
can be represented as follows:

COVSE
(
l, l′
)
= θ2

f exp

(
‖l − l′‖
θ2

length

)
(26)

The parameters θf and θl control the scale and length. With regard to the differen-
tiability of this covariance, which implies that the Gaussian process is very smooth, a
simplified alternative, known as Matern covariance, can be replaced because, in practice,
no phenomena do not reflect such a strong smoothness.

COVMat
(
l − l′

)
= σ2 21−v

Γ(v)

(√
2v

l − l′

i

)v

Bv

(√
2v

l − l′

i

)
(27)

In the above, Bv represents the modified Bessel function, in which v and i are both
positive hyperparameters. To simplify this covariance function, the value of v is supposed
to be v = p + 1/2. In this parameter, p is a non-negative integer. The value of v is set as 5/2 or
3/2 in most previously conducted research studies, which subsequently and, respectively,
are named Mat5 and Mat3. The probabilistic prediction model also has another covariance
function named the period covariance, which is useful to model periodic phenomena and
can be described as follows:

COVMat
(
l, l′
)
= θ2

f exp

(
− 2

θ2
length

sin2
(

π
l − l′

p

))
(28)

Typically, the load forecasts are highly influenced by a variety of features that can be
defined by Equation (29). According to this equation, load at time t depends on the similar
hours (t∈{0, 24}) throughout the historical records, the day of the year (d∈{1, . . . , 365}), the
value of the load at similar intervals, the value of weather variables such as temperature,
and the price at similar intervals.

ŷ = f (t, d, vl , vw, price) (29)

GPQR method seeks for the relationships and correlation between inputs and output
based on a probabilistic framework. Quantile regression (QR) delineates a type of regression
analysis that detects and exploits the relationships between quantiles of the conditional
distribution of a response variable and input variables. The least absolute deviations
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regression integrates the median of the conditional distribution, which is called the norm
regression case of quantile regression shown by L1. Unlike least-squares regression and
norm regression, the quantile regression encompasses minimization of the summation
of asymmetrically weighted absolute residuals. Hence, QR can find more sophisticated
relationships between inputs and outputs with better precision. QR has more flexibility
and compatibility to deal with large datasets, such as market analysis or econometrics.
With regard to the accuracy of predictions, the loss function can be described as follows:

Lτ(εi) =

{
τεi i f εi ≥ 0
(τ − 1)εi i f εi ≥ 0

(30)

The required quantile is defined by τ∈[0, 1] and εi = yi − ŷi so that yi is the actual
model and ŷi denotes the predicted quantile model. So far, different linear programming
methods are employed to achieve the desired quantiles through direct loss function min-
imization, which leads to the maximization of a likelihood. To solve this drawback, the
Gaussian process is incorporated into the QR model. The density function of loss based on
this model can be represented as follows:

L(t|µ, σ, τ) =
τ(1− τ)

σ
exp

[
− t− µ

σ
(t− I(t ≤ µ))

]
(31)

where τ∈[0, 1] is responsible for shaping and controlling the skewness of the distribution
curve, µ stands for the mean value, and σ denotes the standard deviation, which should
always be positive. The binary variable I takes the value of 1 when the condition is true;
otherwise, it takes 0.

Uτ(y, q) = Z exp

[
−

N

∑
i=1

Lτ(yi, qi)

]
(32)

In Equation (32), q denotes the predicted value of the τ quantile, Z is the normalization
constant. Afterward, a Gaussian process is placed on the QR function:

p(q) = GP(q|0, K) (33)

The GPQR model training can be conducted by integral maximization. The expectation
propagation algorithm can be employed to locally approximate this integral.

argmax
∫
q

Uτ(y, q)p(q) d(q) (34)

Suppose a dataset of historical load records as l = {x1, x2, . . . , xN}, which are inde-
pendently distributed samples. The estimated shape of this distribution function can be
obtained through a Gaussian kernel density estimator model.

K(x1, x2, σ) =
1√
2πσ

e−
(x1−x2)

2

2σ2 (35)

Mean absolute percentage errors (MAPE) and root mean squared error (RMSE) are
two employed evaluation metrics that can exhibit the performance of the forecasting model.

RMSE(yi, ŷi) =

√√√√ 1
N

N

∑
i=1

(yi, ŷi)
2 (36)

MAPE(yi, ŷi) =
1
N

N

∑
i=1

∣∣∣∣yi, ŷi
yi

∣∣∣∣ (37)
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2.4. Energy Management Paradigm by Microgrid’s Controller

The controlling framework of a microgrid is a vital element in this planning scheme.
The microgrid controller, also known as the microgrid operator, is responsible for collecting
raw data and analyzing them to find the optimum operation point with respect to all oper-
ational constraints of both sides. In other words, it has to provide an accurate estimation of
generation sources for all intervals and take a sensible range of risk for being preserved
from the detrimental zone. Then it can dedicate the level of power exchange with the
upstream grid for various hours. To implement such an intelligent autonomous mecha-
nism, a smart environment is needed that is only feasible through IoT infrastructures [39].
The following flowchart concisely describes the proposed scheme. The paradigm of the
proposed scheme is depicted in Figure 2.

Figure 2. The paradigm of the proposed scheme.

3. Lightning Attachment Procedure Optimization (LAPO) Method

This algorithm was inspired by the procedure of lightning the attachment process to
the ground or any type of earthed object. In order to simulate this optimization algorithm,
at first, some test points are considered on a cloud or the ground as the initial population.
By increasing the electric field at the points on the cloud, the streamer channels begin to
break down the air and move toward the ground, which is called a downward leader. As
these downward leaders move toward the ground, the opposite charges will be enhanced
in the ground and produce upward leaders. The striking point at the final jump step is a
point where the upward leader collides with the downward leader [40–42]. The algorithm
is composed of some sections that will be presented as follows:

3.1. Initialization

At first, the test points on the surface of a cloud as well as on the ground are defined.
These dedicated charges are called the initial population.

3.2. The Next Jumping Node

Each branch of the lightning has some probable points in front of itself, which can
move toward one of them. The choice of the next jumping point of the lightning is highly
correlated with the intensity of the electric field between the point and the probable points.
Of course, the next jump will not necessarily be toward the point with the maximum
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field, and part of the process of selecting the next point will occur randomly. For the
mathematical modeling of this section, a random node is selected for each node in the
search space. If the electric field in this point (merit value of the point or the fitness value
at the intended point) is greater than the background field (which is supposed to be the
mean field), the lightning moves toward this point; otherwise, the path of lightning will
be in another direction. It is noticeable that the term opposite direction does not imply an
upward movement exclusively rather than an angled motion toward this point. Hence, for
determining the next jump, the following equation can be employed:

P = sign(Fav − F(r)) (38)

Xnew(i, j) = X(i, j)− P× rand× (Xav(1, j)− X(r, j)) (39)

3.3. Streaming Forward and Elimination of Branches

When a new lightning branch is formed, this branch can stream downward until the
branch’s charge cuts down and becomes lower than a specific value (critical value). The
critical value is assigned to be 1 µC because the air cannot be broken down for the lower
levels of charges, and the branch will be faded.

3.4. Upward Leader Propagation

When the branches start to move downward, the upward leaders start to move up-
ward. The motion speed of the upward leader is correlated with the amount of charge
aggregated at this point as well as the total charge of the downward branch. The distribu-
tion of charge in the downward branch is so that there are fewer charges near the cloud
and more charge at the tip of the leader. This is why the tip of the leader is brighter. This
incremental charge aggregation over the branch can be considered as a linear or exponential
function. Here, the branch’s charge is considered exponentially, as pointed out by the
following two equations:

S = 1− (t/tmax)× exp(−t/tmax) (40)

Cc = S× (Xmin(i, j)− Xmax(i, j)) (41)

Above, CC denotes the branch’s charge, Xmin is the charge of the branch in the tip of
the leader, Xmax indicates the branch’s charge at the beginning point. The upward leaders
will be propagated according to the following equation:

Xnew(i, j) = X(i, j) + rand× Cc (42)

3.5. Convergence

When an upward leader reaches a downward leader, the collision point of the lightning
will be determined. In other words, when the optimum point is specified, the algorithm
will be terminated. The abovementioned procedure will be iteratively executed until the
optimum point is found.

4. Simulation and Results

In this section, the optimal placement for the microgrid is carried out on the targeted
test system. The targeted system is a radial 69-bus IEEE test system, which is depicted in
Figure 3 in the form of a single-line diagram. In addition, in order to have a better appraisal
of the effectiveness of the proposed method, the proposed method is also tested on a radial
33-bus IEEE test system, which is depicted in Figure 4. However, the input data is the
same for both grids. In this paper, all the methods are implemented in MATLAB 2018a in a
Core i5 PC with 3 GHz processing frequency of CPU and 8 GB of RAM. The convergence
behavior is another aspect with which the methods are compared to each other.
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Figure 3. The single-line diagram of the 69-bus test system.

Figure 4. The single-line diagram of the 33-bus test system.

The characteristics corresponded with the lines and the buses of this system refer
to [43,44], respectively. The normalized demand of the microgrid is shown in Figure 5. The
demand for this microgrid at the peak is considered to be 250 kW. The peak of the load
curve of the grid is supposed to be the mid-peak demand obtained from [43,44]. Moreover,
the hourly solar insulation profile is normalized and illustrated in Figure 6.

Figure 5. The normalized demand of distribution network for both systems.

Figure 6. The normalized daily solar irradiance for both distribution systems.

The maximum generation capability of the PV panel per month is shown in Table 1.
The placement mechanism is executed in the worst condition. Thus, the calculations
are conducted for the month of August. This month indicates the lowest level of mean
solar radiation.
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Table 1. The mean solar radiation for each month for both radiation systems. [45].

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

5.45 5.73 6 6.01 5.65 5.26 4.81 4.78 5.15 5.63 5.84 5.57

The economic data for different sources were extracted from reference [44]. The
investment cost of the PV panel is considered to be 7.44 €/kW, and the O&M cost is
supposed to be 40 €/year. The cost of each battery is determined as 0.283 €/Ah, and each
battery incurs 50 €/year for O&M costs. The operation cost and maintenance cost of the
diesel generator is 0.55 €/W and 0.2 €/h, respectively.

The demand in the targeted microgrid is supposed to be composed of residential and
industrial loads. Table 2 delineates the price of electricity corresponded with the types of
loads and the demand level.

Table 2. The electricity price for different load types and various demand levels for both distribu-
tion systems.

Load Level Price of Residential
Load (€/MW)

Price of Industrial
Load (€/MW)

Percent of
Peak Load

Low 35 2000 50 < L
Middle 49 2800 50 < L < 70

Peak 70 3050 L > 70

4.1. The IEEE Test Systems (33-Bus and 69-Bus)

The optimization for the 33-bus test network is conducted with regard to the acquired
economic data. The results are demonstrated in Table 3. In addition, the convergence
behavior of two targeted methods in reaching the optimal solution is illustrated in Figure 7.
Accordingly, the LAPO method has reached the optimal solution with fewer iteration. In
terms of accuracy, the results of LAPO are better than the ABC algorithm. As can be seen, at
the early hours of the time horizon (at midnight), when there is no solar power generation,
a battery energy storage unit can supply the demand of internal loads of the microgrid as
it is clear that the battery power is negative during these hours, which indicates that it is
discharged. The battery starts charging after 8:00 and reaches its maximum charge level
at 11:00. Therefore, no power is stored in it until it starts discharging again at 18:00. It is
recharged at 19:00 and fully discharged at 20:00 due to the high volume of consumption.
The diesel generator commits at 8:00 and stops power exchange at 9:00. These conditions
continue until 20:00, and after that, it continues to serve the loads until midnight. Due to
the significant amount of solar production, a large volume of this production is sold to
the distribution network, and the obtained profit improves the objective function. As it is
evident, the network is designed in such a way that no load is interrupted during the day
and all the loads are completely satisfied.

Table 3. The design and size determination of microgrid for the distribution test systems (33-bus and
69-bus).

Bus Method Location PV Size (Kw) Diesel Size
(Kw)

Number of
Batteries Cost (€)

33
LAPO 6 395 242 25 47,162
ABC 26 393 242 25 47,383

69
LAPO 59 400 256 26 50,360
ABC 61 399 238 25 52,351
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Figure 7. The comparison of the convergence behavior of different methods in seeking for the best
solution for the 33-bus distribution test system.

With regard to the economic data provided in the previous section, the optimization
problem is simulated on the 69-bus test system. The optimized results of the simulation are
presented in Table 3. In addition, the convergence behavior of both optimization techniques
employed in this study is depicted in Figure 8. As can be seen, it is evident that the LAPO
approach not only has reached the optimal solution in less iteration, but also it has found a
better solution in comparison with the ABC method.

Figure 8. The comparison of the convergence behavior of different methods in seeking for the best
solution for the 69-bus distribution test system.

The behavior of the microgrid in August is illustrated in Figure 9. As can be perceived,
in the early hours at midnight, while the sunrise has not occurred, the battery is responsible
for maintaining power for the microgrid. Thus, the power battery is negative in these
hours, which implies that the battery is discharging. The battery starts to be charged at
8:00 in the morning, and it will be fully charged at 11:00. Hence, the batteries will not be
charged anymore and remain idle until 18:00. At 18:00, the batteries are to some extent
discharged. However, they are charged again at 19:00. With regard to the high level of
consumption at 20:00, the batteries deliver all of their stored energy to the microgrid. The
diesel generator is connected to the microgrid at 8:00, and it is disconnected at 9:00. It
continues until 19:00. Again, at 19:00, the diesel generator starts to supply the load until
the end of the time horizon of this study (24:00). With respect to the high level of solar
generation, a considerable share of this production is sold to the distribution grid. The
obtained economic benefit has improved the objective function. As it is clear, the microgrid
is so designed that the loads are supplied entirely and load shedding has not occurred. The
microgrid behavior in August is depicted in Figure 9.



Appl. Sci. 2021, 11, 4156 15 of 21

Figure 9. The behavior of the microgrid in August.

The power purchased from the main grid is shown in Figure 7. As it shows, during
the day hours when there is solar energy, the demanded power from the upstream grid is
drastically reduced. It should also be noted that the network losses and the corresponding
costs were 1061 kW and 55.86 € per day, which reached the values of 956.79 kW and 51.78 €
per day, after the installation of microgrids in the network, respectively. Figure 8 shows
the amount of load shedding in the distribution network at different times of the day.
The results figure out that during the hours when there is solar energy, solar unit injects
power into the distribution network, the amount of shed load has reached zero, which
is very beneficial in terms of cost and efficiency for the distribution network as well as
reliability improvement from microgrid point of view. The model is also tested on the
69-bus test system. The results imply that the bought power from the main grid by the
69-bus distribution network is illustrated in Figure 10. As it is evident, during the hours
that the PV panel can generate power, the absorbed power from the sub-transmission grid
is considerably diminished. The power losses of the distribution grid and the subsequent
cost of them were about 1350 kW equivalent with 65.76 €/day before the implementation of
the microgrid scheme, and it is alleviated to 989.32 and 56.28 €/day after implementation
of the microgrid. In Figure 11, the hourly shed load in the distribution network is shown. It
is obvious that whenever the PV generation exists, all of the loads in the distribution grid
are satisfied, and no load-shedding measure in the distribution network is executed. This
matter significantly improves the performance of the distribution network.

Figure 10. The bought power from the main power system by the distribution network.

4.2. Incorporation of Uncertainty in the Model

The demand for a grid and the daily radiation intensity are not deterministic param-
eters, and they usually have uncertainties. Hence, these parameters must be forecasted,
and the scheduling must be conducted based on the forecasts. Therefore, the existence of
forecasting error is inevitable, and the error must be included in the optimization model in
order to mitigate the risk. A common way to model the uncertainties corresponded with
solar radiation and demand of the grid is to employ a normal probability distribution. In
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other words, the mean value and the standard deviation of these parameters are calculated,
and the design and the scheduling must be carried out based on these forecasts.

Figure 11. The amount of shed load in the distribution network in the presence and absence
of microgrid.

The most famous and the most accurate approach for dealing with uncertainties and
probabilistic problems is the Monte Carlo algorithm. In this approach, a large number of
probabilistic samples are defined within a specified range, and the scheduling is performed
for all of these samples. Then, the probability density function of targeted parameters is
extracted. In this study, an upper and a lower boundary are dedicated for the demand of
microgrid and distribution network along with the daily solar radiation. It is supposed that
the radiation and demand will be materialized within the defined range. These boundaries
are depicted in Figures 12–14.

Figure 12. The upper bound, the lower bound, and the mean value of demand of microgrid in the
probabilistic study.

Figure 13. The upper bound, the lower bound, and the mean value of demand of distribution
network in the probabilistic study.
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Figure 14. The upper bound, the lower bound, and the mean value of daily solar irradiance in the
probabilistic study.

In order to solve the stochastic problem, the Monte Carlo approach is employed. In
this respect, for each uncertain parameter, 1000 stochastic samples are generated randomly.
To solve the stochastic problem, the following step-by-step procedure is considered:

• Step 1—Generation of 1000 samples for each uncertain optimization variable.
• Step 2—The stochastic generation of a set of solutions for optimization variables.
• Step 3—The selection of a set of optimization variables.
• Step 4—Test the grid’s performance for 1000 samples using the Monte Carlo approach

and checking all constraints for 1000 plausible scenarios.
• Step 5—The calculation of the objective function (if the constraints are met).
• Step 6—Check convergence and termination conditions. If it is converged, then go to

step 9.
• Step 7—The change of optimization variables based on the optimization method.
• Step 8—Go to step 3.
• Step 9—End.

Table 4 outlines the results of the design of the microgrid with the incorporation
of uncertainties.

Table 4. The results of optimal sizing of test grids incorporating uncertainties of demand and solar
radiation and the consideration of the maximum cost of stochastic scenarios as the objective function.

Bus Location PV Size Diesel Size Number of Batteries Cost (€)

33 2 395 215 42 70,342
69 6 400 214 39 69,214

In the case of the 33-bus test system, the cost of power generation is greatly increased.
This increase is due to the conditions in which the load may be maximum and production
may be minimum. Therefore, these conditions must also be taken into account in the
problem. However, as can be seen, the cost has increased by nearly 49% compared to
the case where uncertainty is not considered. Thus, it should be considered that in the
presence of sources of intermittency, the cost of power supply from the network may
increase remarkably, which conveys the importance of stochastic solution.

The increase in the system cost pertaining to the uncertainty will be 27%, which is
nearly 20% less than the previous case. Therefore, the uncertainties are applied to the
model using the average intermittencies in the system cost in all possible scenarios as
an objective function. As can be seen, in the stochastic model, the cost of the system has
increased by 26% compared to the deterministic case.

As the results of the 69-bus test system figure out, the cost of supply in this condition
is significantly increased. This increase conveys a condition that the demand is at a high
level and the solar radiation is at a low level. Therefore, the worst conditions must be
contemplated in the design of the microgrid. However, as it is evident, the cost is drastically
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increased by 50% in comparison with the case of the deterministic model (regardless of
uncertainties). Thus, it should be noted that the overall cost of the microgrid scheme may
be enhanced extensively for uncertain problems.

It is important to pay attention to a critical question. The cost of supply has increased
by 50% in order to include uncertainties. It conveys a high level of consumption and a low
level of generation. The occurrence of such generation and consumption levels for this
system at the targeted time is not a definitive and certain event. The question is whether it
is sensible to increase the cost of the system by 50% for a forecast that has an occurrence
probability of 10%.

In the procedure of seeking the optimum solution of uncertain parameters, for each
suggested answer provided by the optimization program, all possible scenarios are taken
into account, and the highest cost incurred to the system, among all scenarios, is regarded
as the cost of the suggested answer. If the suggested answer does not satisfy even one or
more constraints, that answer should be dismissed. Such a procedure profoundly mounts
the system cost.

In order to tackle this problem, no answer should be dismissed, and the system cost
must be obtained for all answers in as scenarios, even when they were unable to meet some
constraints. Finally, the average cost of all scenarios is dedicated to the answer. Hence,
if the suggested answer does not meet the constraints in some scenarios, the answer will
not be dismissed. It is obvious that, for the problems with a few scenarios, the inclusion
of scenarios, which used to be disregarded, does not have a remarkable impact on the
solution of the problem. With consideration of the proposed condition, the optimal results
of the simulation can be expressed in Table 5. This assumption has been led to an increase
of 26% in the system cost for the incorporation of uncertainties in the model. It is just over
20% fewer than the normal approach. Thus, the uncertainties can be included in the design
by incorporation of the average cost of the system. As can be seen, the system cost has
increased by 26% in comparison with the deterministic approach.

Table 5. The results of optimal sizing of test grids incorporating uncertainties of demand and solar
radiation and the consideration of the average cost of stochastic scenarios as the objective function.

Bus Location PV Size Diesel Size Number of
Batteries Cost (€)

33 2 395 253 37 59,802
69 2 400 265 34 59,325

5. Conclusions

In this study, a microgrid scheme including loads, PV panels, energy storage system,
and the backup supply system of a diesel generator was designed. The object of the design
was to minimize the cost of supply. In this microgrid, it was intended to not absorb any
power from the distribution grid. However, if there is an excess of generation by intrinsic
power resources of the microgrid, the excess power would be sold to the distribution
network. The costs pertaining to PV panels, batteries, and diesel generator consists of
purchasing and installation cost, operation and maintenance cost, and replacement cost. If
the proposed scheme cannot supply the loads (generation deficiency) at some hours, the
load-shedding measure must be imposed for the surplus demand. Just the same, the excess
generation must be injected into the upstream network. In order to boost the performance
of the design, the placement of the microgrid is so determined that the network power
losses are minimized. Thus, the optimal design of the microgrid was performed at the
same time as the placement of the microgrid. The problem solution was targeted to be
stochastic. Hence, two upper and lower boundaries were dedicated to the amount of
demand and solar irradiance. In order to solve the problem, the Monte Carlo approach
with 6222 random samples is employed. The results of the 33-bus test system imply that
the incorporation of uncertainties in the model has drastically increased the supply cost by
about 49%. In order to avoid unnecessary risks, the averaging method is deployed, which
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boosts the risk-averse scheduling. In this case, the system cost has increased by 27% in
comparison with the deterministic approach. The results of the 69-bus test system imply
that the incorporation of uncertainties in the model has drastically increased the supply
cost by about 50%. In order to avoid unnecessary risks, the averaging method is deployed,
which boosts the risk-averse scheduling. In this case, the system cost has increased by
26% in comparison with the deterministic approach. The optimization is solved using
the LAPO method, and the results are compared with the ABC algorithm. The results
indicate the proper performance of the suggested algorithm in terms of convergence speed
and accuracy.
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