
applied  
sciences

Article

Reliability Analysis Based on a Gamma-Gaussian
Deconvolution Degradation Modeling with Measurement Error

Luis Alberto Rodríguez-Picón 1,* , Luis Carlos Méndez-González 1 , Roberto Romero-López 1 ,
Iván J. C. Pérez-Olguín 1 , Manuel Iván Rodríguez-Borbón 1 and Delia Julieta Valles-Rosales 2

����������
�������

Citation: Rodríguez-Picón, L.A.;

Méndez-González, L.C.;

Romero-López, R.;

Pérez-olguín, I.J.C.;

Rodríguez-Borbón, I.;

Valles-Rosales, D.J. Reliability

Analysis Based on a

Gamma-Gaussian Deconvolution

Degradation Modeling with

Measurement Error. Appl. Sci. 2021,

11, 4133. https://doi.org/10.3390/

app11094133

Academic Editor: Cher Ming Tan

Received: 18 March 2021

Accepted: 27 April 2021

Published: 30 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology,
Autonomous University of Ciudad Juárez, Ciudad Juárez 32310, Mexico; luis.mendez@uacj.mx (L.C.M.-G.);
rromero@uacj.mx (R.R.-L.); ivan.perez@uacj.mx (I.J.C.P.-O.); ivan.rodriguez@uacj.mx (M.I.R.-B.)

2 Department of Industrial Engineering, New Mexico State University, Las Cruces, NM 30001, USA;
dvalles@nmsu.edu

* Correspondence: luis.picon@uacj.mx

Abstract: In most degradation tests, the measuring processes is affected by several conditions that may
cause variation in the observed measures. As the measuring process is inherent to the degradation testing,
it is important to establish schemes that define a certain level of permissible measurement error such
that a robust reliability estimation can be obtained. In this article, an approach to deal with measurement
error in degradation processes is proposed, the method focuses on studying the effect of such error in the
reliability assessment. This approach considers that the true degradation is a function of the observed
degradation and the measurement error. As the true degradation is not directly observed it is proposed
to obtain an estimate based on a deconvolution operation, which considers the subtraction of random
variables such as the observed degradation and the measurement error. Given that the true degradation
is free of measurement error, the first-passage time distribution will be different from the observed
degradation. For the establishment of a control mechanism, these two distributions are compared using
different indices, which account to describe the differences between the observed and true degradation.
By defining critical levels of these indices, the reliability assessment may be obtained under a known
level of measurement error. An illustrative example based on a fatigue-crack growth dataset is presented
to illustrate the applicability of the proposed scheme, the reliability assessment is developed, and some
important insights are provided.

Keywords: deconvolution; gamma process; lifetime; measurement system analysis; reliability estimation

1. Introduction

Generally, the observed degradation of a performance characteristic of interest is
an additive function of the true degradation, and some measurement error [1–3]. This
means that in most cases, it is difficult to measure the degradation process over time due
to imperfect measurement devices and environmental conditions. If the measurement
system accuracy can be attained during the measuring process, then the general reliabil-
ity assessment of the product under study may be deemed as precise. Nevertheless, in
the presence of measurement error, the estimation and reliability assessment must con-
sider the measurement error in the modeling such that the obtained conclusions may not
be underestimated.

Several models proposed in the literature consider the problem of obtaining the true
degradation in the presence of measurement error with the common assumption is that the
measurement error is independent of the degradation measurement [2,4,5]; given that the
error comes from a measuring device that is independent of the true degradation. However,
in some cases, it is considered that the measurement error is dependent on the true degra-
dation [6–9]. In addition, a common assumption is that the measurement error is normally
distributed with mean zero and standard deviation σ [5,10,11]. The true degradation can
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be obtained by considering the joint distribution of the probability density function (PDF)
of the observed degradation and the PDF of the measurement error as described in the
works of Pulcini [8], Lu et al. [7], Xie et al. [12], Kallen and van Noortwijk [13]. In these
cases, the joint distribution is obtained either via joint conditional distributions or by the
convolution of the observed degradation and the error [9]. In terms of stochastic model-
ing, the Wiener process is the most used in the literature to deal with measurement error.
Shen et al. [14] proposed a Wiener process model with logistic distributed measurement
errors, the estimation of parameters was carried out with the Monte Carlo Expectation–
Maximization method to estimate the related parameters. Wang et al. [15] proposed a
change-point Wiener degradation model with normally distributed measurement errors,
they considered a Bayesian approach to estimate the parameters of interest. Pan et al. [16]
studied a Wiener degradation model with three sources of uncertainty, one being the mea-
surement error, which is considered to be normally distributed. Sun et al. [17] proposed a
nonlinear Wiener process model with measurement error to estimate the remaining useful
life of a cutting tool. The estimation of parameters of this model is extended by Tang et al.
[18]. Liu and Wang [19] also considered the Wiener process with measurement error but
based on evidential variables. Li et al. [20] proposed a Wiener process model with normally
distributed measurement errors and multiple accelerating variables. Models based on the
inverse Gaussian process with measurement error have also been proposed. Sun et al.
[21], Chen et al. [22] and Hao et al. [23] studied the inverse Gaussian process with random
effects and measurement errors to obtain lifetime estimations. A similar method for the
inverse Gaussian process was also considered by [24] but under accelerating conditions.
Chen et al. [25] proposed a nonlinear adaptive inverse Gaussian process with measurement
error to estimate remaining useful life. Another important modeling approach considers
the deconvolution, which consists of the inverse process of the convolution in order to
obtain an unknown PDF from two known PDFs. In such a case, the true degradation can
be obtained by deconvoluting the PDF of the observed degradation and the known PDF of
the measurement error. Although, the deconvolution has been used in different scientific
disciplines leading to important applications such as in illumina BeadArrays [12,26], op-
tical distortion [27] and image processing [28,29]. It has only be considered to model the
measurement error in degradation processes based on the inverse Gaussian and Wiener
processes [30]. Furthermore, Rodriguez-Picon et al. [30] demonstrated the applicability of
deconvolution to obtain reliability assessments without measurement error, but a control
scheme over the performance of the measurement system is not considered. Important
information about the deconvolution process can be found in Zinde-Walsh [31], Wang and
Wang [32] and Neumann [33].

The importance of considering the measurement error in the modeling of degradation
processes relies on obtaining accurate reliability assessments. However, it is also important
to establish a control scheme over the measurement error, such that a desired estimation
can be obtained under a controlled level of error. This means that a certain range of the
observed measurement error caused by measuring devices, methods and environmental
conditions can be established and maintained in order to achieve a desirable reliability
assessment [4]. Usually, the reliability assessment based on degradation modeling is carried
out by considering the first-passage time distribution of the degradation paths [34]. Thus,
some variation of the first-passage times is expected from the observed degradation and
the true degradation. This means that a certain level of permissible measurement error
leads to a certain range of variation of the parameters of the first-passage time distribution.
By controlling such variations, it is possible to obtain accurate life estimations, which are
quite important in the definition of maintenance programs [35] or in the establishment
of product warranties. Other approaches for reliability monitoring are based on control
charts [36], these procedures are important to study the deterioration of systems which
leads to determine maintenance policies and process availability improvement [37–39], as
discussed in the degradation modeling with measurement error.
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The main focus of this article is to establish a scheme to control the measurement error
to obtain certain reliability assessments under a defined performance of the measurement
system, where the performance is defined by the measurement error. The proposed scheme
consists of first estimating the observed degradation parameters with measurement error
under the gamma process. Then, the measurement system is assessed via a repeatability
and reproducibiity (R&R) study in the aims of obtaining information about the total
variance contribution of the measuring process. It is considered that the measurement error
is normally distributed with mean zero and that an estimation of the standard deviation
σ can be obtained from the total variation of the measurement system captured by the
R&R study. The deconvolution approach is then performed to obtain the true degradation.
As the function of the true degradation does not have a close analytical expression, we
fitted the deconvoluted true degradation to different stochastic processes. Once the best
fitting stochastic process is selected, the true first-passage distribution is characterized and
compared to the observed first-passage time distribution by using different indices. Such
indices are based on the coefficient of variation, the variance, the mean and the percentiles
of the two distributions. By considering a critical value for any of the four indices, a certain
level of performance of the coefficient of variation, variance, mean and percentile can be
achieved under a certain value of σ. The defined value of σ can be used to control the
measurement system in order to obtain a desired accuracy of the reliability assessment.
The proposed scheme is implemented in a case study which consists of crack propagation
data of an electronic device.

The rest of the article is organized as follows. In Section 2, the modeling of the
observed degradation based on a gamma process is presented. In Section 3, the method
to obtain the true degradation based on deconvolution is introduced. In Section 4, the
proposed indices to compare the first-passage time distributions of the observed and true
degradation are presented. In Section 5, a case study based on the crack propagation data
of a electronic device is presented, the proposed scheme is implemented and the reliability
assessment is developed under a defined level of measurement error. In Section 6, an
extension for logistic distributed measurement errors is presented and illustrated. Finally,
in Section 7, the discussion and some concluding remarks are provided.

2. Modeling of the Observed Degradation via Gamma Process

In this article, it is considered that the degradation measurements of a certain perfor-
mance characteristic are contaminated with measurement error. These measurements are
considered as the observed degradation, as these are directly observed. The modeling of
this characteristic is firstly discussed in this section. In this case, stochastic modeling of
the degradation process is considered given that it is possible to introduce the temporal
uncertainty of the degradation increments over time [40]. The gamma process is specifi-
cally considered to describe the observed degradation of a characteristic of interest. This
process has been widely documented and implemented in multiple case studies in the
literature [40–43], this given its characteristics that it is a monotone stochastic process with
independent and non-negative increments.

We consider {Z(t), t ≥ 0} as a degradation process that describes the observed
degradation of a performance characteristic over time, it is deemed that Z(t) is gov-
erned by a gamma process with the following properties: the degradation increments
Z(t + ∆t)− Z(t) = ∆Z(t) follow a gamma distribution Ga(v[t + ∆t− t], u), and ∆Z(t) are
independent ∀t1 < t2 < t3 < t4.

From the PDF of the gamma process, the parameter vt is a non-negative shape param-
eter with t ≥ 0, v(0) ≡ 0, while u > 0 is the scale parameter. It is known that the mean and
variance of the processes are defined as vt · u and vt · u2, respectively. Thus, ∆Z(t) has the
following PDF,

f (∆Z(t)|v, u) =
∆Z(t)vt−1

uvtΓ(vt)
exp
{
−∆Z(t)

u

}
. (1)
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An important aspect of the reliability assessment of degradation processes is related
to the first-passage times, these are events described by the moment when the cumula-
tive degradation reaches a critical level ω. Thus, the first-passage time of the observed
degradation is defined as To = in f {to : Z(t) ≥ ω}. The cumulative degradation can be
used to describe the cumulative distribution function (CDF) of the first-passage times as
P(Z(t) ≥ ω) = 1− FGa(ω, v, u), which results as,

P(Z(t) ≥ ω) =
∫ ∞

ω
fZ(t)(z)dz =

Γ(vt, ω/u)
Γ(vt)

. (2)

The first-passage time CDF in (2) can be related to the Birnbaum–Saunders distribu-
tion [44,45], with parameters α∗o =

√
u/(ω− z0) and β∗o = (ω− z0)/uv, where z0 is the

initial level of degradation. The CDF is defined as follows

FTo (t) = Φ

[
1
α∗o

(√
t

β∗o
−
√

β∗o
t

)]
, (3)

where Φ denotes the standard normal CDF. The mean of the first-passage time distribution
is obtained as E(To) = β∗o

(
1 + α∗2o /2

)
, and the variance as Var(To) = α∗o β∗o

(
1 + 5α∗2o /4

)1/2.
As (1) denotes the PDF of the observed degradation, let us consider a scheme of a
degradation test where i = 1, 2, . . . , N units are tested and j = 1, 2, . . . , M denotes
the total number of measurements for all the tested units, which results in observed
degradation measurements Zi

(
tj
)
. Then, it is defined that the degradation increments

∆Zi
(
tj
)
= Zi

(
tj
)
− Zi

(
t(j−1)

)
, with t0 = 0, ∆tj = tj − t(j−1), have the next PDF,

f
(
∆Zi

(
tj
)
|v, u

)
=

∆Zi
(
tj
)v∆tj−1

uv∆tj Γ
(
v∆tj

) exp

{
−

∆Zi
(
tj
)

u

}
. (4)

As mentioned earlier, normally the observed degradation is contaminated with mea-
surement error. Which implies that the true degradation cannot be observed directly from
the degradation process. In such a case, it is important to find the true degradation in terms
of the observed degradation PDF and an assumed PDF of the error.

3. Obtaining the True Degradation Distribution via Deconvolution

In this section, it is considered that Zi
(
tj
)

represents the observed degradation mea-
surement of the ith unit at time tj, and that the observed degradation is contaminated with
some measurement error εij. Thus, εij is also observed at tj for each ith unit. Which means
that for each observed degradation a measurement error is observed. Such that εij is a
random variable that follows a Gaussian distribution as G(µ, σ) with a PDF defined as,

f
(
εij|µ, σ

)
=

1√
2πσ

exp

{
−
(
εij − µ

)2

2σ2

}
. (5)

Based on this measurement error, an additive function of the observed degradation
can be considered as Zi

(
tj
)
= Si

(
tj
)
+ εij, where Si

(
tj
)

denotes a hidden true degradation
measurement. Indeed, the observed degradation and measurement error are considered
to be known as (4) and (5), respectively. Then, the true degradation may be obtained
via deconvolution [30]. This operation consists in obtaining the subtraction of random
variables, for example consider the function H = E + G, where H represents an observed
measurement, E represents an unknown variable and G represents a measurement error.
The PDFs of H and G are known to be fH and fG, respectively, and the characteristic
functions (CF) of such PDFs are defined as ϕH and ϕG. The CFs are also known as Fourier
transforms (FT). In the first instance, the deconvolution operation consists of determining
the CF of E, which is defined as ϕE = ϕH/ϕG. In the second instance, the function of
the deconvoluted true measurement fE is obtained by considering the inverse Fourier
transform (IFT) of ϕE.
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Consider this approach for Zi
(
tj
)
= Si

(
tj
)
+ εij, where a gamma distribution is defined

for Zi
(
tj
)

as f
(
Zi
(
tj
))

and a Gaussian distribution is defined for εij as f
(
εij
)
. Firstly, the

CF of Si
(
tj
)

can be obtained by considering the CF of the gamma and normal distributions
in (6) and (7), respectively.

ϕZ(ζ) = (1− uiζ)−v. (6)

ϕε(ζ) = exp
{

iµζ − σ2ζ2/2
}

. (7)

Thus, ϕS(t) is obtained as

ϕS(ζ) =
(1− uiζ)−v

exp{iµζ − σ2ζ2/2} . (8)

The PDF of Si
(
tj
)

is obtained via the IFT of (8) as,

f
(
Si
(
tj
))

=
∫ ∞

−∞
ϕS(ζ)exp{−iζs}dζ. (9)

It can be noted that the IFT represented by the integral in (9) does not have a closed
analytical expression. For this, the discrete Fourier transform (DFT) is considered to obtain
an approximation of f

(
Si
(
tj
))

. The DFT considers a discrete version of the IFT in (9) as a
Riemann sum approximation which can solved via the fast Fourier transform (FFT) algo-
rithm [46,47]. The FFT is known to reduce the complexity of the DFT of a function sampled on
a regular grid of 2p points [48,49]. By considering that any integral, such as (9), can be viewed
as the sum of infinitely many small rectangles, then for the sampled regular grid, p equally
spaced sub-intervals with range [−L0, L0] are considered, where L0 = µ + 5σ + qg, qg is the
0.99999 quantile of the gamma distribution,−L0 = 0 and (µ, σ) are the parameters of the mea-
surement error PDF. Both limits of the regular grid are defined considering the domain of the
deconvoluted random variable, such that the minimum value of the deconvoluted observation
is 0, and the maximum value corresponds to a L0 as defined. Thus, the approximation of (9)
can be viewed as the Riemann sum approximation [50] of the continuous IFT, as follows,

' 2L0

P

P−1

∑
j=0

ϕS

(
2L0

P
(j− 1)− L0

)
exp
{
−iζs

(
2L0

P
(j− 1)

)
− L0

}
, (10)

where, the width of the p equally spaced sub-intervals is defined as 2L0/P. The number of
sub-intervals is considered to be a large enough integer number to obtain a good approxi-
mation of f

(
Si
(
tj
))

. The “NormalGamma” package [51] from R is used to implement the
DFT in (10). As this package is defined for convolution operations, the original code was
modified to implement the deconvolution operation.

Fortunately, the FFT algorithm can be implemented in R to solve the proposed DFT.
Specifically, the function is defined as follows for the sampled vector k = 0, . . . , P− 1 [26],

W[k] =
L0

Pπ
exp{iπ(k− 1)}

P−1

∑
j=0

ϕS

(
2L0

P
(j− 1)− L0

)
exp
{

2iπ
P

(j− 1)(k− 1)
}

. (11)

In this paper, W[k] is considered to be an approximation of the true degradation,
such that W[k] is governed by a certain stochastic process. The gamma process, inverse
Gaussian (IG) process, geometric Brownian motion (GBM) process and the Wiener process
may be considered and the best fitting model may be selected by assessing their respective
goodness of fit.

It should be noted that both the gamma and the IG processes are monotone processes,
while the Wiener process is known to be non-monotone. If the observed degradation
paths are monotone, then it is expected that the true degradation paths remain monotone.
Which, can only be true when σ is small enough to sustain that ∆Zi

(
tj
)
> εij. If σ is large
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enough such that ∆Zi
(
tj
)
< εij, then the degradation paths may become non-monotone,

which in some case studies may not be reasonable (such as in crack propagation data).
Given that in this paper it is considered that the observed degradation paths are governed
by a gamma process, it is expected that the true degradation remains governed by a
monotone stochastic process. In Figure 1, a comparison of observed degradation paths and
deconvoluted true degradation paths is presented when ∆Zi

(
tj
)
> εij and ∆Zi

(
tj
)
< εij.

The paths with black lines were simulated from a gamma process. From Figure 1a, it can
be noted that if σ is large enough the true deconvoluted degradation paths become non-
monotone. While in Figure 1b, it can be noted that if σ is small enough, the deconvoluted
paths remain monotone.

Figure 1. Comparison of degradation paths for observed and true degradation. (a) True non-monotone

degradation paths in red dotted lines when ∆Zi

(
tj

)
< εij, (b) true monotone degradation paths in red

dotted lines when ∆Zi

(
tj

)
> εij.

The construction of the deconvoluted paths (red dashed lines in Figure 1) is performed
considering that the deconvolution operation is performed at every tj for every degradation
measurement Zi

(
tj
)
. Then, random true measurements of Si

(
tj
)

are generated at every
tj to construct the different paths, which represents cumulative sums of the generated
random variables. Once the best fitting stochastic process of W[k] is defined, the true
first-passage time distribution can be obtained. The lifetime of the true degradation is
defined as Ts = in f

{
ts : Si

(
tj
)
≥ ω

}
. The first-passage time distribution will depend on

the best fitting stochastic process.

4. The Effect of the Measurement Error over the First-Passage Time Distributions

It is expected that the measurement error affects the behavior of the first-passage time
distributions of the observed degradation and the true degradation. If the measurement
error is not considered in the modeling, the reliability assessment may be underestimated.
For these reasons, it is important to study the effect of the measurement error over the
first-passage time distributions, such that a maximum level of error in the measurement
system can be determined to obtain a desired reliability assessment. The analysis in this
section is focused on determining the differences between the PDF of To and Ts. Si et al. [4]
proposed to compare two first-passage time distributions via the coefficient of variation
(CV) and the variation (Var(T)) of two distributions. They implemented such approach in
a Wiener model with measurement error. The CV can describe the amount of variability in
any random variable, thus it is expected that the difference between the CV of To and Ts
is relatively small if the effect of measurement error is small. The same approach can be
considered if the corresponding variations Var(T) and means E(T) are compared. In this
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article, the indices proposed by Si et al. [4] are considered and described in (12) and (13) for
the CV and variances, respectively. In addition, an index considering the means is proposed
in (14). In fact, any percentile

(
zq
)

of interest of the first-passage time distributions can be
compared as described in (15).

ICV(Ts, To) =
|CV(Ts)− CV(To)|

CV(To)
. (12)

IVar(Ts, To) =
|Var(Ts)−Var(To)|

Var(To)
. (13)

IE(Ts, To) =
|E(Ts)− E(To)|

E(To)
. (14)

Izq(Ts, To) =

∣∣zq(Ts)− zq(To)
∣∣

zq(To)
. (15)

The four indices are considered to describe the differences between the first-passage
time distributions. In this way, it is expected that the four indices do not exceed critical
values

(
CCV , Cvar, CE, Czq

)
, which means that the estimated lifetime obtained from the dis-

tribution FTo (t) can approach to the estimation of the distribution FTs(t) under certain per-

missible level of measurement error described in the four critical levels
(

CCV , Cvar, CE, Czq

)
.

The flow chart in Figure 2 is followed to optimize σ in order to establish a control over the
measurement system for a certain accuracy of the reliability assessment of interest.

Figure 2. Proposed scheme for the optimal reliability analysis of degradation processes with mea-
surement error.



Appl. Sci. 2021, 11, 4133 8 of 18

5. Case Study

The dataset presented by Rodríguez-Picón et al. [52] is considered for the imple-
mentation of the proposed approach. This case study consists in the crack-growth of a
terminal in an electronic device. The function of this terminal is to transfer a signal to
a receptor, which can be disrupted if the crack in the terminal propagates to a certain
critical level, and thus would lead to a failure of the device. A DT was carried out to
study the propagation of the crack in 10 terminals. The crack propagation was measured
every 0.1 hundred thousand cycles until 0.9 hundred thousand cycles. In this article, it is
considered that a failure is said to have occurred when the length of the crack exceeds the
critical length of 0.4 mm. The total of sample devices are N = 10, with M = 9 observation
times as j = 1, 2, 3, 4, 5, 6, 7, 8, 9, which are the same for all the i = 1, 2, . . . , 10 samples with
tj = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) hundred thousand cycles. In Table 1, the degrada-
tion measurements are presented, the units are millimeters. In Figure 3, the cumulative
degradation paths are presented.

Table 1. Degradation dataset of crack-growth case study.

Device
Hundred Thousands of Cycles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0 0.01 0.03 0.055 0.107 0.165 0.183 0.2 0.26 0.302
2 0 0.09 0.161 0.172 0.247 0.259 0.281 0.371 0.401 0.429
3 0 0.01 0.06 0.081 0.118 0.142 0.158 0.169 0.232 0.262
4 0 0.016 0.076 0.087 0.104 0.127 0.198 0.208 0.218 0.258
5 0 0.036 0.096 0.176 0.204 0.242 0.281 0.325 0.415 0.495
6 0 0.014 0.102 0.112 0.194 0.277 0.289 0.305 0.335 0.391
7 0 0.037 0.064 0.078 0.096 0.124 0.164 0.234 0.254 0.326
8 0 0.035 0.086 0.105 0.174 0.267 0.277 0.347 0.361 0.384
9 0 0.067 0.148 0.161 0.173 0.184 0.218 0.229 0.239 0.285

10 0 0.025 0.052 0.064 0.076 0.151 0.187 0.205 0.222 0.262

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Hundred thousands of cycles

C
u

m
u

la
ti
ve

 d
e

g
ra

d
a

ti
o

n

Critical level of degradation

Figure 3. Cumulative degradation paths of the case study.

It is assumed that the degradation data in Table 1 are governed by a gamma process as
in (4). Thus, Zi

(
tj
)

is the observed degradation for i = 1, 2, . . . , 10, and
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tj = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). In this case study, it is considered that the mea-
surement error is described by a Gaussian distribution with µ = 0 and σ, as described in
(5). Thus, by considering the flow chart in Figure 2, we first estimate the parameters of the
gamma process for the degradation dataset in Table 1, then we estimate σ by performing an
R&R study to the measurement system. Next, we illustrate the effect of the measurement
error over the true degradation distribution by using the deconvolution modeling proposed
in (9), and to assess the effect over the free-error first-passage time distribution by using
the indices presented in ((12)–(15)).

5.1. Estimation of Parameters for the Observed Degradation

The parameters of the observed degradation (u, v) are estimated via Bayesian ap-
proach by considering informative gamma prior distributions for the unknown parameters
(u, v), as v ∼ Ga(ζ, η), u ∼ Ga(δ, τ). Where, the shape parameters are ζ = 52.79 and
δ = 41.45, and the scale parameters are η = 0.4257 and τ = 4.13× 10−4, for v and u,
respectively. The Markov chain Monte Carlo (MCMC) algorithm is utilized to sample
from the joint distribution based on the Gibbs sampler. For this, a code is developed in
the software OpenBUGS [53]. A total of 50,000 iterations were considered for burn-in
purposes and 100,000 iterations were considered for estimations purposes. The obtained
estimations for the mean, standard deviation, Monte Carlo error, and some percentiles for
the parameters (u, v) are presented in Table 2. Two sets of initial values are considered in
order to assess the convergence of the parameters with the Brooks–Gelman–Rubin (BGR)
statistic, the obtained graphs from OpenBUGS are presented in Figure 4. It is considered
that convergence is achieved if all the lines in Figure 4 transpose in 1 [54]. It can be noted
that convergence is achieved in both parameters.

Table 2. Obtained estimations for the observed degradation.

Parameter Mean Sd MC Error p0.025 p0.5 p0.975

v 22.55 3.094 0.01476 16.93 22.39 29.02
u 0.01664 0.002687 1.76× 10−5 0.0126 0.01658 0.02309

Figure 4. BGR graphs for parameters of the observed degradation gamma process, (a) v, (b) u.

The first-passage time distribution of the observed degradation is obtained from (3). By
considering the mean estimates from Table 2, and z0 = 0, the parameters can be obtained
from α∗o =

√
u/(ω− z0) and β∗o = (ω− z0)/uv as α̂∗o = 0.2039 and β̂∗o = 1.066. With these

estimates, it is easy to compute the mean and variance as E(To) = 1.088 and Var(To) = 0.223,
thus CV(To) = 0.434.

5.2. Characterization of the Measurement Error and Its Effect

The degradation increments in Table 1 were measured using a vision system with special
software applications to measure crack propagations. As σ is unknown, we performed an
R&R study to assess the performance of the measurement system and to determine how much
of the observed variation is due to the measurement system variation, i.e., σ. The study was
performed under the next characteristics: a total of three people were selected to perform
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the study, 10 devices were selected, and three replicates were performed, making a total of
60 readings. The results of the gage R&R study are presented in Table 3 and Figure 5. It can be
noted from Table 3 that the total variation contribution of the repeatability and reproducibility
are 3.83% and 0.00%, respectively, which makes the total gage R&R contribution at 3.83%. The
general rule says that if the total gage R&R contribution is less than 10%, the measurement
system is acceptable, which is the case of this study. From Figure 5, it can be noted that
indeed the measurement system performs well, and that most of the variation comes from the
part-to-part variation.

Table 3. Gage R&R variation contribution.

Source StdDev (SD) Study Variation (6*SD) % Study Variation

Total gage R&R 0.0006058 0.0036347 3.83
Repeatability 0.0006058 0.0036347 3.83
Reproducibility 0.0000000 0.0000000 0.00
Operators 0.0000000 0.0000000 0.00
Part to Part 0.0157952 0.0947713 99.93
Total Variation 0.0158068 0.0948409 100

Figure 5. Graphs obtained from the gage R&R study applied to the measurement system.

From Table 3, the standard deviation of the gage R&R study is σR&R = 0.0006058,
which is the total variation due to the measurement system. Thus, we consider σR&R as
an estimation of σ, such that σ̂ = σR&R = 0.0006058, and use this value to perform the
deconvolution approach presented in Section 3.

Considering the estimated parameters in Table 2 for the gamma process, we esti-
mated qg for every tj. Then, we implemented the deconvolution approach considering
σ̂ = 0.0006058 and p = 1000. In Figure 6, a comparison of the observed degradation paths
and the obtained true deconvoluted degradation paths is provided by presenting the box
plots and mean for every tj. It can be noted from Figure 6 that the variation in every tj
was reduced in the true deconvoluted paths. In addition, the mean degradation in every
tj is smaller in the true deconvoluted paths than the observed paths as in the work of
Rodriguez-Picon et al. [30]. It is obvious, that the reduction in the variation at every tj
will cause variations in the mean degradation, i.e., degradation rate, as can be noted in
both degradation paths. Indeed, these conditions will have an impact on the first-passage
time distributions.

As the true degradation function does not have an analytical closed form, we consider
to fit the obtained true degradation to the gamma, IG, GBM and Wiener stochastic processes.
Stochastic models are considered to describe temporal uncertainty, such as the observed
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degradation is modeled with the gamma process. Although, a simple approximation can be
defined when obtaining cumulative sums of the true deconvoluted variables. To perform a
reliability assessment of such approximation, the Kaplan–Meier method can be considered
to define the reliability function. In order to assess the goodness of fit of the four stochastic
processes we consider a graphical method such as the Q-Q plots. In Figure 7, the Q-Q plots
for the different stochastic processes are presented for the true degradation.

Figure 6. Illustration of differences between the observed degradation paths and true degradation paths.

0.02 0.04 0.06 0.08

0
.0

2
0
.0

4
0
.0

6
0
.0

8

Gamma Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

0.02 0.04 0.06 0.08 0.10

0
.0

2
0
.0

4
0
.0

6
0
.0

8

IG Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

0.02 0.04 0.06 0.08 0.10

0
.0

2
0
.0

4
0
.0

6
0
.0

8

GBM Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

−2 −1 0 1 2

0
.0

2
0
.0

4
0
.0

6
0
.0

8

Wiener Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 7. Q-Q plots for true degradation under different stochastic processes.
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It can be noted from Figure 7 that the gamma process seems to have a better fit. In
addition to the Q-Q plots, we also performed the Cramér–von Mises goodness of fit test for
all the models. The obtained Cramér–von Mises statistics were, for gamma 0.056918, for
IG 0.20057, for GBM 0.1748 and for Wiener 0.18345. By considering the critical value for
the Cramér–von Mises statistic for a significance level of 0.1 of 0.173, it can be noted that
the gamma process is the only one not rejected. Thus, we consider the gamma process to
govern the true deconvoluted degradation.

5.3. Comparison of the First-Passage Time Distributions

It is considered that the vector W[k] is described by a gamma process as Ga(v∗∆tj, u∗)
with shape parameter

(
v∗∆tj

)
, and scale parameter (u∗). The true first-passage time

distribution can be obtained by considering the Birnbaum–Saunders distribution with
parameters α∗s =

√
u∗/(ω− z0) and β∗s = (ω− z0)/v∗u∗, with z0 = 0, and ω = 0.4. Thus,

the CDF is described as

FTs(t) = Φ

[
1
α∗s

(√
t

β∗s
−
√

β∗s
t

)]
, (16)

with mean obtained as E(Ts) = β∗s
(
1 + α∗2s /2

)
, and the variance as Var(Ts) = α∗s β∗s(

1 + 5α∗2s /4
)1/2.

The estimated gamma parameters of the true degradation were obtained as v̂∗ = 37.9237
and û∗ = 0.0088. Considering these estimates, the parameters of the first-passage time distri-
butions for the true degradation can be easily obtained considering the Birnbaum–Saunders
distribution. The computed parameters were obtained as α̂∗s = 0.1483 and β̂∗s = 1.1985. In
Table 4, a comparison of the the mean, variance, and CV for the observed and true first-passage
time distributions is presented.

Table 4. Comparison of the mean, variance and CV for the first-passage times of the observed and
true degradation.

Mean Variance CV

Observed 1.088 0.223 0.434
True 1.211 0.18 0.1487

From Table 4, the effect of the measurement over the first-passage time distribution is
reflected. For instance, the mean passage-time from the true degradation is greater that the
obtained from the observed degradation. In addition, the variance is smaller for the true
degradation compared to the observed degradation. This finding can be confirmed by the
degradation paths described in Figure 6, where the mean degradation and the variation
among degradation paths are smaller compared to the observed degradation.

The distributions fTo(t) and fTs(t) are compared by computing the indices described in
((12)–(15)) as denoted in the flow chart in Figure 2. The 5th percentile is considered for (15).
The quantile function of the Birnbaum–Saunders distribution is described as [55],

t(q) = β

αzq

2
+

√
α2z2

q

4
+ 1

2

,

where zq is the q× 100th quantile of the standard normal distribution. Considering that
z5 = −1.6448 and the estimates α̂∗o , β̂∗o and α̂∗s , β̂∗s , the 5th percentile for the first-passage
time distributions for the observed and true degradation were obtained as to(5) = 0.7633
and ts(5) = 0.9396, respectively. All four indices described in Section 4, ICV(Ts, To),
IVar(Ts, To), IE(Ts, To), Iz5(Ts, To) were computed and are presented in Table 5.
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Table 5. Computed indices from the observed and true first-passage time distributions.

ICV (Ts, To) IVar(Ts, To) IE(Ts, To) Iz5(Ts, To)

Index 0.6574 0.1919 0.1136 0.2309

The critical values (CCV , Cvar, CE, Cz5) may be defined depending of the allowance
for the measurement error of the measurement system. In this paper, four indices are
considered, however, one index can be used depending of the reliability estimation of
interest. As can be noted from ((12)–(15)), the indices are ratios that account for the
relative increase in each reliability estimation, i.e., CV, variance, mean, percentiles. Indeed,
the greater the value of the respective indices the more difference between reliability
estimations, which means more variability of the measurement error, i.e., σ. Critical values
should be defined based on historical behavior, but a first approach can be considered as
follows: consider that the measurement system has been evaluated and an estimation of σ
is obtained, then the true and observed first-passage time distributions can be characterized.
Consider that σ is a component of variance with good performance, i.e., less than 10%
of the total variation of the process [56]. If the mean is the estimation of interest, then
from (14) it can be considered that CE = IE, this equivalence of the critical value will
relate the good performance of the measurement system to the estimation of the mean
failure time, so the control scheme can be initiated. Now consider a specific example, if the
critical values are considered as CCV = 0.66, CVar = 0.2, CE = 0.12, and C(z5)

= 0.24, it is
observed from Table 5 that the standard deviation for the measurement error σ = 0.0006058
is good enough for the performance of the measurement system. With this parameter of the
measurement error, it is expected that the estimated lifetime from the data contaminated
with measurement error should be accurate enough. It should be noted that σ may be
optimized by following the sequence determined in the flow chart in Figure 2. However,
previous knowledge of the case study must be available such that optimal values of the
critical values (CCV , Cvar, CE, Cz1) are defined. For instance, the mean time to failure (MTTF)
of the observed degradation and the true degradation with σ = 0.0006058 are E(To) = 1.088,
and E(Ts) = 1.211, respectively. Which means a difference of 0.123 hundred thousands
of cycles. If the maximum allowance for the difference between MTTF is expected to be,
for example, 0.05 hundred thousands of cycles and the critical value CE = 0.043, it can be
noted that IE(Ts, To) is higher CE which means that the measurement system should be
improved such that the measurement process is executed more accurately and the variation
caused by the measurement system is reduced. The same approach may be considered for
any other index different than CE, depending on the estimation of interest. For example, if
it is expected that the differences between the 5th percentiles of the failure times for the
observed degradation and the true degradation be 0.09 hundred thousands of cycles and
Cz5 = 0.105, again it can be noted that Iz5 > Cz5 , which denotes a high variance of the
measurement error.

The reliability functions with and without measurement error were obtained based
on the corresponding first-passage time distributions. The respective differences can be
noted in Figure 8. Along with the respective reliability functions, we also present the
Kaplan–Meier reliability for the observed and true degradation, along with their respective
95% confidence intervals. At different tj, the Kaplan–Meier confidence interval of the
true reliability does not include the observed reliability, which denotes the difference. A
difference of the reliability functions presented by Rodriguez-Picon et al. [30], apart from
the considered stochastic processes for the observed degradation, relies on that, in this
paper, a stochastic process is fitted to the true degradation which defines the dashed red
reliability function. Furthermore, the reliability estimation from Kaplan–Meier results in a
different behavior as the true degradation comes from a gamma-Gaussian deconvolution.
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Figure 8. The effect of the measurement error illustrated by the comparison of the estimated reliability
functions and the Kaplan–Meier estimation with confidence intervals.

6. Extension for Non-Gaussian Measurement Errors

Other PDFs can be considered to describe the measurement error in the proposed ap-
proach. As the deconvolution operation is performed based on CFs, the proposed method
can be extended to more PDFs by replacing the corresponding CF in the denominator of
(8). Then, the approximation of the true degradation can be obtained by implementing
the fast Fourier transform in (10) and (11). In this section, we illustrate this extension by
considering that the measurement error follows a logistic distribution fL

(
εij|µL, s

)
. The CF

is presented as follows,

ϕε(ζ) = exp{iζµL}
πsζ

sinh(πsζ)
, (17)

Then, the CF of the true measurement is defined as,

ϕS(ζ) =
(1− uiζ)−v

exp{iζµL} πsζ
sinh(πsζ)

, (18)

The CF in (18) is considered in (11) to obtain the true measurements. The parameters
of the observed degradation are presented in Table 2 as v = 22.55 and u = 0.01664. From
the R&R study, it is known that the total variation due to the measurement system is
σ̂ = σR&R = 0.0006058. For this scenario, it is considered that µL = 0, and as the standard
deviation of the logistic distribution is defined as SD =

√
(s2π2/3), then by considering

SD = 0.0006058 it follows that s = 0.0033. The deconvolution approach is implemented
considering these parameters with p = 1000. The vector W[k] was then fitted to the gamma,
Wiener, inverse Gaussian and GBM processes. It was found that the gamma process is
the best fitting model. The reliability function based on the estimated parameters of the
first-passage time distributions with logistic errors is compared with the Gaussian errors in
Figure 9. It can be noted that the behavior of the reliability functions is quite similar. With
the logistic errors, the reliability is estimated to be greater when t > 1.1 hundred thousand
cycles, approximately. It is known that the logistic distribution has higher kurtosis than
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the Gaussian distribution, which may account for the small differences in the reliability
function. Both reliability functions, estimated considering measurement error, determine
that the true degradation has greater reliability than the observed degradation.
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Figure 9. Comparison of reliability functions for the observed degradation and the true degradation
under Gaussian and logistic measurement errors.

7. Concluding Remarks and Discussion

The reliability assessment of products is a critical activity for different processes and
systems, thus it is important to consider that the analyzed data are free of any contamina-
tion that can cause inaccurate conclusions. Furthermore, as the measuring process is an
integral part of reliability testing, it is also important to establish some control schemes
over the measuring system’s performance. Such that, a certain performance of the system
leads to a predetermined performance of the product’s reliability assessment. In the case
of degradation modeling, the measuring error causes variation in the first-passage time
distribution. Based on this, it may be expected that the reliability assessment under contam-
inated data may be underestimated. In this article, it is considered that a gamma process
governs the observed degradation with measurement error, and it is assumed that the
error can be described by a Gaussian distribution with mean zero and standard deviation
σ. Thus, the true degradation is obtained by deconvoluting the observed degradation
and the measurement error. In order to control the measurement error in terms of the
reliability assessment, the first-passage time distributions of the observed and the true
degradation are compared in terms of some proposed indices. A general scheme was
proposed to establish the differences between distributions in order to obtain the desired
accuracy of the assessment. From the case study, it was observed that depending on the
reliability estimation of interest; it is possible to establish a maximum level of the standard
deviation of the measurement error. This enables to control the measuring system. It is
essential to define critical levels of the indices for the first-passage time distributions, such
that a maximum level of error can be established. These critical values can be defined by
considering the maximum difference between the reliability estimation of interest between
the true and contaminated first-passage distributions. Following the proposed scheme, the
permissible error can be determined as described in the case study. Furthermore, a scenario
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to deal with non-Gaussian measurement errors is presented to extend the deconvolution
approach applicability.

There are several opportunities for further research in the proposed scheme of this
article. Although the gamma process has been widely used in degradation modeling, other
stochastic processes can be used to describe the observed degradation, such as the inverse-
Gaussian process, geometric Brownian motion and the Wiener process. The deconvolution
modeling proposed in this paper can be extended by considering any of these processes.
Although, the implementation for some process may result more complex, as the CFs of
the inverse Gaussian and geometric Brownian motion do not have closed expressions,
which impose interesting challenges for the implementation of the deconvolution approach.
Furthermore, other sources of uncertainty can be included in the degradation modeling.
It has been found that the consideration of random effects accounts for the accuracy of
the reliability estimations. Indeed, these sources imply certain mathematical complexity
which should be added to the computational complexity of the deconvolution approach.
For this, different deconvolution algorithms proposed in the literature may be considered
to obtain approximations of true variables obtained from measurement error contaminated
processes. The CV, variation, mean and percentiles are considered as indices to measure the
differences between first-passage time distributions. Nevertheless, some other metrics can
be studied with the same purpose. In addition, we consider some well-known stochastic
processes to model the true degradation as an approximation, given that the function
of the true degradation does not have a closed analytical expression. However, further
investigation may be directed in the future to study the deconvoluted function of gamma
and Gaussian distributions.
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