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Abstract: The great variety of wounds and the lack of an effective universal treatment method has
resulted in high demand for modern treatment strategies. Traditional approaches are often ineffective
on a variety of chronic wounds, such as venous ulcers or the diabetic foot ulcer. There is strong
evidence that naturally derived bioactive compounds have pro-healing properties, raising a great
interest in their potential use for wound healing. Plant-derived compounds, such as curcumin and
essential oils, are widely used to modify materials applied as wound dressings. Moreover, dressing
materials are more often enriched with vitamins (e.g., L-ascorbic acid, tocopherol) and drugs (e.g.,
antibiotics, inhibitors of proteases) to improve the skin healing rate. Biomaterials loaded with the
above-mentioned molecules show better biocompatibility and are basically characterized by better
biological properties, ensuring faster tissue repair process. The main emphasis of the presented
review is put on the novel findings concerning modern pro-healing wound dressings that have
contributed to the development of regenerative medicine. The article briefly describes the synthesis
and modifications of biomaterials with bioactive compounds (including curcumin, essential oils,
vitamins) to improve their pro-healing properties. The paper also summarizes biological effects of the
novel wound dressings on the enhancement of skin regeneration. The current review was prepared
based on the scientific contributions in the PubMed database (supported with Google Scholar
searching) over the past 5 years using relevant keywords. Scientific reports on the modification of
biomaterials using curcumin, vitamins, and essential oils were mainly considered.

Keywords: biomaterials; bioactive dressings; skin regeneration; curcumin; essential oils; vitamins;
chronic wounds

1. The Healing of Acute and Chronic Wounds

Chronic wounds occur as the result of delayed and prolonged healing of the acute
wounds [1–3]. The differences between acute and chronic wounds mainly lie in the biochem-
ical environment present in the wound bed [4]. The wound healing process is controlled
by: resident skin cells, blood mononuclear cells, cytokines, chemokines, extracellular ma-
trix, growth factors, and other regulatory molecules. In the case of the acute wound, the
appropriate concentration and activity of the listed compounds leads to the controlled
healing process that occurs in three main overlapping and sequential steps: the inflam-
matory phase, the proliferative phase, and the remodeling phase [5]. Chronic wounds
are often associated with bacterial infections, which hinder the formation of new blood
vessels. It leads to an imbalance between regulatory molecules involved in healing, impairs
the entire process, and stops the tissue repair in one of the mentioned stages [6–8]. Most
often, it is the prolonged inflammatory phase that is responsible for the chronic wound
formation [9–11]. Impaired angiogenesis occurring in the chronic wounds also results
in chronic hypoxia and inadequate micronutrient delivery. The mentioned phenomenon
was identified in ischemic ulcers, venous insufficiency ulcers, and diabetic ulcers [12,13].
Apart from a higher concentration of matrix metalloproteinases (MMPs), chronic wounds
are characterized by excessive levels of proinflammatory cytokines; deficiency of stem
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cells; high levels of reactive oxygen species (ROS); and decreased levels of various growth
factors, including fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular
endothelial growth factor (VEGF), and transforming growth factor-β (TGF-β) [7,9]. Im-
portantly, acute and chronic wounds differ with respect to local pH level. Acute wounds
have a slightly acidic environment, whereas a chronic wound bed is characterized by an
alkaline pH [14]. A schematic comparison of the biochemical environment and the content
of individual compounds in the wound bed is presented in Figure 1.
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2. Current Concepts in Wound Dressings

Accurate wound valuation—including estimation of the wound size, color, type, loca-
tion, and exudate level—determines the most suitable type of the wound dressing to be
used [15]. In contrast to the conventional approaches using gauze and cotton bandages in
order to cover the wound, there is a broad range of polymer-based materials in the world
market (e.g., gels, foams, and films) that can ensure a faster and more effective wound
healing process by facilitating the function of the wound (not just covering it) [1,16]. An
ideal wound dressing should: (1) absorb excessive exudates; (2) control the moisture in the
wound bed; (3) possess good mechanical stability; (4) have great gases transmission; (5)
protect from microorganism colonization and infections; (6) be non-toxic, biocompatible,
and biodegradable; (7) ensure easy and non-painful removal after completed skin regener-
ation; and (8) be available at an acceptable cost [4,16–19]. The above-mentioned features
are summarized in Figure 2.

A great challenge for scientists is to create an ideal dressing material that would
have all the aforementioned features, providing optimal conditions for the most effective
regeneration process. With the development of science, materials used in the production of
the wound dressings have changed to provide better conditions for wound healing [20].
Since a moist environment is crucial for accelerated wound healing, modern hydrogel
dressings containing 70–90% water have recently attracted a lot of attention. This type
of dressing provides an easy application and removal without any tissue damage and
can be used for burns, chronic and necrotic wounds, and pressure ulcers [1]. The most
common method for hydrogel production involves polymerization of a monomer within
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a cross-linked hydrogel network, whereby a second cross-linked network or a polymer
is formed [21]. Conventional hydrogels are prone to breakages due to their reduced
mechanical strength, limiting their clinical applications. To improve their mechanical
strength, hybridization-based techniques using different polymers and strong physical and
chemical interactions are used [22].
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Figure 2. The features of the ideal wound dressing.

Hydrocolloid dressings are usually made of pectin, a cross-linked gelatin matrix,
or carboxymethyl cellulose. This type of dressing forms a soft gel by absorbing wound
fluid. They are useful for low-exuding or shallow wounds, and similarly to hydrogels
they have the ability to maintain the moist environment at the wound bed [23]. Since
hydrocolloids are semi-permeable to water and oxygen, it is not recommended to use
mentioned dressings in strongly infected wounds due to the risk of hypoxia and increased
infections [24,25]. In the case of moderately to heavily exuding wounds, it is recommended
to use hydrofiber dressings, which combine the features of hydrocolloids and alginate
dressings [26].

Alginate is a natural, readily available, non-toxic, and biocompatible biopolymer
obtained from seaweed. It is particularly attractive in wound dressing production and
application due to its high ability to maintain a moist environment and to reduce bacterial
infections [27]. The most common method for alginate dressing preparation is cross-linking
of the sodium alginate solution with divalent ions (calcium, barium, cadmium, magnesium,
zinc, cobalt, strontium) in order to obtain a gel, which can be additionally processed to
obtain a foam-like or fibrous dressing [28,29]. The absorption capacity of the cross-linked
calcium alginate dressing is excellent because it is able to absorb fivefold–sevenfold more
fluid compared to traditional gauze. Due to its specific features (homeostasis ability), it is
recommended for the management of bleeding and highly exuding wounds [30].

Films and foams are two other large groups of dressings widely used in skin regen-
eration. Films protect wounds against bacterial infections, enhance regeneration, and
provide optimal oxygenation and moisture at the wound bed due to their good permeabil-
ity to oxygen and water vapor. The main restriction in their use is their low absorption
capacity, which excludes these biomaterials from the list of suitable dressings for exuding
wounds [27]. In contrast, foams have high absorption capacity due to their highly porous
structure and are dedicated to highly exuding wounds. The structure of the foam dressing
is usually multi-layered, made of a porous polymeric (most often polyurethane) inset with
an outer germ-resistant, waterproof, and anti-adhesive layer [31]. This type of wound
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dressing is also recommended for granulating wounds or lower leg ulcers, but it is not
suitable for dry and eschar wounds [15,31].

A great variety of wound dressings are produced using a natural polysaccharide
called chitosan. It can be processed into functional dressings, such as films, fibers, sponges,
and hydrogels [3]. In view of important biological properties of the chitosan, such as
biodegradability, biocompatibility [32,33], antioxidant [34–36] and antimicrobial [37,38]
properties, non-toxicity [39,40], and anti-cancer properties [41,42], it is not surprising that
chitosan is a frequently used compound for the production of various modern dressing
materials. Nevertheless, its low solubility is a limiting factor that contributes to a growing
interest when it comes to chemical modifications of this molecule [43]. Except chitosan,
collagen is also frequently used in the production of wound dressings [44]. However,
although it promotes wound healing, collagen-based materials are often permeable to
external pathogens, limiting their clinical applications [20]. Cellulose has attracted consid-
erable interest related to biomaterial production due to its suitable mechanical and physical
properties. Moreover, it is characterized by biodegradability and low production cost,
making it widely used for the fabrication of dressing materials [45].

Biomaterials for wound healing applications can be enriched with different bioactive
compounds that can speed up the regeneration process. Bioactive dressings are aimed at
delivering active substances (antibiotics, peptides, drugs, vitamins, growth factors etc.)
to the wound environment to enhance the process of wound healing [46]. Interactive
dressings directly interact with the wound bed promoting regeneration process. These
interactions include removal of excessive exudate, providing a moist environment in
the wound bed, and prevention of infections [47]. Importantly, interactive dressings are
favorable for the re-epithelialization process due to better oxygen concentration and pH
control [48]. All mentioned features of the dressings optimize the skin regeneration process.
A short classification of the wound dressings is presented in Figure 3.
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Current review work was conducted using mainly a PubMed electronic database
(supported with sporadic use of Google Scholar). The search of the available scientific
contributions was limited to the last five years. The following keywords during collecting
scientific reports were used: biomaterials, bioactive dressings, wound dressings, skin
regeneration, curcumin, essential oils, vitamins, and chronic wounds.

3. Pro-Healing Wound Dressings
3.1. The Effect of Natural Compounds on Skin Regeneration

Plants play a significant role in conventional wound treatments. Widely used medical
plants are rich in bioactive natural compounds with immunomodulatory properties. As
a consequence, naturally derived active agents may control the inflammatory response
and promote re-epithelialization and wound contraction [49]. According to the available
literature, there are a number of natural compounds with proven favorable effects on the
wound healing process. Many bioactive molecules, which can be potentially incorporated
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within the structure of dressing materials, have been demonstrated to possess great ef-
fectiveness in the acceleration of wound healing process [50]. Therefore, production of
biomaterial through the combination of natural or synthetic polymers with the medical
plant compounds appears to be a promising strategy to create wound dressings with
improved pro-healing properties. These plant-derived active agents ensure desirable prop-
erties of the biomaterial, supporting wound re-epithelialization and its angiogenesis [51].
This section focuses on the recent findings related to the production of novel dressing
materials by incorporation of naturally derived bioactive compounds with pro-healing and
immunomodulatory properties.

3.1.1. Curcumin-Loaded Biomaterials

Curcumin is a phytochemical belonging to polyphenolic group, occurring in a herb
called Curcuma longa. It is one of the most active components of herbal turmeric. Due to its
antioxidant, hypoglycemic, anti-inflammatory, anti-rheumatic, and antibacterial activity,
this natural compound has been studied over the years [52,53]. Moreover, it is non-toxic
and reveals superb biocompatibility, attracting wide interest in many biomedical research
fields. However, its poor bioavailability and water solubility have contributed to its
limited clinical applications. Nevertheless, curcumin is frequently used in the biomaterial
production process, where it is combined with natural or synthetic polymers [54]. Currently,
there are many reports in the literature on dressing materials loaded with curcumin. The
latest studies concerning the evaluation of the biological properties of curcumin-enriched
biomaterials are summarized in Table 1.

Table 1. Curcumin-loaded biomaterials for wound healing applications.

Type of
Biomaterial

Composition of the
Biomaterial Experimental Model Biological Properties and

Advantages Limitations Ref.

Hydrogel Curcumin, bacterial
cellulose

In vitro (A549—human
lung adenocarcinoma,

MSTO—human
mesothelioma,

PANC1—human
pancreatic ductal
adenocarcinoma,

U251MG—human
glioblastoma, horse

blood cells)

Non-cytotoxicity,
antibacterial (S. aureus)

and antioxidant properties
Not provided [55]

Nanofiber

Curcumin, poly(3-
hydroxybutyric

acid-co-3-
hydroxyvaleric
acid) (PHBV)

In vitro (L929—mouse
fibroblast cell line)

Enhanced cell adhesion
and proliferation

Low mechanical
properties related
to high curcumin

concentration

[56]

Fiber mat
Curcumin, pure

poly-L-lactic
acid (PLLA)

In vitro (HDFa—human
adult dermal fibroblasts)

Enhanced cell adhesion
and proliferation,

antioxidant properties
Not provided [57]

Membrane
Curcumin, chitosan,

polyvinyl
alcohol (PVA)

In vivo (rabbit model)

Biodegradability, low
production cost,

antibacterial (P. multocida,
S. aureus, E. coli, B. subtilis)
and antioxidant properties

Dedicated mainly
to burn wounds [52]

Nanofiber

Curcumin, polylactic
acid (PLA),

polycaprolactone
(PCL)

In vitro (L929—mouse
fibroblast cell line)

Antibacterial (E.coli, S.
aureus) activity,

hydrophobic behavior
Slight toxicity [58]
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Table 1. Cont.

Type of
Biomaterial

Composition of the
Biomaterial Experimental Model Biological Properties and

Advantages Limitations Ref.

Film Curcumin, chitosan,
β-cyclodextrin

In vitro (NHDF—normal
human dermal fibroblast
cell line, NCTC clone 929

cells—mouse
subcutaneous fibroblast

cell line

Enhanced mechanical
properties, antioxidant

activity

Slight reduction in
water swelling [59]

Hydrogel

Curcumin, PVA,
TEMPO-oxidized

cellulose
nanofiber (TOCN)

In vitro (L929—mouse
fibroblast cell line), In vivo

(rat model)

Enhanced collagen
organization, supported

wound contraction
Not provided [60]

Nanocomposite
(gauze) Curcumin, cotton Not provided

Enhanced water
absorption and

drying time
Not provided [61]

Hydrogel
Curcumin,

cellulose–halloysite
nanotube

In vitro
(MC3T3-E1—mouse

calvarial preosteoblasts,
MCF-7—human breast

cancer cell line)

Anticancer properties Reduced cell
proliferation [62]

Nanocomposite

Curcumin, PCL,
quaternary
ammonium

salt-modified
montmorillonite

(MMT)

In vitro (L929—mouse
fibroblast cell line)

Enhanced antibacterial
activity (E.coli, S. aureus)

Initial burst release
of curcumin [53]

Gupta et al. [55] prepared bacterial cellulose hydrogels with incorporated curcumin
(that was entrapped in cyclodextrins) for potential wound treatment. The biomaterial had
the antioxidant potential confirmed by DPPH test, and antibacterial activity was shown
against S. aureus, associated with its interaction with prokaryotic cell proteins. The hydrogel
showed also high water content, which was related to its porous structure, characterized
mainly by nanopores (27 nm) and a few large superficial pores (<10 µm). Multu et al. [56]
developed curcumin-loaded nanofiber for wound-healing applications. Biomaterials with
different curcumin content (0.1%, 0.3%, and 0.5% w/v) were produced and tested. It was
shown that the reduction in the fiber’s diameter (519–207 nm) was directly correlated
with the curcumin concentration. Importantly, the highest concentration (0.5% w/v) of
the compound increased cell proliferation and attachment. Nevertheless, high content of
the curcumin resulted in decreased mechanical properties due to reduction of the fiber
diameter. In another study, different curcumin concentrations (0.2, 0.5, and 1.0% w/w) were
loaded to produce fiber mats. The researchers demonstrated that the average fiber diameter
increased along with the increasing curcumin content in the composition of the biomaterial.
Cell proliferation and attachment were also improved as a result of increased curcumin
concentration. Furthermore, the initial release of the compound was faster for biomaterials
with higher curcumin content [57]. In turn, Abbas et al. [52] produced a chitosan/polyvinyl
alcohol/curcumin membrane with desirable wound healing properties by varying the
content of curcumin and chitosan. The greatest reduction in a wound size (52.33% on
the 7th day in a rabbit model) was obtained for the biomaterial containing the highest
concentration of curcumin (30 mg). The produced biomaterial also possessed antibacterial
(P. multocida, S. aureus, E. coli, and B. subtilis) and antioxidant activity. Saeed et al. [58]
showed a production method of novel wound dressing using an electrospinning technique.
The biomaterial was made of curcumin and polymeric mixture (PLA/PCL). The dressing
material with 16% content of curcumin had strong antibacterial activity against E. coli
and S. aureus, however it decreased cell viability to 60% compared to the control sample.
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Kaolaor et al. [59] performed studies on the modification of curcumin-loaded biomaterial
by quaternization of chitosan. As a result of the introduced changes, the water solubility
of the biomaterial increased. Modified film revealed better mechanical properties and a
higher curcumin release profile (higher antioxidant activity). However, it also contributed
to lower biomaterial swelling properties. Shefa et al. [60] developed biomaterial through
the incorporation of curcumin within a hydrogel system. The TEMPO-oxidized cellulose
nanofiber–PVA–Cur hydrogel supported wound contraction and provided faster wound
closure in a rat model compared to the control group. Furthermore, it was revealed that
tested biomaterials loaded with curcumin enhanced collagen accumulation. Venkata-
subbu et al. [61] demonstrated that curcumin coating on the cotton gauze improved the
properties of the resultant wound dressing. A spin-coating technique was used to prepare
curcumin nanocomposite on a cotton cloth. The introduced modification improved the
average drying time and absorption capacity of the produced nanocomposite. In turn,
Sadeghianmaryan et al. [53] showed enhanced antibacterial activity (E. coli and S. aureus) of
the curcumin-loaded nanocomposite. Obtained PCL/quaternary ammonium salt-modified
montmorillonite/curcumin nanocomposites exhibited low cytotoxicity and showed great
potential for infected wound management. Interestingly, curcumin was also demonstrated
to have promising anticancer activity. Huang et al. [62] proved a high inhibitory effect of
the curcumin-loaded cellulose-halloysite nanotube hydrogel on human breast cancer cells
(MCF-7 cell line) in vitro. Thus, it may be assumed that curcumin-loaded biomaterials may
be potentially promising wound dressings for the management of the wound after skin
cancer excision.

Based on presented scientific reports, it can be concluded that numerous of the bio-
material key features may be improved by the incorporation of curcumin component.
Importantly, addition of curcumin not only may provide antibacterial properties of the
dressing but also it can improve cell proliferation and growth or could even be used for
anticancer treatment [55,59,63,64]. Moreover, curcumin-loaded biomaterials may reveal
improved mechanical and physicochemical properties. Nevertheless, the concentration
and composition of the biomaterial must be chosen reasonably to overcome the limitations
that can appear after dressing productions (e.g., too fragile structure).

3.1.2. Essential-Oil-Loaded Biomaterials

Essential oils (EOs) are plant secondary metabolites that are characterized by antiox-
idant, anti-inflammatory, and antibacterial properties. Thus, EOs possess features that
are useful in the chronic wound management [63]. According to the literature, EOs have
also anti-tumor, anti-diabetic, analgesic, and antiviral properties [64]. Modifications of
biomaterials with different EOs are presented in Table 2.

Table 2. Essential-oil-loaded biomaterials for wound healing applications.

Type of
Biomaterial

Composition of the
Biomaterial Experimental Model Biological Properties

and Advantages Limitations Ref.

Hydrogel Thymol, bacterial
cellulose

In vitro (NIH 3T3—mouse
fibroblast cell line) In vivo

(rat model)

Enhanced antibacterial activity
(E. coli, S. aureus, P. aeruginosa,

K. pneumoniae) and wound
closure speed

Decreased
water vapor

transmission rate
[65]

Nanofiber Thymol, tyrosol, PCL
In vitro

(J774A.1—macrophage
cell line)

Anti-inflammatory activity Not provided [66]

Fibrous
membrane Thymol, cellulose In vitro (L929—mouse

fibroblast cell line)
Enhanced antibacterial activity

(E. coli, S. aureus) Decreased wettability [67]

Nanofiber mat
Zataria multiflora

essential oil, chitosan,
PVA, gelatin

In vitro (L929—mouse
fibroblast cell line)

Enhanced antimicrobial activity
(C. albicans, S. aureus,

P. aeruginosa)

Decreased swelling
degree [68]

Film
Eugenia caryophyllata

essential oil, Melaleuca
alternifolia essential

oil, chitosan
Not provided Enhanced biomaterial elasticity

and flexibility
Decreased

mechanical strength [64]
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Table 2. Cont.

Type of
Biomaterial

Composition of the
Biomaterial Experimental Model Biological Properties

and Advantages Limitations Ref.

Nanofiber
membrane

Cymbopogon martini
essential oil,

Chamaecyparis obtusa
essential oil, PVA

Not provided
Enhanced antimicrobial activity

(S. aureus, C. albicans) and
aqueous stability

Not provided [69]

Hydrogel
Clove essential oil, tea

tree essential oil, oregano
essential oil, PVA, starch

Not provided Enhanced antibacterial activity
(E.coli, S. aureus)

Decreased
mechanical strength [70]

Jiji et al. [65] incorporated thymol (which is primarily isolated from Thymus vulgaris
EO) into bacterial cellulose hydrogel in order to improve biological properties of the
biomaterial. The introduced modification not only increased the antibacterial activity
against E. coli, S. aureus, P. aeruginosa, and K. pneumoniae, but also promoted faster wound
closure in the in vivo rat animal model. Nevertheless, the conducted tests showed that the
biomaterial with the addition of thymol had reduced water vapor permeability compared
to the control sample. Similarly, Chen et al. [67] evaluated the effect of thymol addition
to the cellulose fibrous membranes on their antibacterial properties. It was shown that
porous biomaterial with the highest content of thymol (15%) revealed the best antibacterial
properties (bacteria survival rate equal to 0.07% for S. aureus and 0.09% for E. coli). However,
the water contact angle of the sample surfaces increased with the increased content of
thymol in biomaterials. In turn, García-Salinas et al. [66] investigated the impact of EO-
derived compounds on the biomedical properties of electrospun PCL nanofibers. The
biomaterial produced by incorporation of thymol revealed anti-inflammatory activity and
showed the ability to the reduce size of inflamed cells. In another study, Ardekani et al. [68]
focused on the modification of nanofiber mats with an essential oil obtained from Zataria
multiflora. The study revealed a decreasing degree of biomaterial swelling with increasing
content of the essential oil that may be related to its hydrophobic nature. Moreover,
enhanced antimicrobial activity (C. albicans, S. aureus, and P. aeruginosa) of produced
EO-loaded biomaterial was observed without cytotoxic effect on mouse fibroblast cell
lines. Pereira dos Santos et al. [64] produced chitosan films with the addition of various
content of EOs obtained from Eugenia caryophyllata and Melaleuca alternifolia. Obtained
results showed that EOs did not affect the hydrophilicity of the tested films. However, the
maximum tensile strength value recorded for pure chitosan biomaterial was higher than
value estimated for EO-loaded samples, indicating reduced mechanical strength of the
modified films. Nevertheless, the addition of the EOs improved elasticity and flexibility of
the films. In turn, Lee et al. [69] modified biomaterial with EOs from palmarosa grasses
and hinoki cypresses. Membranes containing palmarosa oil revealed better antimicrobial
activity against S. aureus and C. albicans compared to phytoncide oil. It was also confirmed
that the biomaterial’s aqueous stability was enhanced by the heat treatment method. To
provide better antibacterial activity, Altaf et al. [70] used different EOs (clove oil, tea tree
oil, and oregano oil) in the production of potential wound dressings. It was revealed
that pore generation and mass immiscibility were significantly affected by increasing oil
concentrations. Among all tested natural compounds, the strongest inhibition of bacterial
growth (E.coli and S. aureus) was obtained with clove-oil-loaded biomaterial.

The use of EO-derived compounds for the production of biomaterials mainly con-
tributed to the increase of their antimicrobial activity and wound regeneration speed. Side
effects and limitations related to the addition of EOs to the biomaterial were basically
associated with a reduction in physicochemical and mechanical properties, decreasing
mechanical strength, swelling degree, water vapor transmission rate, and material wetta-
bility [67–73]. Nevertheless, the rationality of using plant compounds is strictly dependent
on the type of wound and treatment strategy, where giving preference to chosen properties
requires some consideration.
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3.2. The Effect of Vitamins on Skin Regeneration

Unique polymer-based biomaterials can be used as novel drug delivery systems,
providing a new treatment strategy of non-healing chronic wounds. A high range of
medicinal substances, such as antibiotics, vitamins, growth factors, anti-inflammatory
agents, anesthetics, etc., are used in the fabrication of wound dressings in order to alleviate
the inflammatory response and support the healing process [71]. Nevertheless, bioactive
dressings are most often loaded with antibiotics to fight bacterial invasion or vitamins to
support cell proliferation and stimulate wound healing mediators, accelerating the regener-
ation process. Moreover, vitamin-enriched dressings may reveal antioxidant properties,
which are desired in the management of chronic wounds characterized by excessive ROS
generation [72,73].

Vitamins are widely used in various cosmetic products and creams due to their leading
significance in wound healing and skincare. Nevertheless, their low bioavailability due
to the fast oxidation process results in the high demand for good drug delivery systems.
Biomaterial-based drug carriers should be characterized by gradual compound release to
overcome the problem of its low bioavailability [74]. Among many vitamins, tocopherol
(vitamin E), L-ascorbic acid (vitamin C), and retinol (vitamin A)—which possess anti-
inflammatory and anti-oxidant effects—have attracted the greatest attention in the context
of wound dressing fabrication. Deficiencies in L-ascorbic acid result in decreased collagen
synthesis, impaired angiogenesis, and reduced fibroblast proliferation. Its deficiency is also
associated with increased susceptibility to the wound infections because of impaired host
immune response [75–78]. It was proven that vitamin A significantly improves the wound
healing process. Retinoic acid formed by the metabolism of retinol increases fibroblast
proliferation, however with simultaneous reduction in collagen synthesis [79]. Vitamin
E facilitates wound protection against numerous infection and supports wound healing
due to its antioxidant properties, stabilization of granulation tissue, and stimulation of
re-epithelialization [80,81].

Bioactive Dressings Enriched with Vitamins

It is well known that vitamin C is crucial for the wound healing process. In our
previous study, it was confirmed that the addition of vitamin C to a chitosan/agarose
foam-like dressing supported fibroblast viability and proliferation. Furthermore, biomate-
rial with incorporated L-ascorbic acid supported PDGF-BB synthesis and had the ability
to reduce MMP-2 production by skin fibroblasts [73]. Importantly, Voss et al. [82] de-
scribed a synergistic effect on the wound closure in a mouse model after application of the
dressing material produced by combination of vitamin C and propolis. Cellulose/PVA
film with the addition of propolis and vitamin C also revealed higher absorption capacity,
antibacterial activity against E. coli and S. aureus, and controlled vitamin release. Similarly,
Madni et al. [83] used vitamin C for the modification of the chitosan-based membrane to
achieve accelerated wound healing. The developed biomaterial, which was also loaded
with lactic acid, exhibited excellent biocompatibility under in vitro conditions (mouse
fibroblast cell line), however vitamin addition negatively affected biomaterial mechanical
properties by inducing its fragility. Farzanfar et al. [74] demonstrated positive impact of the
vitamin B12 on wound closure in a rat model by application of nanofibrous PCL/gelatin
biomaterial as a delivery system. The wound size was reduced by 92.27% in the case
of vitamin B12-enriched biomaterial and by only 64.62% when scaffold without vitamin
B12 was applied. Moreover, the developed nanofibrous dressing loaded with vitamin
B12 had the ability to speed up re-epithelialization process. In turn, Ehterami et al. [84]
investigated the effect of vitamin D3 on the repair process of skin tissue. The research
showed the positive effect of the tested vitamin on the wound closure rate. Produced
alginate hydrogels loaded with vitamin D3 enhanced cell proliferation compared to the
control sample and vitamin-free biomaterial. The same research team also investigated
the impact of different α-tocopherol (vitamin E) concentrations on wound healing in a rat
model. The dose of 400 units turned out to be the most effective dose of vitamin E, which



Appl. Sci. 2021, 11, 4114 10 of 16

significantly increased the rate of wound closure. Chitosan/alginate hydrogel loaded with
the same dose of α-tocopherol was characterized by the best re-epithelialization among
all tested samples [80]. In another study, vitamin E was used to improve antioxidant
and antibacterial activities of the resultant biomaterial. Obtained data confirmed that
biomaterials loaded with vitamin E significantly decreased intracellular ROS level after cell
treatment with 100 µM tertiary-butyl hydroperoxide (t-BuOOH). Nevertheless, the addition
of vitamin E did not contribute to the improvement of the antibacterial properties of the
tested biomaterials [85]. In turn, Li et al. [86] incorporated vitamins A and E into gelatin
nanofiber using an electrospinning technique to gain better wound healing performance.
A potent antibacterial property (E. coli, S. aureus) was observed in the case of the bioma-
terial containing only vitamin E. Cell growth investigation revealed the greatest amount
of cells for biomaterial loaded with both vitamins. A positive effect of vitamin E on the
wound healing process was also observed by Kheradvar et al. [87], who proved enhanced
antioxidant activity of silk fibroin–PVA–Aloe vera/vitamin E nanofibrous dressing. It was
also shown that a combination of vitamin E and Aloe vera gel had a positive impact on
cell–matrix interaction and cellular viability.

The studies presenting a positive impact of biomaterials loaded with vitamins on
wound healing process are summarized in Table 3.

Table 3. Vitamin-enriched biomaterials for wound healing applications.

Type of
Biomaterial

Composition of the
Biomaterial Experimental Model Biological Properties

and Advantages Limitations Ref.

Foam-like,
hydrocolloid

type
Vitamin C,

agarose, chitosan
In vitro (BJ—normal human

skin fibroblast cell line)

Enhanced fibroblasts viability and
proliferation, supported

platelet-derived growth factor
(PDGF-BB) synthesis

Initial burst release of
vitamin C [73]

Film Vitamin C, Brazilian
propolis, cellulose, PVA In vivo (mouse model) Enhanced absorptive capacity,

accelerated wound closure rate Not provided [82]

Membrane
Vitamin C, chitosan,
polyethylene glycol

(PEG), glycerol

In vitro (NIH 3T3—mouse
fibroblast cell line) Enhanced biocompatibility Increased fragility [83]

Nanofibrous
scaffold

Vitamin B12, PCL,
gelatin (type A)

In vitro (L929—mouse
fibroblast cell line), In vivo

(rat model)

Enhanced wound closure rate
and cell viability, increased

epithelial thickness
Not provided [74]

Hydrogel Vitamin D3, alginate
In vitro (L929—mouse

fibroblast cell line), In vivo
(rat model)

Promoted cells proliferation,
accelerated wound healing

Swelling percentage
decreased with time [84]

Hydrogel Vitamin E,
chitosan, alginate

In vitro (L929—mouse
fibroblast cell line), In vivo

(rat model)
Enhanced wound closure and

re-epithelialization Not provided [80]

Gauzes/fibers
Vitamin E, Lactobacillus

plantarum, Spanish
Broom fibers, cotton

In vitro (BJ—normal human
skin fibroblast cell line) Enhanced antioxidant properties Initial burst release of

the vitamin E [85]

Nanofibers
mats

Vitamin E, silk fibroin,
PVA, Aloe vera

In vitro (L929—mouse
fibroblast cell line)

Enhanced cell-matrix interactions
and cellular viability,
antioxidant activity

Initial burst release of
vitamin E [87]

Nanofibers Vitamin A and E, gelatin
In vitro (L929—mouse

fibroblast
cell line), In vivo (rat model)

Enhanced antibacterial activity (E.
coli, S. aureus) and L929 fibroblast

cells growth

Decreased fiber
diameter [86]

Among all the bioactive compounds that were presented in the work, vitamin-loaded
dressings were characterized by the widest variety of improved properties and the lowest
limitations. This indicates the possibility to significantly increase the biomedical potential
of wound dressings by incorporation of vitamins into the structure of biomaterials during
the production of wound care products.

4. Patented and Commercial Bioactive Dressings

Due to the high biomedical potential of some wound care products, more and more
research units have decided to patent the method for wound dressing production. The Euro-
pean Patent Office holds thousands of patents covering wound dressings loaded with bioac-
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tive agents. Our previous research resulted in two Polish patents (PL 236368, PL 236367)
describing the production methods of foam-like and hydrogel-type curdlan/agarose dress-
ing materials (Figure 4). Both types of developed wound dressings can be produced with
the addition of bioactive compounds, such as vitamins, growth factors, antibiotics, or
curcumin, which is reserved in the patent description. As a result of the incorporation of
bioactive compounds, it is possible to obtain the preferred properties of the biomaterial
and adapt it to a specific type of wound.
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Chinese patent, specification no. CN107475812A, describes the production method of
a bioactive wound dressing based on chitosan and curcumin using electrostatic spinning.
The described method allows users to obtain a porous structure of a biomaterial with
antibacterial (E. coli) and anti-inflammatory properties. Moreover, due to the highly specific
surface area of the biomaterial, it can be loaded with numerous drugs, acting as a drug
delivery system. Another Chinese patent, specification no. CN110025817A, discloses a
method for preparing a composite antibacterial fiber dressing containing essential oils. The
obtained bioactive wound dressing is characterized by good permeability and antibacterial
properties against E. coli and S. aureus. A Taiwan patent, specification no. TW201208717A,
discloses a method for production of a bioactive wound dressing containing citrus extract.
The method of wound dressing production with the citrus extract content is based on
the wet spinning technique or soaking method. Conducted tests on chitosan biomaterial
loaded with citrus extract showed enhanced cell proliferation and angiogenesis. Another
Chinese patent, specification no. CN105963753A, describes the production method of an
anti-bacterial film. The biomaterial described in the patent is a multicomponent dressing
containing natural plant ingredients (marigold oil, tea polyphenols, red oak powder, and
calendula oil) that contribute to its non-toxicity, good elasticity, and anti-infective properties.

The biomaterials presented within this article are the result of scientific activities and
presently are not used in practice. However, there are many bioactive wound dressings
currently available on the world market that are in wider usage as a medical wound care
product. On the list of companies offering wound care materials, there are some that
produce dressings enriched with a substance that accelerates the regeneration process. The
German company Hartmann offers the HydroClean plus superabsorbent wound dressing,
which is activated with Ringer’s solution and contains polyhexanide (PHMB). Due to its
composition, the dressing has antimicrobial properties, and thanks to the Ringer’s fluid
that is released into the wound bed, it stimulates the healing process [88]. The British
company Advancis Medical offers an Algivon alginate dressing soaked in Manuka honey.
Antibacterial properties are ensured by the glucose oxidase occurring in the honey. This
enzyme enables the formation of hydrogen peroxide in the wound bed with an antiseptic
effect and inhibits biofilm formation. In addition, biomaterial ensures the moist environ-
ment and accelerates the healing process. Algivon is dedicated to all types of wounds,
especially for necrotic wounds [89]. A large group of commercial medical dressings contain
silver particles, dedicated to combating a wide range of microorganisms in the wound
bed. An example of commercial antimicrobial dressings containing silver particles is the
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product of the Mölnlycke company, which offers Mepilex Border Ag foam dressing. This
wound care silicone foam dressing contains activated carbon, silver sulphate, and a Safetac
wound-contact layer. It is dedicated to moderately and highly exuding wounds, which
include partial-thickness burns, surgical and traumatic wounds, pressure ulcers, or leg
and foot ulcers [90]. Another dressing containing homogeneously distributed silver in
its structure is called Biatain Ag. This foam-like wound care product provides a stable
release of silver for up to 7 days upon contact with exudates. The conducted studies
confirm its effectiveness in combating bacterial infections [91]. The Coloplast company also
offers the highly absorbent Biatain®Alginate Ag dressing made of carboxymethyl cellulose,
calcium alginate, and an ionic silver complex. Apart from antibacterial effect, this wound
dressing also provides a hemostatic effect at the wound site [92]. Other silver-nanoparticle-
based commercial dressings commonly used for the treatment of infected wounds include
ACTICOAT™, PolyMem WIC Silver®, Suprasorb® A + Ag, and Atrauman® [92,93].

5. Conclusions

The presented review article focused on the recent findings regarding modifications
of wound dressings that have contributed to the development of regenerative medicine. In
this context, various production methods of dressing materials with improved pro-healing
features were presented. The variety of already investigated bioactive compounds and
applied production methods of wound dressings, which are described in the available
literature, undoubtedly provide valuable scientific knowledge that can be potentially used
to improve the biological properties of the existing wound dressings. Scientists around
the world have modified dressing materials using various naturally derived compounds
with antioxidant, anti-inflammatory, and anti-bacterial properties. The mentioned three
features of the natural (often plant-derived) compounds are of high importance in the
management of chronic non-healing wounds that are characterized by persistent infections,
as well as excessive levels of ROS and proinflammatory cytokines. Another promising
group of agents widely used for the modifications of wound dressings are vitamins, with a
demonstrated positive impact on skin regeneration. Importantly, mentioned modifications
of the biomaterials may not only improve the properties of the existing dressings, but also
ensure the reclassification of the dressings from the ones dedicated for the treatment of acute
wounds to chronic wounds. So far, scientists have proven that incorporation of bioactive
molecules within the structure of the dressing material may significantly improve its
biocompatibility and biological properties, ensuring a better healing process. Nevertheless,
this kind of modification may negatively affect exudate absorption capacity and mechanical
properties of the dressing. Therefore, there is still a necessity to continue research in order
to overcome or minimize the appearance of side effects, such as mechanical property
deterioration or cell proliferation reduction, associated with biomaterial modifications
using bioactive agents. However, recent progress in the field of material sciences gives us
hope for the development of a production method that would allow us to obtain bioactive-
agent-loaded biomaterials without negative side effects. High hopes are associated with
the electrospinning technique, enabling the production of advanced drug delivery systems
with better predictability and control of the drug release compared to other techniques like
physical/chemical adsorption or entrapment. Moreover, incorporation of bioactive agents
within electrospun fibers carries lower risk of the mechanical properties worsening.
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