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Abstract: Mobile Edge Computing (MEC) has emerged as a promising network computing paradigm
associated with mobile devices at local areas to diminish network latency under the employment
and utilization of cloud/edge computing resources. In that context, MEC solutions are required to
dynamically allocate mobile requests as close as possible to their computing resources. Moreover, the
computing power and resource capacity of MEC server machines can directly impact the performance
and operational availability of mobile apps and services. The systems practitioners must understand
the trade off between performance and availability in systems design stages. The analytical models
are suited to such an objective. Therefore, this paper proposes Stochastic Petri Net (SPN) models
to evaluate both performance and availability of MEC environments. Different to previous work,
our proposal includes unique metrics such as discard probability and a sensitivity analysis that
guides the evaluation decisions. The models are highly flexible by considering fourteen transitions
at the base model and twenty-five transitions at the extended model. The performance model was
validated with a real experiment, the result of which indicated equality between experiment and
model with p-value equal to 0.684 by t-Test. Regarding availability, the results of the extended
model, different from the base model, always remain above 99%, since it presents redundancy in the
components that were impacting availability in the base model. A numerical analysis is performed
in a comprehensive manner, and the output results of this study can serve as a practical guide
in designing MEC computing system architectures by making it possible to evaluate the trade-off
between Mean Response Time (MRT) and resource utilization.

Keywords: analytical modeling; mean response time; mobile edge computing; performance; availability;
stochastic Petri net

1. Introduction

Mobile devices have changed the way people live in the last years. According to the
Statista (a German online portal for statistics), the number of mobile devices will be around
16.8 billion in 2023 [1]. Unfortunately, mobile devices still present limited resources in terms
of battery lifetime, storage, and processing capacity. Cellular networks must support low
storage capacity, high power consumption, low bandwidth, and high latency [2]. Besides,
the exponential growth of the Internet of Things (IoT) promises to make wireless networks
even more challenging [3,4].

Many previous studies proposed optimized architectures for this context, such as
Mobile Cloud Computing (MCC) [5–7]. MCC is the integration of cloud computing

Appl. Sci. 2021, 11, 4088. https://doi.org/10.3390/app11094088 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9123-3584
https://doi.org/10.3390/app11094088
https://doi.org/10.3390/app11094088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11094088
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11094088?type=check_update&version=2


Appl. Sci. 2021, 11, 4088 2 of 24

and mobile computing, which provides additional capabilities for mobile devices by
centralizing their resources in the cloud [8]. The technique, called offloading, can transfer
resource-intensive tasks to remote clouds. MCC can reduce latency problems by providing
a secure and efficient model. However, cloud resources are often far away from end-
users [9]. Thus, with multiple mobile devices, MCC faces notable challenges, such as high
latency, security vulnerability, and limited data transmission.

Mobile Edge Computing (MEC) has emerged as a more efficient alternative to MCC
architecture. The main goal of MEC is to address the challenges that MCC has been facing,
deploying resources even closer to users—at the edge of the network. Thus, computing and
storage are performed closer to the source device [10]. MEC aims to enable the billions of
connected mobile devices to execute the real-time compute-intensive applications directly
at the network edge. The distinguishing features of MEC are its closeness to end-users,
mobility support, and dense geographical deployment of the MEC servers [11]. Since MEC
is still considered a recent topic, some research gaps still have to be explored, such as
performance evaluation of MEC architectures.

Availability evaluation is another topic of interest in the MEC area. MEC was designed
to provide services in real-time, and therefore, robustness and availability are essential
requirements, since the resources are close to the clients, providing them critical services.
All components of a system are prone to failure, and failures must be repaired as soon
as possible. Assessing the availability of a MEC architecture can be costly, considering
practical experiments. Thus, it is necessary to evaluate MEC architectures even before a
real deployment, using analytical models, for example.

Therefore, there is a lack of studies evaluating MEC architectures through analytical
models in terms of performance and availability. Stochastic Petri nets (SPN) [12,13] are
analytical models capable of representing concurrency, synchronization, and parallelism
of complex systems. Among other metrics, SPN are well suited to evaluate performance
and availability [14–16]. The use of SPNs has already been successfully applied in the
context of MCC in previous works [17–19]. However, SPNs representing MEC architectures
are scarce until the present moment. This paper presents SPN models to evaluate MEC
architecture with significant difference to the literature, including sensitivity analysis and
unique metrics, such as discard probability of requests and resource utilization level. The
proposed models allow evaluating the trade-off between MRTand resource utilization,
besides the availability and downtime of the system. In summary, the main contributions
of this paper are:

• SPN models, which are useful tools for system administrators to evaluate the perfor-
mance and availability of MEC architectures, even before they are deployed. Other
types of models could be used, for example the Markov Chains, however, SPNs are
equivalent to these models with higher representativeness;

• Sensitivity analysis under the SPN models parameters to identify the most impor-
tant components;

• Case studies that provide a practical guide to performance and availability analysis in
MEC architectures.

The remainder of this paper is divided as follows: Section 3 presents the MEC ar-
chitecture, considered to design the SPN models. Section 4 presents performance SPN
models, with respective metrics, case studies, and validation. Section 5 presents SPN
availability models (including redundancy) case studies and a sensitivity analysis under
the model components. Section 2 discusses the main related works; and Section 6 traces
some conclusions and future works.

2. Comparison with Related Work

This section presents some related works. Table 1 summarizes all the compared
papers. Fourteen papers were found using the keywords that matched this proposal. The
papers were divided, taking into account five aspects: Metrics, capacity variation of the
master–slave server, sensitivity analysis, context, and use of component dependency.
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Table 1. Related works.

Related
Work Metrics

Master-Slave
Server Capacity

Variation

Sensitivity
Analysis Context

Use of
Component
Dependency

[20] Energy consumption and data transferring No No Egde No

[21] Energy consumption No No Edge No

[22] Energy consumption No No Edge No

[9] Energy consumption and Execution time No No Cloud/ Edge No

[23] Communication cost and Reallocation execution No No Edge No

[24] Energy consumption, Execution time, Migration
cost, User cost and Co-location No No Edge No

[25] Energy consumption and Execution time No No Edge No

[26] Availability No No Cloud No

[27] Availability No Yes Cloud No

[28] Availability No No Cloud No

[29] Availability No No Cloud No

[30] Availability No No Cloud No

[31] Availability No Yes Cloud/ Edge/Fog No

[32] Availability No No Edge No

This
work

MRT, Resource utilization, Discard probability
and Availability Yes Yes Edge Yes

Metrics—Metrics help to compute and subsequently understand the behavior of a
system. This paper uses metrics of both performance and availability that were not explored
together by any other previous article. Among the works that deal with performance at
the edge, only this work used the metrics MRT, resource utilization, and drop probability.
The work of [26–32] focused solely on system availability, but as we will see later, only the
work of [32] focuses on the edge, as this work.

This work presents a very unique edge architecture, and because of that, another
contribution of this work is to do experiments with Capacity variation of the master-slave
server. Among the related works, no work used the architecture used here, which provides
a greater number of parameters. This work also performs a Sensitivity analysis that allows
the identification of the key components for the architecture and, consequently, for the
model. Among the works found, only the works of [27,31] performed a sensitivity analysis.
However, the work of [27] was in a Cloud context, while the work of [31] presents an edge
context, but focused specifically on the area of smart hospitals.

Context—all papers are in the context of remote computing, whether in the cloud, on
the edge, or in the fog. Most works focus on edge architecture, however, most of them are
aimed at measuring edge energy consumption. Unlike these works, our work uses metrics
that have not been explored in this context so far. The work of [32] is the only one related
to availability that focuses exclusively on the edge.

Finally, use of component dependency is a unique contribution. The technique is
still little explored, but it is essential to ensure the correct functioning of the system as a
whole. The technique is applied to Petri net models to ensure that if a component that is
the basis for other components falls, it causes a cascade effect to turn off those components
that depend on it. Thus, it can be guaranteed that an availability model will be as close to
reality as possible, and only this work made use of this aspect of the Petri nets in modeling
the availability of the system.

3. Architecture Overview

Figure 1 illustrates the proposed MEC architecture that was considered to construct the
SPN model. Such a base architecture is widely adopted to describe the MEC infrastructure
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in several works [21,33,34] with a MEC server for processing incoming data streams. These
data are generated and sent by applications running on mobile devices, for example,
user-health monitoring applications, game rendering, etc. In the context of this work, we
focus on applications with a high level of user interactivity, including peripherals such as
smartphones or tablets.

Mobile Devices Edge Computing

Master Server Slave Server

Figure 1. MEC Architecture Base Adopted in Performance Evaluation. (adapted from [35,36]).

In more detail, in the edge computing layer, we have two servers, a master server
and a server with the slave nodes (which will perform the processing itself). Slaves are
micro-services that run in containers. In this work, each container is configured to run
on a server core. Therefore, if there are 16 cores, 16 containers will be executed. The use
of containers in the MEC context is still not very common. The use of containers allows
greater flexibility to scale the computational power of the architecture according to the
volume of tasks and also restrictions of applications’ response times.

The master server is responsible for receiving requests from mobile devices and
distributing them between slave servers. At first, the master server runs the management
service with the service running in bare metal (non-virtualized) mode and using threads.
However, nothing prevents the analyst from virtualizing the master server service as well.
To manage the containers, we consider that a container orchestrator (e.g., Kubernetes
(Kubernetes: https://kubernetes.io/, accessed on 20 December 2020) or Swarm (Swarm:
https://docs.docker.com/engine/swarm/, accessed on 25 December 2020)) should be
used to increase resources reliability and elasticity.

As Figure 2 illustrates, there are three blocks in the communication flow of the archi-
tecture: (i) Arrival Delay (AD): time interval between arrivals of requests; (ii) Distribution
Delay (DD): time interval for distributing jobs; and (iii) Processing Delay (PD): processing
time of the requests by the nodes.

Mobile Devices Master Server Slave Server

Arrival Delay (AD) Distribution Delay (DD)

Processing Delay (PD)

Figure 2. Communication Time Intervals for the Architecture Components. (adapted from [35,36]).

Recent advances in the invention and fabrication of new lines of mobile devices help
ease people’s daily activities with a tremendous number of mobile apps, which feature
a huge amount of stream-like data transactions through limited connection bandwidths
and mobile computing resources. In such a busy context, MEC, as shown in Figure 1,
can enhance and secure a high level of quality of service (QoS) in terms of performance
and availability to mobile users. The MEC architecture aims to take advantages of edge
computing power and resources at near-by places to resolve inherent limitations of mobile

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
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computing, enabling the hosting and uninterrupted delivery of heavy mobile apps and
stream-like services that often consume huge amount of computing power and resources
to mobile users. As a critical requirement, comprehensive modeling and assessment of
such MEC architectures are of paramount importance for planning and development of
mobile devices and services in practice.

4. Evaluation of MEC Performance

This section presents two models for evaluating the performance of MEC architec-
ture. In addition to the models, their respective case studies, metrics, and validation will
be presented.

All the evaluations, including performance and availability models, were solved by
numerical analysis. Usually, the numerical analysis is preferred instead of simulation
because it offers a greater accuracy in the results [37]. Therefore, the evaluator must try first
the possibility of using numerical analysis but sometimes it is not possible. Petri Nets and
Markov Chains can present the problem known as “state-space explosion” if the model is
too big. In our case, fortunately the model can be solved by numerical analysis.

4.1. Basic SPN Model for MEC Architectures

In this section, we describe our SPN model to represent the architecture that integrates
modules at the edge of the network, presented in the previous section. We emphasize that
the purpose of our model is to make it possible to evaluate system performance, even before
they are implemented. Figure 3 presents our SPN model, composed of two macro parts:

1. Admission, which deals with the generation of requests;
2. Edge, composed of the master server and the server with slave nodes. The master

server receives data and distributes it between slaves, which ultimately return the
results to clients.

Admission Edge

MC SC

Page 1 of 1

02/07/2019file:///C:/Users/pasid/Dropbox/PASID/ARTIGOS/ARTIGOS%20EM%20CONSTRUÇÃO/BRENA%20-%20AVALIAÇÃO%20DE%20CONTAINERS/ETAPA%20DE%20MODELAGEM/MODELO/TIME...

Figure 3. SPN Model for an Edge Computing Architecture.

In an SPN model, fundamental graphical elements are used to represent system com-
ponents, for instance, empty circles, filled circles, and empty bars represent places, place
markings, and places in SPN model, respectively. The model elements are all described in
Table 2. Probability distributions are associated with timed transitions in the SPN model to
capture the sojourn time of an event. To associate different probability distributions, the
person in charge of system administration needs to investigate in the literature or conduct
experimental measurements/characterizations of the system.

The description of the model and its flow of data processing throughout its compo-
nents is as follows. Two places, P_Arrival and P_InputQueue, in the Admission sub-net
capture the waiting behaviors between the generation and the acceptance of requests in the
queue, respectively. Tokens which reside in the two places, P_Arrival and P_InputQueue,
represent the involvement of data entry for any type of requests. The transition AD is used
to capture the time between request arrivals. AD means arrival delay. We assume that
times between arrivals comply with exponential distribution. However, this assumption is
possibly relaxed considering other type of probability distribution. The AD transition does
not take into account network losses.
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Table 2. Description of the Model Elements.

Type Element Description

Places P_Arrival Arrival of new requests
P_InputQueue Availability checking of request queue

P_MasterInProcess Requests in the queue of master server
P_MasterCapacity Master server capacity
P_SlavesInProcess Requests in the queue of the slaves
P_SlavesCapacity Slaves server capacity

Timed Transitions AD Arrival delay between requests
DD Time to the master server distribute requests among slave nodes
PD Time spent processing the request by one slave node

Marking MC Maximum capacity of master server
SC Maximun capacity of slaves server

As soon as T0 is enabled, requests arrive at the Edge sub-net. The queuing and
amount of requests on edge are represented by the deposit and the number of tokens in
P_MasterInProcess. The MC mark in P_MasterCapacity indicates the amount of tempo-
rary storage space of the master server, queuing the requests. In the case that capacity for
processing requests in the master and slave is not sufficient for newly arrived requests,
those requests are continuously queued. Thus, shortly after an amount of storage space is
released, a token from P_InputQueue and P_MasterCapacity each is taken out and then
deposited in P_MasterInProcess. When this happens, the place P_Arrival is then enabled,
allowing a new arrival.

DD firing represents the beginning of the distribution of requests to the slaves. DD
means distribution delay. These firings are conditioned to the amount of available nodes
for processing in P_SlavesCapacity (with SC mark). The SC tag indicates the number of
available nodes at the network edge. In the case that requests are under processing by slaves
represented by tokens in P_SlavesInProcess, the tokens go out from P_SlavesCapacity.
This flow means that an amount of the resource will be allocated to each arriving request.

PD represents the time spent by the slave node to process a request. When PD is fired,
a token is pulled from P_SlavesInProcess, and a token is returned to P_SlavesCapacity.
The AD transition has an exponential distribution since we are considering exponentially
distributed arrival rates. The infinite server semantics are associated with all other transitions
so that the processing of each job is independent to each other. It is worth noting that the
computational capacity of each node causes an impact on the processing time. Nevertheless,
we assume in this work that same computational capacity is given to all nodes in each layer.

A vast number of different scenarios can be evaluated using the proposed model, be-
cause the evaluator needs to configure five parameters as shown in Table 2. The parameters
include three timed transitions and the two place-related resource or workload markings.
A certain change in the value of any parameter causes a significant impact on various
performance metrics such as discard level, MRT, or resource utilization. The capability
to investigate the variation of different scenarios and/or a number of impacting factors
makes the proposed model a main contribution of this study.

4.1.1. Performance Metrics

Performance metrics are presented in this section, which are used to evaluate the
performance of the edge architecture based on its proposed SPN model. The MRT is
computed by adopting the Little’s law [38]. Little’s law takes into account the number of
ongoing requests in a system (RequestsInProcess)—mean system size, the arrival rate of
new requests (ARR), and the MRT. The arrival rate is the inverse of the arrival delay—that
is, ARR = 1

AD . A stable system is required to compute metrics based on Little’s law. It
means that the arrival rate must be lower or equal than the server processing rate. We
assume that the actual arrival rate can be different with the effective one, or discarded
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due to finite queue size. Then, to obtain the effective arrival rate, we multiply the arrival
rate (ARR) by the probability for the system to accept new requests (1− Discard) [39].
Therefore, Equation (1) obtains MRT considering Little’s law and the effective arrival rate.

MRT =
RequestsInProgress

ARR× (1− Discard)
(1)

Equation (2) obtains RequestsInProcess. To compute the number of ongoing requests in
the system, the analyst must compute the sum of the expected number of tokens, which is
deposited in each place representing ongoing requests. In Equation (2), Esp(Place) represents
the statistical expectation of tokens in the “Place”, where Esp(Place) = (∑n

i=1 P(m(Place) =
i) × i). In other words, Esp(Place) indicates the expected mean number of tokens in
that place.

RequestsInProcess = Esp(P_MasterInProcess)+

Esp(P_SlavesInProcess)
(2)

Equation (3) defines Discard. There must be one token in the input queue (P_ArrivalQueue),
and there must be no more resources available to process new requests both in the master
and slave nodes. P(Place = n) computes the probability of n tokens in that “Place”.

Discard = P((P_InputQueue = 1) ∧ (P_MasterCapacity = 0)∧
(P_SlavesCapacity = 0)

(3)

Finally, in addition to MRT, we also calculate resource utilization. Equation (4) gives
us the utilization of the master node. Equation (5) gives us the utilization of the slave nodes.
The utilization is obtained by dividing the number of tokens of the corresponding place by
the capacity of the total resources.

U_Master =
Esp(P_MasterInProcess)

MC
(4)

U_Slaves =
Esp(P_SlavesInProcess)

SC
(5)

4.1.2. Numerical Analysis

This section presents two numerical analyzes for MRT, discard, and utilization eval-
uations. In [40], the authors evaluated a MEC architecture with a single mobile device
as a client and containers executing the services. Authors have evaluated a 3D game
called Neverball, where the player must tilt the floor to control the ball to collect coins and
reach an exit point before the time runs out. We have considered the system parameters
in [40] as input parameters for our model. Therefore, our study evolves the work in [40] by
performing numerical analysis to evaluate the scenarios considering multiple parameters.
We have considered one of their scenarios with a game resolution of 800 × 600 pixels.
The adopted parameter value corresponding to the processing delay (PD) of a request
is 24 ms. We adopted 5 ms as the time for distributing the requests in the system (DD
transition). We established that the master server has a restriction regarding the maximum
number of requests that may be simultaneously processed. This number corresponds to
40 requests—that is, MC = 40.

The model allows a wide variety of parameterizations. In the present analysis, we
vary two parameters: the time interval between requests arrivals (AD) and the resource
capacity of the server with slave (SC) nodes. The value of AD was varied between 1 ms
and 10 ms, considering a step size of 0.5 ms. The SC variable was configured with three
possibilities (8, 16, and 32), corresponding to the number of cores in a server. All these
parameters could be varied in other ways. For example, the number of slaves could not be
tied to the number of cores—SC could store thousands of tokens. Adopting the parameters
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mentioned above, we present the results considering MRT, discard, and utilization of the
master server and slave servers.

Figure 4 shows the results for the MRT. At first, it is expected that the larger the time
interval between arrivals (AD), the smaller the MRT. The system will be more able to handle
the incoming requests with the available processing resources. It is also expected that the
higher the slave’s capacity (SC), the lower the MRT because more processing capacity is
available to handle the requests. These two behaviors are easily observed when the values
of discards are minimal in the model (which can be observed in Figure 7). For minimal
discards, the MRT decreases until the minimum time to perform requests without requests
waiting in the queue.
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Figure 4. MRT.

However, when the system discards incoming requests, we observe the increase of
the MRT until a peak, decreasing after that. This behavior is due to the limiting value of
resources in the system, where some of the incoming requests are discarded when there
are no more resources available to process them. Thus, limiting the MRT variation to the
time between arrivals. As can be deduced from Little’s law [39], the mean time between
exits will increase along with the mean time between arrivals until to reach the peak. In
our numeric results, the peaks were: for SC = 8 was in AD = 1.5 ms and for SC = 16 it was
AD = 3.0 ms. At these points, the amount of work within the system begins to reduce,
reducing MRT even when AD increases drastically. It is important to emphasize that in
MRT, we consider the effective arrival rate, that is, adjusting its value by considering the
discard probability.

The MRT for SC = 32 is low, even for a time interval between arrivals of 1 ms. Com-
paring SC = 16 and SC = 32, and considering an arrival delay of 2.5 ms, the MRTs equalize.
Considering an arrival delay of 5.5 ms, and the SC = 8, it also presents the same average
result. Therefore, if the real context has had an AD = 5.5 ms, an 8-core server would achieve
the same performance as more powerful servers. Therefore, our work may assist managers
in the task of choosing servers and identifying the best performance and costs, considering
the expected workload.

Figure 5 shows the level of utilization of the master server. The master server is the
first component that the request reaches upon entering the MEC layer. For the SC = 8
and SC = 16 configurations, the utilization level is around 100% in the lowest AD values;
after that, utilization drops. For SC = 32, even with AD = 1.0 ms, the utilization value
reaches only 20%. From AD = 5.5 ms, the three configurations have values similar to and
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close to 0%. The system administrator must consider the desire for high or low idle server
levels. Figure 6 shows the level of utilization of the slave servers. The higher the number
of resources, the lower the level of utilization of the slaves. As AD increases, the level of
utilization declines subtly in all three cases. However, this fall only starts at AD = 3.0 ms
for SC = 8 and at AD = 1.5 ms for SC = 16. Up to these points, the utilization level is around
82%, which causes the behavior of the MRT explained above.
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Figure 5. Master Server Utilization Level.
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Figure 7 presents the probability of discarding new requests. For SC = 32, the discard
probability is equal to 0. Therefore, if it is possible to acquire a server with 32 cores, there
will be no discarding independent of the interval between request arrivals. For SC = 8 and
SC = 16, only from AD = 2.0 ms and AD = 4.0, the discard probabilities tend to 0. These
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initial discard intervals are directly related to the high level of utilization presented by
both servers, directly impacting the MRT. Therefore, any stochastic analysis performed
with the proposed model must observe the four metrics to obtain a complete view of the
system behavior. It is also possible to identify the operating limits of the system. In other
words, these limits represent how many jobs can be lost without compromising the utility
of the system.
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Figure 7. Discard Probability.

4.2. Refined Model with Absorbing State

System administrators who want to use a MEC architecture should be aware of when
their applications are most likely to finish execution. Cumulative Distribution Functions
(CDFs) may indicate such a moment through the maximum probability of absorption.
CDFs are associated with a specific probability distribution. In this work, the probability
distribution is related to the probability of finishing the application execution within
a specified time. It is obtained through transient evaluation, generating probabilities
with time tending to one value t. In other words, developers compute the probability of
absorption in [0, t), through transient evaluation, where F (t) approaches 1.

CDFs indicate the maximum probability of an application’s processing to be completed
within a given time interval. In this work, the absorbing state is reached when the model is
in the FINISH state. For a better understanding of time-dependent metrics, it is necessary
to define the difference between transient state and absorbing one. Transient states are
defined as temporary states. In other words, when the system leaves a transient state, there
is a likelihood of never coming back to it again. On the other hand, an absorbing state is a
state that when the system reaches it, there is no way out. Figure 8 shows the adaptation
we made in our SPN model presented previously to calculate CDFs.

Three changes were made: (a) an absorbing state place (named Finish) was added in
the right part of the model, indicating that when the requests reach this place, such requests
will not change state; (b) in the Admission block, the feedback loop (T0→ P_Arrival) has
been withdrawn, indicating that new requests will not be generated unmistakably; and
(c) there is a new parameter called BATCH (at place P_Arrival) that represents the number
of jobs (tokens) that will be processed. The CDF calculates the probability of these jobs to
complete the application processing at a given time and in a specific time interval.
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Figure 8. SPN Model Using Absorbing State.

4.2.1. Case Study 1

For this study, we set the master server capacity (MASTERC) as 40, the time between
arrivals (AD) to 5 ms, and we created three scenarios by varying the server capacity with
the slave nodes (SLAVEC) as 8, 16, and 32. These scenarios have been defined in order to
verify which slave server configuration best meets the requirements of an infrastructure
administrator, according to the total time desired for the application execution. Table 3
allows a better view of these variables.

Table 3. Possible scenarios for case study 1.

Scenario MASTERC AD SLAVEC

#1 40 5 4
#2 40 5 8
#3 40 5 16

Figure 9 shows the results obtained for CDF. In general, scenario #1 is the one that
takes the longest time to run the application. Note that the scenarios #2 and #3 are the
best cases, and with performance levels close to each other. Despite some occurrences
where scenario #3 fares better than #2, when the probability of execution ends near 1, the
times balance out. We can also see that both scenarios have an execution time in which the
probability increases intensely. Assuming that an infrastructure administrator wants their
application to complete within 800 ms, this can be accomplished using scenarios #2 and #3,
and a choice can be made based on resource availability.

Execution Time (ms)

0 200 400 600 800 1,000 1,200 1,400
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0.8

1
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0.8

1

Figure 9. Cumulative Distribution Functions for Study 1.

4.2.2. Case Study 2

For this study, we set the master server (MASTERC) capacity to 40, the slave server
capacity to 16 nodes, and create some scenarios ranging from arrival time (AD) with
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values between 1 ms to 10 ms, with 1 ms increments. Table 4 presents the combination of
these variables.

Table 4. Possible scenarios for case study 2.

Scenario MASTERC AD SLAVEC

#1 40 1 16
#2 40 2 16
#3 40 3 16
#4 40 4 16
#5 40 5 16
#6 40 6 16
#7 40 7 16
#8 40 8 16
#9 40 9 16

#10 40 10 16

Figure 10 presents the results obtained for the CDF metric. The application execution
time increases with the increase of AD. In this study, we have a batch of 100 requests. Each
of these requests enters the model according to the interval defined in AD. Thus, for AD
equal to 1 ms, we know that the minimum application execution time is 100 ms, while for
AD equal to 10 ms, the minimum execution time is 1000 ms. We can also see that both
scenarios have an execution time where the probability increases intensely; however, this
increasing aspect slightly decreases as AD grows. Assuming an infrastructure administrator
wants their application to run within 700 ms, the model ensures that this can be achieved
with #1, #2, #3, or #4 scenarios.

 

P
(T

 <
 t

)

0

0.2

0.4

0.6

0.8

1
P

(T
 <

 t
)

0

0.2

0.4

0.6

0.8

1

Execution Time (ms)

0 200 400 600 800 1,000 1,200 1,400

0 200 400 600 800 1,000 1,200 1,400

#10
#9
#8
#7
#6
#5
#4
#3
#2
#1

Figure 10. Cumulative Distribution Functions for Study 2.

4.2.3. Model Validation

The validation of the proposed system SPN model is detailed in this section. We
performed different experiments in practical scenarios to measure the system’s MRT and
then compare with the MRT computed by the proposed model for the sake of validation. An
experimental laboratory test-bed (as shown in Figure 11) was developed to help validate
the analysis results of the proposed model, which has the following configuration, (i)
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internet bandwidth at 40 Mbps, (ii) a computer for synthetic request generation with CPU
of Intel Core i7 2.4 Ghz and RAM of 8 GB capacity.

Client

Data

Response

Master Server

Slave Server Nodes

Figure 11. Validation Test-Bed Architecture (adapted from [35]).

We adopted a well-known word processing algorithm (Word Count Algorithm https:
//tinyurl.com/y8hofs5x, accessed on 10 November 2020) using MapReduce for big data
processing. The algorithm can help compute the number of keywords in a text file upon
their unique occurrences. The texts in the file are split into data blocks. The number of
splits determines the number of mapping steps for split jobs. Afterwards, all split tasks are
allocated and distributed to slave nodes. This process generates key-value pairs in which a
key is mapped to a specific word while the key’s value is exactly the number 1. It is worth
noting that, the mapping results do not imply the accumulated occurrences of words in a
text file. The sorting process generates a list of all values by key, after that, the reducing
process summarizes the occurrences of each key in the list to obtain the total number of
each keywords. Finally, the reducing process creates a file consisting of the number of
occurrences in the text file for each word. In experimental implementation, the execution of
the mapping and reducing processes is allocated to each node. At the end, the processing
time of a text file at 15 MB size is measured on a single node, and the measured output is
used to feed to model parameters.

We deployed the edge into four different machines—one master and three other slave
nodes. The arrival rate of a new request is set to the value 230 s. Each request is to process
three consecutive text files at 40 MB in size each. To comply with Little’s law, the processing
tasks are allocated to machines in the way that each machine processes only one file at
a time. In this way, the experiment can obtain the highest level of parallelism without
stressing the computer system. The mean processing time of one file on a slave node (PD) is
necessarily measured in order to feed to parameters in the proposed model. The values
of parameters in the SPN model used for model validation are summarized as follows,
(i) PD: 51.7 s, (ii) AD: 230 s, (iii) MC: 20 and (iv) SC: 3. Using stationary analysis for the SPN
model, the calculated value of MRT was 86.74 s. Furthermore, the value of total resource
utilization was 22.4%.

The experiment is conducted by repeatedly dispatching a specific number of con-
secutive requests (100 requests) to the edge. The extracted sample showed a normal
distribution with a mean of 86.906 s. The One-Sample t-Test (One Sample t-Test https:
//tinyurl.com/yanthw4e, accessed on 20 November 2020) is used to make inferences about
a population mean, based on data from a random sample. One-Sample t-Test is adopted to
compare the values of MRT which are generated by the model and by the sample mean,
respectively. It should be pointed out that, the case which both means are equal falls in
the null hypothesis. The test results are (i) mean: 86.91 s, (ii) standard deviation: 5.039, (iii)
standard error mean: 0.504, (iv) 95% confidence interval: (85.906, 87.905), (v) T: 0.41, (vi)
p-value: 0.684.

As per observed, it is not possible to disprove the null hypothesis with 95% confidence
due to the reason that the p-value is bigger than the number 0.05, according to statistics.

https://tinyurl.com/y8hofs5x
https://tinyurl.com/y8hofs5x
https://tinyurl.com/yanthw4e
https://tinyurl.com/yanthw4e
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As per examined, we noticed a statistical equivalence between the generated results of the
proposed SPN model and the measured results of test-bed experiments. At this level, the
proposed model is practically appropriate for expansion in performance evaluation of real-
world big-scale edge computing infrastructures. The proposed model literally represents
an actual environment and computing system, and thus, it can be used for planning and
assessment in the development of MEC infrastructures.

5. Evaluation of MEC Availability

This section presents two SPN models focusing on the availability evaluation of the
MEC architecture previously presented. First, we present a base proposal, and next, an
extended version is detailed.

5.1. Base Proposal—Architecture

Figure 12 shows the layered architecture assigned to the two servers. The master
server is responsible for receiving requests from mobile devices and distributing them
to slave nodes, so the software component called load balancer is responsible for such
distribution. The distribution policy must be defined by the evaluator. The slave server
runs a virtualization platform, which we illustrate as being the Docker (Docker: https:
//www.docker.com/products/, accessed on 25 October 2020), above which are the N
containers.The model user may adopt any virtualization platform. In this case, the user
should consider the respective MTTF/MTTR to feed the model.

HARDWARE

OPERATING SYSTEM

LOAD BALANCER

HARDWARE

OPERATING SYSTEM

DOCKER DAEMON

1 2 3 4 N

CONTAINERS

5

MASTER SERVER SLAVE SERVER

Figure 12. Layered architecture composed of two servers.

5.1.1. Base Proposal—SPN Model

Figure 13 presents an SPN model for the MEC architecture with the following func-
tions: (i) Master Server is responsible for receiving requests from mobile devices and
distributing them among slave server nodes; (ii) Slave Server is responsible for processing
the data received from the master server. The components in the model correspond to the
same layers presented in Figure 12. Each component has its respective MTTF and MTTR.
Both master server and slave server were modeled, taking into account the dependency
between the components; that is when a component fails the immediate transitions will
trigger the next dependent components to fail as well.

The NCT marking corresponds to the number of available containers. The slave server
will be working when it has NCT tokens in the place CTS_U (active container). The evaluator
can define in the metric (with such NCT mark) how many containers must be active for
the system to be working. We consider that slave server is not working when it has a
token in one of the following locations: HWS_D (hardware down), OSS_D (operating system
down), DDS_D (docker daemon down), CTS_D (container down). Changing between active
and inactive state is caused by the following transitions: HWS_MTTF, OSS_MTTF, DDS_MTTF
and CTS_MTTF—for time medium to failure—and HWS_MTTR, OSS_MTTR, DDS_MTTR, and
CTS_MTTR—for average time to repair.

https://www.docker.com/products/
https://www.docker.com/products/
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Figure 13. SPN base model for an MEC architecture with master–slave layout.

The Master Server will be running when it has tokens in the LBM_U location (load
balancer active). We consider that Master Server is not working when it has a token in one
of the following locations: HWM_D (hardware down), OSM_D (operating system down), LBM_D
(load balancer down). The change between the active and inactive state is caused by the
transitions: HWM_MTTF, OSM_MTTF, and LBM_MTTF—for mean time to failure—and HWM_MTTR,
OSM_MTTR, and LBM_MTTR—for mean time to repair.

Two metrics were applied: availability and downtime. The availability equation
represents the sum of probabilities of components in the upstate. P stands for probability,
and # stands for the number of tokens in a given location. The downtime (D) can be
obtained by D = (1− A)× 8760, where A represents the availability of the system, and
8760 represents the number of hours in the year. For the availability, the system is fully
functional when all containers and the LB (load balancer) are both active. Therefore, the
availability is calculated by: A = P{(#CTS_U = NCT)AND(#LBM_U > 0)}.

Guard conditions ensure that transitions are only triggered when a specific condition
is satisfied. The guard condition ensures that the model reflects the behaviors of the system
in the real world. For example, the transition OSS_MTTR has the following guard condition:
P{#HWS_U > 0}, meaning that to trigger the recovery transition from the operating sys-
tem, the hardware (HW) must be active. Following this example, the transitions DDS_MTTR,
CTS_MTTR, OSM_MTTR, and LBM_MTTR follow the same pattern and are only activated if their
respective dependency components are active. See Table 5 for more details.

Table 5. Guard conditions used to guarantee components dependency.

Transition Expression

OSS_MTTR P{#HWS_U > 0}
DDS_MTTR P{#OSS_U > 0}
CTS_MTTR P{#DDS_U > 0}
OSM_MTTR P{#HWM_U > 0}
LBM_MTTR P{#OSM_U > 0}

5.2. Extended Proposal—Architecture

A significant limitation of the base proposal is that if one of the two servers fail, the
entire system will stop working. For this reason, Figure 14 presents a second proposal for
redundant architecture, which aims to improve the system’s availability rate compared to
the base architecture. For this architecture, we consider redundancy only on the slave server
to assess a possible availability improvement where data processing happens. Such a redun-
dancy decision is based on the sensitivity analysis that will be presented in Section 5.3.2.
The sensitivity analysis evidenced the containers as the most critical components in the
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system. Both slave servers are always working; however, Docker and the containers on
the slave server 02 are instantiated only if the slave server 01 fails. Therefore, there is a
redundancy mechanism of warm standby [41] in the hardware and operating system, and
cold standby [42] in the Docker and containers.

HARDWARE

OPERATING 
SYSTEM

LOAD BALANCER

HARDWARE

OPERATING 
SYSTEM

WARM/COLD 
STANDBY

HARDWARE

OPERATING 
SYSTEM

DOCKER DAEMON

1 2 3 4

CONTAINERS

N5

MASTER SERVER SLAVE SERVER 01 SLAVE SERVER 02

COLD-STANDBY

WARM-STANDBY

Figure 14. Layered architecture with redundancy under the slave server.

5.2.1. Extended Proposal—SPN Model

Figure 15 presents an extended SPN model for the MEC architecture, with 2 slave
servers and a master server. The extended SPN model presents a change in the slave server,
while the master server maintains the same components. As mentioned earlier, this new
model features a hybrid mechanism between warm-standby (HW and OS components)
and cold-standby (DD and CTS components). If any of the software components of slave
server 01 fail, other components will be started in slave server 02. Two new transitions were
added to satisfy these conditions, HWSF_MTTF and OSSF_MTTF (in the slave server 02 block),
which represent the MTTF for HW and OS when Docker is down, that is, HW and OS
are idle.

It is enough to observe the state of the upper layers of the architecture to calculate
availability due to components dependency. Thus, the system will be working when both
containers and the load balancer are working. The NCT is the parameter that represents the
maximum number of containers that the system can run. In other words, the sum of the
number of active containers on the two redundant servers cannot exceed the value of NCT.
The SWITCH_TIME transition is triggered when the slave server 01 fails, and this time corre-
sponds to the time it takes for the slave server 02 Docker to start up. Firing SWITCH_TIME also
puts the number of containers corresponding to NCT in place CTS2_D, that is, the containers
are created with inactive status on the slave server 02, and they will take some time to be
instantiated, corresponding to transition CTS2_MTTR. Therefore, the availability of the sec-
ond model is given by A = P{((#CTS1_U + #CTS2_U) = NCT)AND(#LBM_U > 0)}.
It is worth mentioning that the MTTF transitions are infinite server type (parallel), and the
MTTR transitions are single server type (concurrent).
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HARDWARE OPERATING SYSTEM DAEMON DOCKER CONTAINERS

CONTAINERSDAEMON DOCKEROPERATING SYSTEMHARDWARE

HARDWARE OPERATING SYSTEM LOAD BALANCER

Slave Server 01

Slave Server 02

Master Server Edge Computing

S2_OFF

NCT

Figure 15. Extended SPN model for an MEC architecture with redundant slave server.

Table 6 shows the guard conditions used for the operation of the system in the extended
model. In this case, using guard conditions avoids visual pollution in the model since several
connections should be made, and this would make the model difficult to understand.

Table 6. Guard conditions to the extended model.

Transition Expression Description

OSS2_MTTR HWS2_U > 0 Enabled when HW is up.

DDS2_MTTR OSS2_U > 0 Enabled when OS is up.

CTS2_MTTR (DDS2_U > 0) AND (CTS2_U < CTS1_D) Enabled when Docker of slave server 02 is up and slave server 01 has more
containers down than containers enabled on slave server 02.

HWSF_MTTF S2_OFF = 1 Activated when slave server 02 is idle.

OSSF_MTTF S2_OFF = 1 Activated when slave server 02 is idle.

HWS2_MTTF S2_OFF = 0 Activated when slave server 02 is up.

OSS2_MTTF S2_OFF = 0 Activated when slave server 02 is up.

T91 ((#CTS1_U = NCT) OR (#OSS2_U = 0)) Activated when the slave server 01 is up or when the dependent component (OS)
is down.

T101
((#CTS1_U = NCT) OR (#DDS2_U = 0) OR

(#CTS2_U > #CTS1_D))
Activated when slave server 01 is up or Docker has crashed, or the number of up

containers on slave server 01 has become greater than on slave server 02.

T0 #CTS1_U = NCT Activated when slave server 01 is up.

SWITCH_TIME #CTS1_D > 0 Activated when slave server 01 fails.
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5.3. Case Studies

This section presents a case study with an availability assessment and a sensitivity
analysis, considering the two presented models. Some input parameters are required to
perform the evaluation. The MTTF and MTTR values for each component were extracted
from [43,44]. Table 7 shows the input values of the model components. As much as the
proposed model supports different configurations for each server, in terms of simplification,
we have chosen to use the same configuration between the three servers. The time to
activate the redundant server in the transition SWITCH_TIME is 0.0833333 h, extracted
from [43].

Table 7. Extended model input values.

Component MTTF (hours) MTTR (hours)

Hardware 8760 8
Operating System 2800 1
Docker Daemon 2516 0.255

Container 1258 0.238
Load Balancer 700 1

Hardware (Idle) 17520 8
Operating System (Idle) 5600 1

5.3.1. Availability Analysis

This section presents the availability analysis. Five scenarios were defined, varying
the number of available containers (10, 20, 30, 40, and 50 containers). These scenarios were
generated in order to compare the availability of the two models as well as the impact that
the number of containers generates in each architecture.

Figure 16 shows availability and downtime calculated by stationary analysis with the
Mercury [45] tool. The availability variation shown in Figure 16a shows that availability
drops as new containers are instantiated. In addition, the availability of the extended
model tends to fall more slowly than in the base model. We believe that this fact occurs
due to the redundancy implemented in the extended model. Even if we add containers,
there will be a redundant component to supply the eventual failures in the slave server 01.
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Figure 16. Availability and downtime of the two architectures varying the number of containers.

Figure 16b shows downtime in hours per year. The extended model downtime tends
to be much shorter than the base model. The base model ranges from 60 to 130 h/y. The
extended model ranges from 40 to 60 h/y. The extended model’s downtime remains below
the base model even with five times more containers. The individual values of the base
model grow noticeably more, and from the third scenario, they become twice as long as the
extended model. After the fourth scenario, the time passes 100 h/y, while the extended
model remained below sixty in all scenarios.

These results are expected since the more components we have in a system, the higher
the chances of one of them failing, and the more they fail, the more time it takes to repair.
Our metric considers the system working when all containers are up; therefore, higher
failure rates will negatively impact the availability. This behavior is observed even in the
extended model. However, in the extended model, it happens in a much more subtle way,
because there is a redundancy mechanism in the server.

5.3.2. Transition Sensitivity Analysis

For the sensitivity analysis, the MTTF and MTTR parameters were varied by five
values within a range defined by the maximum and minimum values (50% plus and
minus the default value). Table 8 presents the components and their respective sensitivity
indices that cause significant impacts on the availability of the system. The most significant
components will be exposed and discussed below.

The failure and recovery times of the containers were the components that most
impacted the availability of the base model; this can also be seen by looking at Figure
16a, so we can consider the containers as essential components of the system. Data are
processed in the containers. The longer they stay out of operation, the more impaired is the
efficiency of the system. Right after that are the failure times of slave server components
(OS, DD, and HW). As these components are parts that “support” the containers, their
uptime has a significant impact on the uptime of the containers. The operating times of
master server components come subsequently. If the master server fails, no data will arrive to
be processed on any slave server.

As aforementioned, the sensitivity analysis results in the base model were considered
to generate an extended model. In the extended model, there was an inversion of indexes
order regarding the component’s relevance. By adding the hybrid redundancy strategy,
the sensitivity index of the slave server can be significantly reduced. Given the redundancy,
when any component of slave server 01 fails, slave server 02 will be activated. The components
of the master server ended up becoming more relevant as they did not have a redundancy
mechanism. The indexes were equal to the first analysis in the base model. Right after that,
we have SWITCH_TIME, which is essential for defining the time it takes to initialize slave
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server 02, becoming a relevant variable. The less relevant transitions were those related
to failure of hardware (HWSF_MTTF) and operating system (OSSF_MTTF) in idle state. These
transitions have very high values. Other components will fail many times before reaching
that time.

Table 8. Values resulting from the sensitivity analysis on the timed transitions of the SPN models.

Base Model Extended Model

Variable Index Variable Index

CTS_MTTR 6.330 × 10−3 LBM_MTTF 1.898 × 10−3

CTS_MTTF 4.047 × 10−3 LBM_MTTR 1.894 × 10−3

OSS_MTTF 2.409 × 10−3 HWM_MTTF 1.519 × 10−3

DDS_MTTF 2.152 × 10−3 OSM_MTTF 9.506 × 10−4

HWS_MTTF 1.985 × 10−3 HWM_MTTR 9.120 × 10−4

LBM_MTTF 1.898 × 10−3 SWITCH_TIME 6.782 × 10−4

LBM_MTTR 1.894 × 10−3 CTS_MTTR 6.511 × 10−4

HWM_MTTF 1.519 × 10−3 CTS_MTTF 6.223 × 10−4

OSM_MTTF 9.506 × 10−4 OSM_MTTR 4.709 × 10−4

HWM_MTTR 9.119 × 10−4 OSS_MTTF 3.068 × 10−4

HWS_MTTR 9.119 × 10−4 DDS_MTTF 2.602 × 10−4

OSS_MTTR 4.709 × 10−4 HWS_MTTF 1.110 × 10−4

OSM_MTTR 4.709 × 10−4 DDS_MTTR 4.002 × 10−5

DDS_MTTR 2.214 × 10−4 OSS_MTTR 2.124 × 10−5

HWS_MTTR 4.193 × 10−6

HWSF_MTTF 1.790 × 10−6

OSSF_MTTF 3.577 × 10−7

Figure 17 shows in more detail the impact of the three most essential components of
each model. As can be seen in Figure 17a–c, varying the parameters influences availability
up to a certain point. All base model results are below 99% availability, with the excep-
tion of the CTS_MTTR transition (Figure 17b). The results of the extended model present
much higher values compared to the base model (see Figure 17d–f). The results of the
extended model, different from the base model, always remain above 99%, since it presents
redundancy in the components that were impacting availability in the base model.
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Figure 17. Results (a–c) show the three most important transitions in the base model; Re-
sults (d–f) present the results of the sensitivity analysis of the most important transitions in the
extended model.

5.4. Discussions

Performance Evaluation: To comprehensively assess the performance of the underlying
MEC architecture, we proposed an SPN model which allows estimating MRT and the
level of resource utilization at the edge of the network. Ones may configure up to 5 input
parameters, which allows a high level of evaluation flexibility. A numerical analysis was
performed using real data from a reference paper to feed parameters in the proposed model.
The numerical analysis helps investigate the behavior of four metrics (MRT, discard rate,
master node utilization, and slave nodes utilization) as a function of the arrival delay. As
per observed, the arrival delay is the parameter that exposes a clearly significant impact on
the system’s performance compared to the remaining parameters.

A refined model with an absorbing state was developed to explore when applications
are most likely to complete their execution through the use of CDF. Two case-studies were
conducted to demonstrate the use of this model. In the first case-study, a verification
was performed to see which configuration of a slave server best meets the requirements
of an infrastructure administrator, according to the total time desired for the application
execution. The finding of this case-study is that the total time for execution increases as
resources decrease. In the second case-study, we observed the probability of execution
based on the time between arrivals. We found that as the time between arrivals increases,
the total time required to complete application execution also grows. The performance
model was validated with a real experiment, the results of which indicated equality between
experiment and model with p-value equal to 0.684 by t-Test.

Availability Assessment: An SPN model was also developed to represent and evaluate
the availability of an underlying MEC architecture. It is feasible to analyze which were the
most important components of the system based on the proposed model. Furthermore,
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thus, it is also possible to propose an extensional architecture focusing on these components.
Scenarios with different quantities of containers were analyzed. As per investigated, the
extended architecture shows a considerable improvement in availability compared to
the base architecture. The containers were exposed to be the significantly important
components in both models, and that a server with distributed responsibility is not always
the bottleneck of the system. The results of the extended model, different from the base
model, always remain above 99%, since it presents redundancy in the components that
were impacting availability in the base model.

Future Extensions: Regarding the performance evaluation, we intend to perform other
numerical analyzes, adding more servers or considering different types of applications.
We also intend to extend the proposed model to measure energy expenditure and explore
allocation between multiple MEC towers. On the other hand, the availability model can
be extended by taking into account redundancy of the components in the master server,
and the consideration of different operational scenarios for testing the models is also an
essential extension.

6. Conclusions and Future Works

In this paper, we proposed (i) an original performance SPN model, (ii) its refined
model with an absorbing state and (iii) an availability SPN model, for performance and
availability assessment of an MEC infrastructure. Comprehensive analyses were performed
to assimilate different aspects of the system operations in terms of performance and avail-
ability. Performance metrics were analyzed in the original performance model including
MRT, discard rate, and utilization of master and slave nodes with regard to arrival de-
lay. Two case-studies using the refined model with an absorbing state were conducted
to investigate the completion time of application execution. An availability model was
first introduced for a base-line MEC with the basic configuration of a master and a slave
node, while an extensional one was proposed when redundancy of slave nodes was taken
into account. Availability metrics were analyzed including operational availability and
downtime hours in a year. Availability sensitivity wrt. MTTFs and MTTRs were performed
in a comprehensive manner. The analysis results pinpoint essential system parameters
which incur significant impacts on performance and availability of an MEC. As a result, this
study helps comprehend operational characteristics of an MEC regarding performance and
availability metrics, and thus helps design actual MEC architectures and plan in advance
economic operations of practical MEC systems.
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