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Abstract: The COVID-19 pandemic and quarantine have forced students to use distance learning.
Modern information technologies have enabled global e-learning usage but also revealed a lack
of personalization and adaptation in the learning process when compared to face-to-face learning.
While adaptive e-learning methods exist, their practical application is slow because of the additional
time and resources needed to prepare learning material and its logical adaptation. To increase
e-learning materials’ usability and decrease the design complexity of automated adaptive students’
work evaluation, we propose several transformations from a competence tree-based structure to a
graph-based automated e-evaluation structure. Related works were summarized to highlight existing
e-evaluation structures and the need for new transformations. Competence tree-based e-evaluation
structure improvements were presented to support the implementation of top-to-bottom and bottom-
to-top transformations. Validation of the proposed transformation was executed by analyzing
different use-cases and comparing them to the existing graph-to-tree transformation. Research results
revealed that the competence tree-based learning material storage is more reusable than graph-based
solutions. Competence tree-based learning material can be transformed for different purposes in
graph-based e-evaluation solutions. Meanwhile, graph-based learning material transformation to
tree-based structure implies material redundancy, and the competence of the tree structure cannot
be restored.

Keywords: e-learning; e-evaluation; e-assessment; transformation; adaptive e-assessment; tree; graph

1. Introduction

Much attention is currently being devoted to the personalization of e-learning sys-
tems [1–3]. However, there are some challenges in developing personalized learning
systems. One of the challenges is the adaptation of learning material to fit learners’ needs
and the improvement of learning efficiency [1,3]. This includes task identification and
selection of the right difficulty level [4,5]. Only tasks of the right complexity increase a
learner’s motivation and cause a state of flow. Flow is “the state in which people are so
intensely involved in an activity that nothing else seems to matter; the experience itself
is so enjoyable that people will do it even at great cost, for the sheer sake of doing it” [4].
One way to feel the flow is “when a person’s skills are fully involved in overcoming a
challenge that is just about manageable, so it acts as a magnet for learning new skills and
increasing challenges. If challenges are too low, one gets back to flow by increasing them.
If challenges are too great, one can return to the flow state by learning new skills” [5].
Therefore, learners need to be given tasks and learning material of the right complexity
which are presented in the right order. To achieve this, an adaptive knowledge assessment
system that would propose questions based on previous correct and/or incorrect answers
in real-time is needed. However manual design and monitoring of students’ learning
paths are resource-consuming and time-inefficient tasks, and automation is preferable in
this area [6]. In adaptive learning, the same learning material might be presented in a
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different form or different order to provide an individualized learning path. Therefore, it is
important to store learning material in a form suitable for reuse and transformation into
different forms.

The need for resource reuse and usage variety is very noticeable in the knowledge
evaluation area: the same question/task can be used in different courses or tests; the
purpose of the testing might vary from knowledge evaluation to self-assessment, etc.
Therefore, this paper aims to increase e-evaluation resource adaptability, mimicking the
face-to-face evaluation feature to select the next question based on evaluative purposes
and a given student’s response to a current task. To achieve this goal, the following key
challenges have to be resolved:

1. Find the appropriate structure to store a tasks dataset for usage in adaptive learning.
2. Offer automatic test transformation/generation from the stored tasks dataset, dedi-

cated for different purpose knowledge assessment tests.

By solving these rising challenges, new ideas were proposed in this paper. One idea
involved the improvement of the competence tree-based structure for a more accurate
competence difficulty ranking. Another one involved two different transformations from
a competence tree-based structure to a graph-based e-evaluation structure. Those trans-
formations support any material reusability requirement and, at the same time, increase
e-evaluation adaptability, as they incorporate different approaches for e-evaluation. All the
mentioned ideas allow for a transition from human-based learning resource reusability to
different forms and/or purpose knowledge evaluations resources.

The structure of the paper is as follows. Related works in the field of adaptive
learning and automated knowledge evaluation are reviewed in Section 2. Section 3 presents
new ideas for the improvement of the competence tree to increase its adaptability for
automated e-evaluation. Section 4 presents proposed methods dedicated to transforming
the competence tree into different graph-based automated e-evaluation systems. The
proposed storage structure and transformations are validated in Section 5 by comparing
the results with contextual graphs and their transformations. The paper is summarized
with the conclusion and future works section.

2. Related Works
2.1. Existing Models for Adaptive E-Learning

The development of e-learning environments has highlighted the importance of setting
learners’ initial levels of knowledge to provide course material appropriate to these levels
of knowledge. Jagadeesan and Subbiah [1] created a skill-based e-learning environment in
which all learners, after a skill test (which consists of five questions), are categorized into
three levels (basic, normal, and advanced). Learning content is provided only based on
skill evaluation reports. Unfortunately, this solution lacks dynamics. As such, Athanasiadis
et al. [2] developed a “Learning’ platform” to introduce a personalization mechanism that
automatically changes system complexity levels based on the flow of the student who
interacts with the platform. Meanwhile, Nabizadeh et al. [3] describe two approaches to
maximize user grades for a course while respecting their time constraints. These approaches
recommend successful paths based on available time and a user’s initial knowledge level.

Troussas et al. [7] present a hybrid model for detecting misconceptions using machine
learning, as well as a technique for automatically modeling student learning and forgetting
processes using a fuzzy inference system. The fuzzy inference system takes as input the
level of knowledge of each student in one language and can diagnose his/her level of
knowledge in another language. This allows the system to create an adaptive learning
environment for each student. Hariyanto and Kohler [8] take not one input but propose
an adaptive e-learning system based on different inputs for learning style and initial
knowledge of learners, as measured by a preliminary evaluation across five sections. If the
evaluation result meets or exceeds the standard grade set by the teacher, the student passes
the section. If the result does not correspond to the standard grade, the student does not
pass the section. These conditions affect the appearance of links in the menu area.
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Some researchers in e-learning systems have suggested adapting tests to learners’
levels of knowledge. Mustakerov and Borissova [9] suggested an educational web-based e-
evaluation system, which can be used by students for self-evaluation or by tutors for official
examination. The test questions are marked as easy or advanced. This allows students to
choose easy, advanced, or all questions in passing modes. Arif et al. [10] expanded this
approach and proposed a multilayer, intelligent, agent-based architecture for e-evaluation
and e-learning systems. They increased test difficulty levels to three (easy, medium, and
difficult) and divided them further into sub-levels to filter students who could take the
difficult test. The easy level was divided into five sub-levels and the medium level was
divided into three sub-levels. A learner first has to pass three easy level sub-tests and
two sub-tests from medium level, and only then will they be able to take the advanced
level tests.

All these examples of adaptive e-learning and e-evaluation demonstrate a different
logic that might be used for learning path construction, as well as different levels of
adaptability which might be implemented, from material selection based on knowledge
evaluation marks to an adaptive selection of further steps or tasks.

2.2. Data Structures Used for E-Evaluation Tests and Its Tasks Storage

To create an adaptive knowledge assessment system, the presentation of tasks must
be carried out semantically. It is important to prepare the tasks and to establish the correct
relationships between them. For this reason, it is important to choose the right task for
storage structure.

P. Brezillon [11,12] suggests using contextual graphs for real-time decision making.
According to P. Brezzilon, “the contextual graph is a context-based representation of a task
execution” and, as it is an acyclic graph, a user’s tasks are usually arranged in order [13].
From these properties, it can be used to form a way of presenting tasks in adaptive
tests. As such, Aukstakalnis et al. [14] used the contextual graph in simulation-based
e-evaluation systems.

Figure 1 provides a simple example that demonstrates the use of a contextual graph
in task selection.

Figure 1. Presentation of tasks by the contextual graph.

The contextual graph in Figure 1 depicts two types of objects: actions and contextual
elements. The action is the basis for modeling, according to the detail provided (repre-
sented by a green square). The contextual element is a pair of nodes—contextual and
recombination (contextual nodes are shown in blue numbered circles and recombinant
nodes are depicted in black circles). Contexts have one input and N outputs corresponding
to N known values of the contextual element. A recombination node is a ratio of [N, 1], to
which the instantiation of the contextual element does not matter [15]. The numbers on
the action elements are identifiers that indicate which element from the competency tree is
represented in the context graph. Capital letters identify contextual nodes.

Liang et al. [16] argue that a hierarchy-based structure is well-suited for assessing
students with different levels of preparation. More advanced students can skip easier
(lower level) tasks and start with more difficult (higher level) tasks. Ramanauskaite and
Slotkiene [17] suggest that the competence tree is suitable for developing a study program,
a course, or for evaluating students. An example of a competency tree is shown in Figure 2.
The competence “1” is the most advanced, as it requires an integration of both competencies
“2” and “3”; these two competencies have an internal composition of other competencies.
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Each task is associated with one or multiple competencies in the tree. Therefore, a tree of
tasks can be generated from it.

Figure 2. Example of a competence tree structure.

The use of a competence tree for adaptive knowledge evaluation is also useful for
teachers, because, when it is used:

1. It is convenient to check whether appropriate tasks of different complexity have been
prepared to check all competencies.

2. Once properly designed, it can be used to create tests for a variety of course topics, and
it eliminates the need to recreate test tasks for each topic, as the instructor only needs
to select the required tree branches or indicate the appropriate level of complexity of
the tasks.

3. The connections between tasks are presented.

However, the competence tree presents the relationship between different levels as
parent–child, and there is no logic for the definition of the relationship between the same
level of competencies.

2.3. Existing Task Dataset Form Transformation Methods

Hong et al. [18] state that a series–parallel graph can be represented as a decomposition
tree. Since contextual graphs also belong to series–parallel graphs, a contextual graph can
also be transformed into a decomposition tree [19].

A contextual graph can be difficult to follow when performing tasks that involve
many contextual elements arranged in a graph [15,19]. For this reason, Kimberly García
and Patrick Brézillon proposed a transformation method from a contextual graph to a
practice tree [15]. Experimentally, they found that this method works well with a graph
of a predominant parallel structure, but, if the graph is of a predominant series structure,
then a tree is obtained with hundreds or thousands of branches that are almost identical
and differ from one other in just a few steps. Such a tree can be difficult to analyze and
quickly identify relationships between nodes. A generated “Practice Tree” image file is too
large to display on a normal-sized screen, and software performance in computing the tree
also decreases. Thus, decision makers are encouraged to create contextual graphs with a
parallel structure. However, it has been observed that novice users typically create graphs
with a predominant series structure.

Papers on competence tree transformation to graph have not been noticed in scientific
papers yet.

3. Proposed Competence Tree Improvements for Increase of Tasks Dataset Flexibility

One idea of competence tree-based e-evaluation is a student’s ability to select the
learning path by themselves [17]. However, this approach has its limitations as, in some
situations, the learning path flexibility is not acceptable or is in conflict with the student’s
profile. Sometimes learning paths should be generated to minimize a student’s choices.
While learning path generation strategies vary depending on a given situation, two main
student-oriented strategies for knowledge evaluation paths exist: (i) incremental knowl-
edge evaluation [20] and (ii) shortest path evaluation [21].

Incremental knowledge evaluation requires taking into account task complexity and
cognitive load. The evaluation path should start from simpler tasks and grow step by
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step to more complex tasks. Therefore, this method is more suitable for learning process
personalized implementation when the base flaws of students’ knowledge are identified,
and material is provided to fill the gap.

Shortest path evaluation is more appropriate for knowledge evaluation when a student
should demonstrate which level of knowledge they managed to achieve. Students with
sufficient knowledge prefer to do as few tasks as possible rather than repetitively demon-
strate the same skills and knowledge in different tasks. Therefore, evaluation paths should
start with the most complex task. If the student is not able to solve the task, the complexity
could be reduced step by step to obtain the achieved knowledge level of the student.

Both of these knowledge evaluation paths take into account task complexity. However,
one starts from the lowest level of complexity and increases if a student manages to solve
it, while the other one starts from the highest complexity tasks and reduces the complexity
if a student fails to solve it.

Contextual graphs do not directly take into account task complexity, and a learning
path strategy is constructed by the test designer. Competence trees present the relative
complexity of tasks in different levels of the competence tree. However, there are no data
on task complexity comparisons between tasks at the same level. Therefore, we add few
small adjustments to the design and storage of the competence tree:

1. All sub-competencies should be arranged based on their relative complexity. There-
fore, in each branch of the competence tree, lower complexity tasks will be presented
on the left and complexity will increase going to the right. This should be performed
by the competence tree designer and might be based on personal opinion or historical
data, which can be used to compare the complexity of competencies as well as tasks.

2. Competence should define whether a child’s competencies are sequentially dependent
or independent of each other. This is required to understand whether it is worth giving
a sibling task of higher complexity if the student failed the lower complexity task.

The modifications are minor; however, they are necessary for higher flexibility, adapt-
ability, and transformation to graph-based e-evaluation solutions. The modifications re-
quire additional work from the competence tree designer. All sibling competencies should
have their relative difficulty, and, in some cases, it might be difficult to identify them.
However, spending time on the implementation of those modifications might generate
new features for e-evaluation resource automated transformation and reusability.

4. Proposed Competence Tree Transformations to Graph-Based E-Evaluation Structure

Taking into account the different forms of knowledge evaluation path, the usage of
a graph-based knowledge evaluation path in adaptive learning, and the implemented
modifications for the competence tree, two main transformations from competence tree to
graph-based e-evaluation structure are proposed:

1. From the top of the competency tree to the bottom (TBCG) for shortest path e-
evaluation [21].

2. From the bottom of the competence tree to the top (BTCG) for incremental knowledge
e-evaluation [20].

The above transformation will be adapted to automated knowledge evaluation only.
This means each task has one possible answer which can be solved correctly or not. There-
fore, it is not possible to evaluate which competence in the combined task is missing (all or
nothing approach). As for presentation simplification, we assume one task will be given
and its correctness will be evaluated. In practice, multiple tasks might be given, and the
decision might be made based on the correctness of the tasks set.

The proposed transformation will convert a competence tree-based tasks dataset to a
graph-based e-evaluation structure. This will be directed to the automated generation of
different contextual graphs. For visualization, we use a competence tree example, presented
in Figure 3. In this paper we do not present the exact area, presented in the competence
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tree, as the content of the tree does not influence the transformation, and structure is more
important to inspect a transformation’s suitability.

Figure 3. Example of competence tree, used for transformation to graph-based solutions.

For visualization purposes, the tree and graph notation will be used as described in
Section 2.2; tasks are notated as rectangles, with a number identifying task ID; decision
making will be notated as blue or yellow circles, with a letter or number defining decision
node—blue circles indicate a task as being solved correctly or not, while yellow circles
indicate that it has previously been solved and now needs to go to a higher level (noted
by the number, ID); the joining of several learning paths will be notated as black circles (it
notates where learning paths crosses).

4.1. TBCG Transformation for Shortest Path E-Evaluation

In the TBCG case, a contextual graph is started from the action of the upper node
(see node 1 in Figure 3), and then a contextual element with two branches is created. One
branch refers to the actions that will be performed if the learner performs the task correctly,
and the other branch points to the actions that will be performed if the task is performed
incorrectly. If the task is completed correctly, e-evaluation is complete. It means the student
can solve the most complex task in the test, the task which evaluates all competencies
associated with the test, and, therefore, there is no need to solve other tasks.

In case the learner incorrectly solves the first task, they will need to solve all the tasks
in difficulty level 2 (tasks 4, 3, and 2 in Figure 3). This corresponds to a situation when a
student is not able to apply multiple competencies at the same time; therefore, it is worth
evaluating whether they are able to demonstrate each competence separately. When the
learner completes all difficulty level 2 tasks correctly, e-evaluation will be completed. If
they fail in any of those tasks, the evaluation path will be supplemented with lower-level
competence tasks of the failed task. Therefore, after each task, the evaluation path is forked,
and additional tasks are presented in case the student fails. This is repeated while the
lowest levels of the competence tree are added to the graph.

The TBCG transformation result for the example competency tree (see Figure 3)
is presented in Figure 4, while the pseudocode of the transformation is presented in
Algorithm 1.

Figure 4. Result of TBCG transformation for competence tree, presented in Figure 3.
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Algorithm 1 Pseudocode of TBCG transformation.

1: root = root competence of the competence tree
2: add task T of competence root to the test flow
3: TBCGstep(root)
4: TBCGstep(cComp)
5: if competence cComp has child competences then
6: connect T to new decision node D to indicate whether task T was solved correctly
7: add negative and positive paths for decision D, with merge in the end
8: for each child competence C of competence cComp (going from right to left) do
9: add task T of competence C to the negative path of the decision node D

10: TBCGstep(C)
11: end for
12: end if

The TBCG transformation does not require data on child competency serial depen-
dency. Relative difficulty is not necessary (all child competency tasks will be given to solve
if the parent competency task failed); however, it would be a benefit to keep the idea of
presenting tasks from more complex to lower level complexity tasks.

4.2. BTCG Transformation for Incremental Knowledge E-Evaluation

The BTCG transformation is similar to the inversion of the TBCG—tasks are presented
to students from the lowest complexity to greater complexity, and only if the task is solved
correctly (in TBCG transformation additional tasks were given if the student fails the task).
While the task sequence in the case of all success cases in the BTCG transformation is
identical to the inverted order results of the TBCG transformation in the case of all fail cases
(see Figure 5), the graph structure cannot be obtained by changing the order of the graph.

Figure 5. A transformation process: (a) TBCG where all a student’s answers are incorrect (tasks
sequence is 1, 3, 7, 10, 9, 8, 6, 2, 5, 4); (b) BTCG where all a student’s answers are correct (tasks
sequence is 4, 5, 2, 6, 8, 9, 10, 7, 3, 1).

To implement BTCG transformation, the start point is the leftmost and lowest node in
the competence tree, illustrating the task of lowest complexity (see node 11 in Figure 3). If a
student fails the task, the sequential dependency between sibling competencies in the tree
structure must be inspected. If the sequential dependency exists at the same level, it means
the student is missing essential knowledge to move further with a more difficult task, and
the evaluation will be finished (as a result, material related to this missing competence will
be provided for the student to obtain the needed competencies).

If sequential dependency at this level does not exist, sibling competence tasks (node
12 in Figure 3) will be presented for the student to solve; however, the parent competence
task (node 5 in Figure 3) will not be given to the student. This is based on the idea that,
without having some competence, the student will not be able to solve more difficult tasks,
which include the missing competence as one of the elements in the task’s solution.

Whether the evaluation finishes after at least one fail in one level of the competency
tree depends on sequential dependency in the tree structure. By recursively analyzing the
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parent competencies, if a competency with non-sequential dependency child competencies
exists, the evaluation will not be finished. It means other competencies are independent of
the ones the student failed. Therefore, it can be evaluated in the same test. Therefore, when
competency with non-sequential dependency child competencies is indicated in the path
to root competency, the lowest level (the most left bottom level) competency task of such
competency will be added (node 7 in Figure 3, if only node 1 has sequentially independent
competencies 2, 3 and 4) to the test as an additional element in the graph.

Success means the student has the competence; therefore, more difficult tasks can be
given to him or her. As such, if there is a sibling competence task in the right, it will be given
to the student (see node 12 in Figure 3), regardless of whether it is sequentially independent
or not. If there are no additional sibling competencies in the right, the parent competence
task (node 5 in Figure 3) should be analyzed for presentation in the test. However, the
parent competency task will be included in the test only if all child competence tasks are
solved correctly. If at least one child competence task is unsuccessfully solved, it means
some competencies are missing to solve the parent competence task.

All the processes are repeated recursively for each competency included in the graph-
based e-evaluation solution. The BTCG pseudocode is presented in Algorithm 2. Transfor-
mation results for the competence tree (presented in Figure 3), when all competencies are
sequentially dependent, are presented in Figure 6. When all competencies except second
level competencies (nodes 2, 3, and 4 in Figure 3) are sequentially independent, they are
transformed to different graph-based structures. The results are presented in Figure 7.

Figure 6. Result of BTCG transformation for the competence tree, presented in Figure 3 when all competencies are sequentially
dependent.

Figure 7. Result of BTCG transformation for the competence tree, presented in Figure 3 when all competencies except 2nd
level competencies 2, 3, and 4 are sequentially dependent.
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Algorithm 2 Pseudocode of BTCG transformation.

1: root = root element of the competence tree
2: cPath = None
3: cLast = None
4: BTCG(root, cPath, cLast)
5: BTCG(cComp, cPath, cLast):
6: if competence cComp has child competences then
7: for each child competence C of competence cComp (going from left to right) do
8: if competence C has no sequential dependency with sibling competences then
9: cPath = end of the test flow

10: end if
11: BTCG(C, cPath, cLast)
12: if cLast == None then
13: add task T of competence cComp to the test flow
14: cLast = C
15: cPath = path from task T
16: else
17: if competence C has sequential dependency with sibling competences then
18: connect cLast to new node D to indicate weather task T was solved correctly
19: add negative and positive paths for decision D
20: cPath = positive path of decision node D
21: add new task T of competence C to cPath
22: cLast = C
23: merge positive and negative flows of cPath
24: else
25: if cLast <> None then
26: connect cLast to new node D to indicate weather task T was solved correctly
27: add negative and positive paths for decision D
28: cPath = positive path of decision node D
29: add new task T of competence C to cPath
30: merge positive and negative flows of cPath
31: cPath = end of the test flow
32: cLast = None
33: else
34: add new task T of competence C to cPath
35: end if
36: end if
37: end if
38: end for
39: if competence C has no sequential dependency with sibling competences then
40: connect T to new node D to indicate whether all sibling tasks solved correctly
41: add negative and positive paths for decision D
42: cPath = positive path of decision node D
43: merge positive and negative flows of cPath
44: end if
45: end if
46: if cLast == None then
47: add new decision node D to indicate whether task all sibling tasks solved correctly
48: add negative and positive paths for decision D
49: cPath = positive path of decision node D
50: add new task T of competence C to cPath
51: merge positive and negative flows of cPath
52: else
53: add task T of competence cComp to the cPath
54: end if

The result of BTCG transformation demonstrates strong dependency on competence
complexity, as well as sequential dependency between sibling competencies. Therefore, a
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different output might be generated depending on these two parameters and competence
tree structure.

The proposed transformations can convert any competence tree to a graph structure.
However, for cases with no sequential dependencies and full sequential dependency,
the generated graph structures will not ensure enough adaptability possibilities. This
illustrates the transformation will not be enough for e-evaluation adaptability—the key
factor is competence tree design. If all tasks have no relation and relative complexity, there
will be no difference in how these tasks will be ordered into an e-evaluation system.

5. Analysis of Transformation Results and Comparison to Contextual Graph to
Practice Tree Transformation

The results of the transformation might not be measured by one quantitative metric.
Therefore, we summarize the transformation results with several different metrics. First
of all, we measure the transformation results based on: (i) generated graph structure
suitability for graph-based e-evaluation systems (does the graph starts with one action
node and do all paths end up in one final node); and (ii) proportion between the number
of task nodes in a graph-based e-evaluation structure and the number of task nodes in a
competence tree e-evaluation structure.

For the transformation suitability measurement, we use the example presented in
Figure 3. Additionally, a smaller competence tree was used (see Figure 8) for the suitabil-
ity measurement.

Figure 8. The second example of competence tree, used for transformation to graph-based solutions.

Consequently, the results of TBCG and BTCG transformation are presented in
Figures 9 and 10, respectively.

Figure 9. Result of TBCG transformation for competence tree, presented in Figure 8.

Figure 10. Result of BTCG transformation for competence tree, presented in Figure 8, when all
competencies except 2nd level competencies 2 and 3 are sequentially dependent.

The transformation result suitability metrics are presented in Table 1. They demon-
strate all graphs are suitable for graph-based e-evaluation systems. At the same time,
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the generated graph has no repetition of the same tasks in different branches. It is not a
very important factor for the knowledge evaluation path, however illustrated the relative
storage need to store the same test resources in different formats.

Table 1. Result summary of the proposed competence tree transformation to graph-based structure.

Analyzed
Competence

Tree

Number of Task
Nodes in

Competence Tree

Transformation
Method

Transformation
Case

Number of
Task Nodes in

a Graph

Number of
Decision Nodes

in a Graph

Does the Graph
Meet a Graph-Based

Testing Structure?

Example1 1 21

TBCG - 21 9 Yes

BTCG
Full sequential

dependency 21 20 Yes

2nd level sequential
independency 21 20 Yes

Example2 2 10

TBCG - 10 4 Yes

BTCG 2nd level sequential
independency 10 9 Yes

1 Competence tree, presented in Figure 3. 2 Competence tree, presented in Figure 8.

To compare e-evaluation resources in a different form and transform them into another
structure, and additional experiment was executed—generated graphs were used as input
for transformation from a contextual graph to a Practice tree, proposed by Brezillon [15,19].
The BTCG transformation with full sequential dependencies was eliminated from the
experiment, as the transformation result would cause no significant change to the structure.

The original solution, as well as the modified version of the Practice tree, were ana-
lyzed. A modification was needed, as the original solution generated a tree of the decision
and at the end of the last decision, which presented a list of tasks that should be done.
This structure is not suitable for adaptive learning, as it could take into account only user
and system-related context, not the provided solutions to each of the tasks. Therefore,
based on the task, sequences matching tasks in each of the paths were identified to un-
derstand its possible location in the decision tree structure. This modification allowed
for the adaptation of a contextual graph transformation to a tree structure for adaptive
knowledge e-evaluation purposes. However, the modification did not allow the generation
of competence tree analog, as some tasks were duplicated in multiple places.

The transformation results’ suitability metrics are presented in Table 2, while the
generated trees are presented in Appendix A. Appendix A includes original and modified
transformations from the contextual graph to Practice tree, or tree structure for graphs
presented in Figures 9 and 10. Results for Figures 4 and 7 are not presented because of their
huge number of nodes.

Table 2. Contextual graph transformation to Practice tree result summary.

Analyzed
Graph

Number of
Task Nodes
in a Graph

Number of
Decision Nodes

in a Graph

Number of Task
Nodes in a Tree

Number of Decision
Nodes in a Tree

Does the Graph Meet a
Tree-Based Testing

Structure?

Original Modified Original Modified Original Modified

Example1 1 21 9 799 177 63 63 No Partly 5

Example2 2 21 20 5190 360 400 400 No Partly 5

Example3 3 10 4 41 16 6 6 No Partly 5

Example4 4 10 9 183 30 29 29 No Partly 5

1 Graph, presented in Figure 4. 2 Graph, presented in Figure 7. 3 Graph, presented in Figure A3. 4 Graph, presented in Figure A4. 5 Suitable
for adapted learning; however, does not meet competence tree design principles (repetition of the same competencies in different branches).
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The transformation from contextual graphs does not produce a tree suitable to use
as a competence tree—tasks are not organized based on the commodity and variation
of competencies, and the same tasks are repeated in different branches of the tree. The
number of test nodes’ relative storage increases approximately more than 7.5 times. The
same test nodes are stores in different places of the e-evaluation tree. While, if additional
tree optimization methods were not used, relative storage would be approximately more
than 80 times bigger. This is not suitable for e-evaluation systems with a big number of
tests and tasks in them. The number of decision nodes also increases to follow the number
of repetitive task nodes.

6. Conclusions and Future Works

An analysis of existing adaptive e-evaluation solutions reveals they lack transforma-
tion from one form to another. At the same time, the existing Brezillon graph transformation
to tree structure has only one possible result—there are no variations of the transformation.
This leads to a problem regarding e-evaluation system adaptation to different purposes
or students’ needs (personalization)—learning and evaluation processes are different;
therefore, automated knowledge evaluation for self-learning and knowledge evaluation
should be different as well. To increase automated e-evaluation system adaptability, more
reusable e-evaluation structures should be used, with multiple transformations to different
structures. This would allow the generation of different types and purpose e-evaluation
solutions from the same e-learning material, and minimal resource designer interaction.

The proposed competence tree transformation to a graph-based e-evaluation structure
is adapted to different students’ needs (TBCG approach for knowledge e-evaluation, while
BTCG approach for adaptive learning). The generated graphs meet the requirements of a
graph-based e-evaluation structure, and do not increase the e-evaluation system complexity,
as the number of task nodes remains the same (no duplication of the same nodes). The
existing transformation from a graph-based e-evaluation structure to a tree-based structure
does not allow for a recreation of a competence tree, and drastically increases both the
number of task nodes and decision nodes in the e-evaluation environment. This proves the
competence tree structure is more promising for e-learning material storage, as it can be
transformed into different graph-based e-evaluation solutions.

To increase e-evaluation adaptability and personalization, research on e-evaluation
strategy should be executed. Research could examine learning style influence on pre-
ferred e-evaluation environments and evaluation types. Its results would allow for the
identification of which type of transformation would be the best choice for a specific user
and/or situation.

At the same time, the development of an e-evaluation system dedicated to different
automated e-evaluation structures and their transformation would benefit the practical
usage of resource reuse and evaluation adaptability. Existing tools would reduce teacher
efforts to prepare adaptive evaluation tests for different purposes and, at the same time,
would provide a platform to design competency-based learning material and share it with
other colleagues.
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Appendix A. Results of Graph-to-Tree Transformations

Figure A1. Result of original contextual graph transformation to Practice tree for graph, presented in
Figure 9.

Figure A2. Result of original contextual graph transformation to Practice tree for graph, presented in
Figure 10.

Figure A3. Result of modified contextual graph transformation to a tree structure for graph, presented
in Figure 9.



Appl. Sci. 2021, 11, 4082 14 of 15

Figure A4. Result of modified contextual graph transformation to a tree structure for graph, presented
in Figure 10.
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