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Abstract: Finding efficient and less expensive techniques for different aspects of culvert inspection is in
great demand. This study assesses the potential of infrared thermography (IRT) to detect the presence
of cavities in the soil around a culvert, specifically for cavities adjacent to the pipe of galvanized
culverts. To identify cavities, we analyze thermograms, generated via long pulse thermography, using
absolute thermal contrast, principal components thermography, and a statistical approach along with a
combination of different pre- and post-processing algorithms. Using several experiments, we evaluate
the performance of IRT for accomplishing the given task. Empirical results show a promising future
for the application of this approach in culvert inspection. The size and location of cavities are among
the aspects that can be extracted from analyzing thermograms. The key finding of this research is
that the proposed approach can provide useful information about a certain type of problem around
a culvert pipe which may indicate the early stage of the cavity formation. Becoming aware of this
process in earlier stages will certainly help to prevent any costly incidents later.

Keywords: culvert inspection; cavity detection; infrared thermography; nondestructive testing;
principal components thermography; pulse thermography

1. Introduction

A culvert is a type of structure mostly located under roadways, embankments, and ser-
vice areas. They are designed to allow the passage of water (including perennial, intermit-
tent, and ephemeral stream) under a road at stream crossings. Some culverts are used to
allow pedestrians, cyclists or vehicles to cross the road, whereas some others allow fish [1]
and other wildlife [2] to pass through. Culverts are made from materials such as galvanized
steel, concrete, or high-density polyethylene (HDPE) in different size and shapes (e.g.,
circular, box, semi-circle, and arch) [3]. The length of a culvert varies from a few meters to
tens of meters with different spans and rises depending on the type and application of the
culvert; for example, from 45 cm up to 4 m diameter for corrugated steel pipes, and up to
24 m span for corrugated steel structures [3].

Cavities may appear around culverts due to various reasons, including direct contact
with water and its flow, soil acidity problems, and vibration. Pockets of air or water
can form at any areas around the culvert. The presence of cavities weakens the culvert’s
structure, and thus increases the risk of collapse and relevant incidents which can be costly
and fatal. Therefore, detecting cavities at early stages can play a crucial role in any incident
prevention plan.

Several nondestructive testing (NDT) methods can be used to inspect culverts. Visual
(manually or by camera), acoustic, ultrasound, electromagnetic (e.g., magnetic flux leakage
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and eddy current), and radiographic testing are examples of well-known techniques for this
purpose. For a good overview of various aspects of culvert inspection including available
technologies, refer to [4,5]. Most of these techniques are used to detect anomalies and defects
such as blockages, cracks, leaks, corrosion, and pitting in the culvert pipe rather than the
surrounding soil. One of the widely used methods for identifying the location and depth
of buried pipes is ground penetrating radar (GPR) [6]. Effectiveness of GPR has also been
reported for other tasks including the localization of buried pipeline leaks [7] as well as the
detection of underground cavities [8,9]. The GPR method has some limitations such as the
impossibility of scanning bottom and lateral sides of a culvert, reduced efficacy for wet clay
soil (as the depth of the signal penetration is significantly affected by the soil humidity) and
negative effect of environmental electromagnetic noise [4].

Another approach to identify the presence of underground cavities is multi-channel
analysis of surface waves (MASW) [10,11]. In MASW, after generating vibration using
a 60 kg hammer, signals of a set of sensors (16 sensors placed with a 1 m spacing) are
recorded at once. Through analyzing recorded signals in time-space domain, the dispersion
curves of the different Rayleigh modes are created, and corresponding shear wave velocity
profiles are determined. The stiffness or rigidity of the scanned ground is directly related
to the shear wave velocity. A disadvantage of MASW is the requirement of a complicated
interpretation process to determine the presence and location of cavities.

Following the rapid advancement of thermographic cameras and development of new
techniques such as pulse thermography (PT), principal component thermography (PCT),
pulsed phase thermography, and lock-in thermography in the past three decades, Infrared
thermography (IRT) [12–16] has become a powerful tool to detect anomalies, and defects in
metallic [17], plastic [17], ceramic [18], and composite [19,20] materials. Despite the success-
ful application of IRT in detecting corrosion, cracks, delaminations, and internal voids [21–25],
we are not aware of any IRT-based approach for the identification of cavities in the soil around
a culvert pipe. Very few papers [26,27] have recommended IRT for void detection but without
providing any reference and evidence to any existing works on this topic.

We think the potential of IRT for the identification of cavities in the surrounding area of
a culvert has not been explored yet. Therefore, this study assesses the potential of IRT for this
task for galvanized culverts. Considering the difficulties of accessing culverts (see Section 4.1),
experiments are conducted in a laboratory setup. To identify cavities behind a specimen, we
analyze thermograms, generated via long PT, using ATC, PCT, and a statistical approach
along with a combination of different pre- and post-processing algorithms. The performance
of these approaches are evaluated by several experiments in the laboratory setup. We hope
this work paves the way for further development and research on this topic.

2. Literature Review

Infrared thermography (IRT) [28] has received an increasing attention especially for
NDT [12] across various industries owing to successful applications and advantages offered
by this approach, including three important characteristics: contactless, nondestructive,
and nonintrusive. IRT-based inspections are fast, reliable, and among the safest available
approaches for personnel (e.g., in comparison with X-rays); the recorded data can be pro-
cessed later with different image processing methods; and thanks to the mobility of modern
IR cameras, in-field IRT-based inspection has become convenient [15,29]. A downside of
IRT is that the required instruments (specifically the IR cameras) are expensive, and the
analysis of results demands expertise [15,29]. However, the training hours for obtaining a
first level certification is half of that for the other NDT techniques such as ultrasound and
X-rays [15]. Moreover, over the past two decades, the cost of IR cameras has drastically
dropped while improving their performance, and this has significantly influenced the
popularity of IRT.



Appl. Sci. 2021, 11, 4051 3 of 23

IRT techniques fall under two general categories: passive and active. The passive
approach is used when the objects of interest are naturally at higher (or lower) temperatures
than the surrounding area/background without the presence of any external heating (or
cooling) source. Passive thermography can be used to detect faulty components/equipment
and even for detection of those with high risk of failure which is very useful in preventive
maintenance [12]. Fast inspection, low cost, and simplicity are main features of the passive
approach. Active thermography [30] requires an external thermal stimulus to generate the
necessary heat flow and thermal gradients. It is done in two reflection and transmission
modes, depending on the position of the IR camera and stimuli. A number of techniques
under this category have been developed. One of the most widely used active-based IRT
methods is pulse thermography (PT), in which a short thermal pulse is applied to the object
under inspection (specimen) while an IR camera is recording the thermal images. Despite
recording thermograms in both heatup and cooldown period, only the latter is usually
used for processing. The heat source can be a flash lump (e.g., a xenon tube) or a cold air
jet, and the stimulation period is often short (about 2–15 ms) [12].

Another popular IRT method of inspection is lock-in thermography (LT) [31]. This
method may also be referred to by other terms such as modulated thermography [32] and
phase angle thermography [33]. A periodical (e.g., a sinusoidal) heat source, for instance
a halogen lamp modulated with a modulation frequency, is used instead of a thermal
pulse stimulation. After reaching a steady state, thermograms are recorded over several
modulation cycles. The recording is often carried out with different modulation frequencies
for more accurate inspection of the specimen at different depths. Higher frequencies are
used to investigate shallower defects while lower frequencies are useful in detecting deeper
defective zones. Using recorded thermal images, one can reconstruct the periodical thermal
wave, i.e., computing amplitude and phase. Although both can be recovered, phase data
are generally preferred as its sensitivity to nonuniform heating and the surface emissivity
variations are less significant [34,35]. Using LT allows the application of thermal excitation
of lower power and this feature is specifically important for the investigation of antique art
treasures [36]. The main drawback of LT is that the process of data acquisition is more time
consuming as it requires multiple tests, in each of which the permanent regime should be
reached [35].

Although the majority of the earlier IRT methods (including PT and LT and their
variants), relied on optical stimuli such as photographic flashes and halogen lamps, a con-
siderable portion of recent studies has attempted to use nonoptical heating sources, such as
induction heating, radio frequency, and microwave. Despite the success of optically excited
LT in resolving some problems of optical-based PT such as poor signal-to-noise ratio (SNR)
and the impact of reflections and surface features on thermograms, it has some drawbacks
such as sensitivity to the thermal boundaries within the specimen [12,37]. Thermographic
inspection with nonoptical heating sources can address some of these problems. For exam-
ple, using ultrasonic excitation can yield better spatial resolution due to the possibility of
selective heating of flaws; for a comprehensive discussion refer to [12]. Many studies have
shown the usefulness of ultrasound-excited thermography in applications such as detection
of loose rivets and cracks in aerospace structures [37], microcrack detection in concrete
materials [38], void detection in concrete-filled steel tubes [39], delamination detection and
estimation of its depth in multi-layer concrete structures [40]. Another way of heating a
test object is to employ eddy currents which are generated according to Faraday’s law of
induction. Eddy current-based techniques have been used widely for NDT [41], but their
main limitation is that they cannot be used for inspection of nonconducting materials as
they require electrical loops to flow within the test object. Some works (e.g., [42]) have
attempted to use this method for low conductivity materials such as carbon fiber-reinforced
plastic composite (CFRP), but they faced some difficulties. The eddy current excitation
has also been used for thermography inspection [43,44]. As expected, the comparative
analyses [44] support the fact that this method is not suitable for nonmetallic (i.e., low
conductivity) materials.
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Traditional PT methods with short thermal pulse stimuli are not effective in detecting
in-depth defects. They also require flash lamps which are expensive and need specialized
equipment to interface with the data acquisition system. These shortcomings can be over-
come by long pulse thermography (LPT) in which a long pulse excitation (e.g., a halogen
lamp) is used. Despite a long history [45], it seems the capabilities of this approach have
been less explored. In a recent study [46], the performance of PT and LPT was compared
for three different metals (aluminum, mild steel, and stainless steel) and CFRP. The author
reported that LPT was more effective in detecting defects in materials with low thermal
conductivity while the conventional flash excitation technique (PT) performed well with
both low and high thermal conductivity materials. But the PT thermal images were noisier
and of lower contrast, and the LPT performance for detection of defects in mild steel and
stainless materials were as good as the PT’s. In another work [47], the power of LPT for
determining in-depth defects in basalt fiber-reinforced epoxy laminate were examined and
compared with PT. This work also showed that LPT is better than PT in terms of contrast
and intensity. More recently, the performance of LPT in detecting anomalies in metals and
composites has also been examined against eddy current PT (ECPT) in [44]. Results showed
that LPT is more effective for CFRP whereas ECPT is more successful for metallic materials.

Quality of thermal images, specifically those generated by PT, is often undesirable
due to the factors such as the presence of noise and heterogeneity in distributions of ther-
mal stimulation. As the quality of thermograms directly affects the success of IRT-based
inspection, the enhancement of thermal images is of critical importance. The goal of the
reviewed works were to improve thermograms through introducing new IRT approaches
by using new excitation techniques (e.g., induction heating and eddy current) or excitation
form (e.g., short pulse, long pulse, and modulated pulse). Another avenue which has
been followed by many studies [48–50] in IRT is to employ image processing techniques to
enhance recorded thermograms. These techniques may be classified into basic (preprocess-
ing) and advanced processing. The main goals of preprocessing methods are to prepare
the thermal images for high level processing and enhance them with the help of temporal
and/or spatial filtering techniques widely used in the field of visible image processing [51].
This paper does not discuss applications of this group of methods in IRT; interested readers
may refer to [12] for a good summary. To address some of the PT issues such as limitation
in detecting deep defects and sensitivity to optical surface disturbances, Maldague and
Marinetti [49] developed pulsed phase thermography (PPT). PPT is an extension to PT
by using the idea of frequency analysis (Fourier transform) in a manner similar to LT.
Experimental configuration of PPT is identical to that of the classical PT.

One of the widely used image processing methods for the defect detection from the
recorded thermograms (in cooling down phase) is absolute thermal contrast (ATC) [45,48,52,53],
which is computed by subtracting the temperatures of defective and nondefective areas. Differ-
ent thermal contrast definitions such as running contrast, the normalized contrast, maximum
contrast, and the peak slope contrast have been proposed; for a summary refer to [12,35].
The performance of ATC is degraded by nonuniform heating at the surface. To address this
problem, differential absolute contrast (DAC) methods [54,55] were developed. A common
method for defect detection in LT and PPT is absolute phase contrast (APC) [56]; it is defined
similar to ATC. Since phase is less sensitive to nonuniform heating and the surface emissivity
variations, defects can be observed more clearly in PPT and LT in comparison with standard
PT [14].

Defect detection using methods such as ATC and APC is not easy and they are very
sensitive to noise. Rajic [50] attempted to address this problem by adapting the idea of
principal components analysis (PCA) [57] for thermography. In IRT, this method is generally
known as principal components thermography (PCT). In Section 4.3, the analytical model
of PCT is derived and discussed. PCT has gained an increasing popularity in IRT because
of a good noise-rejection [50] and the fact that it facilitates the process of inspection (only
by observing the first few principal components rather than the entire image sequence).
This technique has been widely used for defect detection in concrete [58], dynamic thermal
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video analysis [59], detecting delamination defects in composites [60], and impact damage
of CFRP [61], just to name a few. PCT performance is better than conventional PT, and as
maintained by some studies [50] comparable to PPT. However, there are also some reports [62]
about superiority of PPT over PCT. According to this study, PCT performed well in terms of
maximum normalized contrast, but it was not very effective in detecting either small or deep
flaws. Moreover, PCT, as with PPT, is a computationally intensive algorithm.

The main goal of existing works in IRT-based NDT so far has been to identify defects
(e.g., cracks, delaminations, and corrosion) inside the test object and to estimate the defect
depth. But in our study, we are interested in detecting cavities in the soil around a culvert
pipe rather than inside the pipe. To the best of our knowledge, no study has assessed the
feasibility of IRT for this task. Therefore, this work aims to address this literature gap and
provide a foundation for future work on this topic.

3. Theoretical Basis

The distribution of heat in a homogeneous and isotropic medium is described by

∂u
∂t
− α∇2u = 0, (1)

in which u denotes the temperature field (in kelvin), α is the thermal diffusivity (i.e.,
the heat transfer rate in m2/s), and∇2 is the Laplace operator ( ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 in 3D Cartesian
coordinates). The response of Dirac-delta heating pulse for semi-infinite isotropic solids in
1D (z coordinate) is described by the following expression [63]

T(z, t) =
Q0√

kcpρπt
exp

(
− z2

4αt

)
, for t, z > 0 (2)

where Q0 (in J/m2) is the energy density absorbed by the surface, k (W/(mK)) is thermal
conductivity, cp(J/(kgK)) is the specific heat capacity, and ρ (kg/m3) is the mass density
of the material. It is worth noting that the thermal diffusivity is expressed in terms of these
three coefficients: α = k/(cpρ). At the specimen surface (z = 0), Equation (2) is reduced to

T(0, t) =
Q0

e
√

πt
, (3)

e =
√

kρcp is the thermal effusivity, a measure indicating the ability of a material to exchange
thermal energy with its surroundings. To derive the response for a long pulse stimulus of
length tp, similar to [46,47], we consider the thermal excitation as a sequence of thermal pulses,
i.e., {δ(t− τ) | τ ∈ [0, tp]}, then integrate the response T(0, t + τ) over the time interval:

T(0, t) =
∫ tp

τ=0

Q0

e
√

π(t + τ)
dτ, for t > 0. (4)

In this paper, we have no intention of deriving an analytical model that can precisely
represent the heat distribution in a culvert with cavity. Instead, we would like to stress the
relationship between the thermal effusivity and the surface temperature of a solid exposed
to a long thermal pulse. Our hypothesis is that the presence of a cavity in the structure of a
culvert while it is sufficiently close to (or in contact with) the exterior surface (soil side) of
the pipe may lead to variations of temperature at the interior surface (inside the pipe). We
think the interior surface temperatures, which are recorded by an IR camera, in the area
above cavity decay at a slower rate in comparison with the other areas because the thermal
effusivity of air is enormously smaller than that of soil. In other words, the rate of thermal
energy exchange between the pipe and the air cavity is less than that between the pipe and
the soil, thereby slowing the cooling rate in the air cavity zone. We exploit these variations
for cavity detection.
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4. Method
4.1. Experiment Setup and Data Acquisition

Conducting experiments with real culverts in many regions of Canada involves some
challenges. Gaining access to culverts is either difficult or impossible for most part of the
year due to the flow of large volumes of water and icing conditions. Moreover, only culverts
whose structure contains at least one cavity with known size and location are useful for
the experimental phase of the project; this information is essential for both development
and performance evaluation. These kinds of records are often infrequent and accessing
them requires obtaining authorization from the Ministry of Transportation. Therefore,
the performance of the proposed approach is evaluated in a laboratory setup instead.

Figure 1 illustrates the experiment setup, in which a wooden box of size 78 × 33 × 60 cm3

is used to represent the soil around the culvert pipe. The box is filled with a mixture of
sand and gravel and a specimen is then placed on the top of it. Four 1000 W halogen lamps
are used as the source of thermal excitation. The power of lamps is controlled through
an eight-channel dimmer pack and an electronic interface circuit. With the help of this
controller and adjusting the location of the lamps, we attempt to reduce the nonuniformity
of thermal stimuli. Thermal images are recorded during both heating up and cooling down
process using two IR cameras and a PC. The real setup is shown in Figure 2.

Thermograms are produced by a FLIR Phoenix mid-wave infrared (MWIR) camera
and a Jenoptik VarioCAM long-wave infrared (LWIR) thermal camera (see Table 1 for
technical specifications). Thermal cameras with cooled detectors are superior to those with
uncooled detectors in terms of capture rate, spatial resolution, and thermal sensitivity; this
superiority is illustrated well in [64]. Because of these advantages and the availability of
the FLIR Phoenix camera in our laboratory, the analyses are made based on thermal images
produced by this camera. As this is the first time, the potential of IRT for cavity detection
is assessed, it is important to identify the smallest temperature differences and the FLIR
Phoenix can be very useful for this purpose. A downside of the cooled models is that they
are considerably more expensive. Therefore, we also use the uncooled camera to make sure
about the possibility of detection with this model, which is more suitable for field work.

Figure 1. The experiment setup overview.

Table 1. Thermal camera specifications.

Feature FLIR Phoenix Jenoptik VarioCAM

IR detector Cooled Indium Antimonide (InSb) Uncooled microbolometer array (FPA)
Image resolution 640 × 512 640 × 480
Spectral range 3–5 µm 7.5–14 µm
Thermal sensitivity <25 mK <70 mK; <30 mK at 30 ◦C object
Frame rate 50 Hz 50 Hz (PAL), 60 Hz (NTSC)
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Figure 2. The real experiment setup. (a) Halogen Lamp, (b) IR Camera 1 (FLIR Phoenix), (c) IR
Camera 2 (Jenoptik VarioCAM), (d) Specimen, (e) Box (filled with sand and gravel), (f) PC.

The experiments are conducted with two specimens (Figure 3). The first one, referred
to as specimen 1, is a 2 mm flat steel plate with dimensions 70 × 30 cm2. To solve the low
emissivity and reflection issues, it is coated with black flat paint. Since the laboratory test
with this specimen cannot represent a real scenario, we carry out further experiments using
specimen 2 which is a horizontal cut of a corrugated galvanized steel culvert pipe (CGSP)
with a diameter of 65 cm, a thickness of 1.6 mm, and corrugations with a pitch of 68 mm
and a depth of 13 mm.

To create cavities, a few different objects, as shown in Figure 4a, are used. The first air
cavity is created using a 10 × 10 × 6 cm3 cube of foam with a carved area of 6 × 6 × 3 cm3

so that a 6 × 6 cm2 surface of the plate is in contact with air rather than sand. The second
configuration (Figure 4c,d) is almost similar to the previous one except that 1 cm of sand is
located between the cavity and the lower surface of the specimen. Cavity configuration 3
(Figure 4e) is made of five different cavities: (i) cavity configuration 2; (ii) a 10 × 6 × 1.3 cm3

foam cube with a 8 × 4 × 0.5 cm3 hollowed area; (iii) a ping pong ball; (iv) a cylindrical
ceramic ashtray with the interior radius 5.5 cm and height 2.5 cm half filled with water; and
(v) a 2 × 2 × 1.5 cm3 sponge. The last cavity of this configuration is devised to simulate
the water cavity which is difficult to achieve in the laboratory setup. Using this approach
allows the contact between water and the specimen through the water absorbed by the
sponge. Cavity configuration 4 (Figure 4f) contains only the ashtray from the previous
configuration without water.

(a) (b)
Figure 3. Specimens used in tests. (a) Specimen 1. (b) Specimen 2.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Cavity configurations used in tests. (a) Objects used to create cavities. (b) Cavity configu-
ration 1. (c) Cavity configuration 2 (within the process). (d) Cavity configuration 2 (cannot be seen
since it is covered by soil). (e) Cavity configuration 3 (combined 5 different cavities in one setup).
(f) Cavity configuration 4.

4.2. Processing Algorithm

Figure 5 shows a summary of the processing flow. Before starting cavity detection
analysis, a few preprocessing steps are required. The thermal camera, used for thermogram
acquisition, records the image sequence as ‘*.sfmov’ which is based on a file format known
as the Standard Archive Format (SAF). This format is not readable directly and therefore,
a code snippet is developed to convert ‘*.sfmov’ files into 3D arrays (x, y, t) such that x and
y represent the horizontal and vertical pixels of the thermograms, and t refers to the time
slice of the recorded images. The arrays are then saved as Matlab data (‘*.mat’) files.

Raw image sequences (thermograms), representing the specimen surface tempera-
ture, are taken at 50 Hz. Recording even one minute of thermal image with the FLIR
Phoenix camera can produce around 1.83 GB (640 × 512 × 2 × 50 × 60 bytes) of data.
To avoid reaching the memory and computational source limits, the raw sequences are
downsampled by a factor of five. We use both spatial and temporal filtering to reduce
noise. The temporal filter is applied prior to downsampling to reduce the subsampling
error. Then a 3 × 3 median filter in spatial domain is used. The Median filter is effective in
eliminating sharp, sudden disruptive changes in the image intensity (aka salt-and-pepper
noise), including a few damaged pixels of the camera. The raw thermal images include the
box and its surroundings as well as the specimen. By removing the unnecessary areas, we
reduce the time and computational cost.

Figure 5. Processing flow. ATC: Absolute Thermal Contrast, PCT: Principal Components Thermography.

To detect the cavities, we use three different methods. The first method is based on
LPT [12,46] with ATC [12]. Based on our hypothesis (Section 3), we assume that the tempera-



Appl. Sci. 2021, 11, 4051 9 of 23

ture decay of a sounding (normal) area should be different from those where a hollowed area
is located. This can be verified by computing temperature contrast

∆T = Tda − Tsa, (5)

where Tda is the temperature of a defective area (with cavity) and Tsa is the temperature
of a sound area (without cavity). The thermal images are also analyzed using PCT [50]
and another statistical approach. These methods are discussed in detail in the following
sections. To improve visualization, we normalize the thermal images (using mean and
standard deviation) and apply the color mapping. The image processing algorithms are
implemented in Matlab R2018a and Python.

4.3. Principal Components Thermography

Principal components analysis (PCA) is a statistical approach that maps a set of possi-
bly correlated N-dimensional data to a new space with orthogonal basis along directions
with the largest variances. Data in the new space is uncorrelated (diagonal covariance
matrix). In machine learning and pattern recognition, PCA is generally used to improve
the curse of dimensionality and feature reduction. In some disciplines (e.g., oceanography,
meteorology, and climate science) PCA is known as empirical orthogonal function (EOF)
analysis [65,66]. PCT [50] is the application of PCA in thermography for nondestructive
testing and inspection.

For large matrices, which is often the case in image processing, the computational
cost of the traditional PCA analysis becomes extremely large and limits the usage of
this approach. A more computationally effective alternative is based on singular value
decomposition (SVD). In this method, similar to the traditional approach, each 2D image
matrix is converted to a vector by concatenation of its row. If the thermal images are
denoted by T(i, j, k) where i = 1, 2, · · ·Ni, j = 1, 2, · · ·Nk, and k = 1, 2, · · ·Nk, then the
corresponding vectors are xk = [x1k, x2k, · · · , xM]T where M = Ni × Nj and N = Nk. This
process is repeated for all the images of the thermal sequence and all these column vectors
are combined into a matrix as follows:

A =

 ↑ ↑ ↑
x1 x2 · · · xN
↓ ↓ ↓

, (6)

in which N is the number of frames of the thermal sequence. Now, the data is normalized
using its mean value and standard deviation:

Â(n, m) =
A(n, m)− µm

σm
, (7)

with

µm =
1
N

N

∑
n=1

A(m, n), (8)

σ2
m =

1
N − 1

N

∑
n=1

(A(m, n)− µm)
2. (9)

Then the following factorization (known as SVD) of Â is used:

Â = UDVT , (10)

where U is an M×M unitary matrix (aka the left-singular vectors of Â), D is a diagonal matrix
consisting of singular values of Â, and V is an N × N unitary matrix (aka the right-singular
vectors of Â). Columns of U are orthonormal eigenvectors of ÂÂT and singular values of
Â are the square root of eigenvalues of ÂÂT. Columns of U can be seen as basis vectors
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(principal components) of Â and their contribution to reconstruction of Â is determined
by corresponding singular values. Singular vectors and corresponding singular values
are often sorted in a descending order. The first few components contribute to more than
99% of the total data variation. Therefore, only this part of the data is used for analysis.
The first few columns can be converted back to 2D matrices and shown as images that are
sometimes referred to as EOFs.

4.4. A Statistical Method for Cavity Identification

In this section, we describe a statistical approach allowing the detection of cavities
in a thermal image sequence. Based on the theory described in the previous sections and
using the cavity properties, we can conclude that a cavity can be identified by performing
an analysis of abnormal fluctuations in temperature flow. At each frame (or time), we
define an abnormal fluctuation as a temperature that is sufficiently lower or higher than the
average. This assumption is made because under normal condition (no defects or cavities)
the temperatures of different points on the specimen surface are very close. There are some
variations due to noise, inhomogeneity of the reflections, and the impact of surface features,
but these variations are usually negligible in comparison with those caused by a defect.
From a statistical point of view, abnormal temperatures can be expressed as

Tab = {T|T ≤ µ− c1σ ∨ T ≥ µ + c1σ}, (11)

where µ and σ are mean and standard deviation of the image and c1 is a constant coefficient.
An analysis of the temperature distribution at a given time allows the image pixels to be
classified into normal (0) or abnormal (1) classes. However, this approach is not sufficient to
determine whether a pixel actually represents a cavity, as measurements are made at each
individual moment. To account for all times (or frames), we use the idea of frequentist prob-
ability. This method allows the frequency probability of an event to be inferred using a large
test set, considering each thermal image as a test. Now, we assign a probabilistic measure,
indicating the likelihood of being a defect, to each pixel with the following expression

P(x, y) =
n1(x, y)

nt
, for nt � 1 (12)

in which P(x, y) is the probability of a pixel (x, y) being a defect, n1(x, y) is the number
of times that pixel (x, y) is classified as the defect category, and nt is the total number of
images in the given sequence. A limit of this equation is that it treats all temperatures
larger than µ + c1σ or smaller than µ− c1σ similarly. However, in some cases we may need
to look for temperatures within a range; similar to the idea of band pass filtering. This can
be obtained by introducing terms n2(x, y) and pen into the equation

P(x, y) =
n1(x, y)− n2(x, y)pen

nt
, for nt � 1 (13)

where n2(x, y) is defined like n1(x, y), except that c1 is replaced with c2, and pen is a penalty
factor from 0 to 1. When the penalty factor is 0, the expression is reduced to Equation (12).
The main steps of this approach are given in Algorithm 1. With the help of coefficients c1
and c2 which are determined empirically, the equation can be adjusted for each experiment.
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Algorithm 1 The proposed statistical algorithm for cavity detection.
Data:
pen←− set the penalty coefficient; pen ∈ [0, 1]
c1, c2 ←− set c1 and c2; c2 > c1 > 0
Result: probMask
data←− get thermal image sequence (*.mat file)
wFrm, hFrm, nFrm←− get data dimensions
f reqMask1, f reqMask2←− initialize to zero; array of size hFrm× wFrm
for k = 1 to nFrm do

I ←− data(:, :, k) /* get image */
/* Find abnormal (and extreme) temperature pixels */
for i = 1 to hFrm do

for j = 1 to wFrm do
TU1, TL1 ←− (mean(I) + c1 ∗ std(I)), (mean(I)− c1 ∗ std(I))
TU2, TL2 ←− (mean(I) + c2 ∗ std(I)), (mean(I)− c2 ∗ std(I))
if I(i, j) ≥ TU1 || I(i, j) ≤ TL1 then

/* Increment the occurrence of abnormal temperature pixels */
f reqMask1(i, j)←− f reqMask1(i, j) + 1

end
if I(i, j) ≥ TU2 || I(i, j) ≤ TL2 then

/* Increment the occurrence of extreme temperature pixels */
f reqMask2(i, j)←− f reqMask2(i, j) + 1

end
end

end
/* Attenuate the impact of extreme temperature pixels using a given penalty coefficient */
probMask←− f reqMask1− f reqMask2 ∗ pen

end
/* Calculate the probability map */
probMask←− probMask/nFrm

5. Experimental Results
5.1. Experiment 1: Specimen 1, Cavity Configuration 1

Raw thermal images (Figure 6a) were corrupted with noise and could not provide any
clear sign of the presence of a cavity. Pre- and post-processing, as shown in Figure 6b–f,
noticeably contributed to a better understanding and easier analysis of thermograms. Color
mapping was also helpful and carried out at different levels of granularity to achieve a
desirable output.

As mentioned before, we hypothesize that the existence of a cavity behind the speci-
men leads to variations in thermal radiation from the specimen surface. Although the pres-
ence of a cavity is evident in the processed thermograms (orange/yellow patch at the
bottom of Figure 6c–f), further investigation was made through ATC which is a quanti-
tative approach. Figure 7 shows the temperature-time graph for two randomly selected
points, one from the sound areas (without any cavity, referred to as “sa”) and the other
from the defective areas (with cavity, referred to as “da”). From this graph, it is apparent
that during the transition phase (cooling down), the temperature of defective regions (red
curve) cools down slower than nondefective areas (black curve). The blue curve which is
the thermal contrast between the two temperatures clearly shows this.
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Figure 6. Impact of pre- and post-processing on image quality; experiment 1. (a) An example of the
raw image. (b) The processed image. (c–f) Color mapping (64, 10, 5, and 3 levels).
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Figure 7. ATC; experiment 1. (a) Selected points. (b) Temperature-time graph and thermal contrast.

Thermograms were also analyzed using PCT (Figure 8), and the most informative
output was EOF 3. After studying the effect of filtering and other parameters of the
experiment setup on the final result, we noticed that the thermal images recorded during
the cooling down period, rather than the entire sequence, should be used as input to the
PCT algorithm to obtain more informative results. A deeper look at the temperature graph
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(Figure 7) revels the underlying cause. At heap up, drastic changes occur in temperature
of both sound and defective areas. As PCT is a method of obtaining major variables, it
also extracts the variations of temperature in thermal excitation phase, and this makes the
process of cavity identification more difficult because of blending ineffectual information to
EOFs. Despite the useful role of the temporal filtering at ATC analysis, it did not perform
very well for PCT. For each setup, we repeated the experiment with four different durations
of the thermal stimulation. The best result was achieved when the duration was around
five seconds.
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Figure 8. PCT analysis (EOF3); experiment 1. (a) Setup 1 (best result). The cavity is located exactly
under the blue square patch at the bottom of image. (b) Setup 2. (c) Setup 3. (d) Setup 4. Input:
cooling down frames for Setup 1, 3, 4 and the entire image sequence for Setup 2. Heating up period:
5 s for Setup 1–3 and 25 s for Setup 4. Temporal filtering was applied only in setup 3.

5.2. Experiment 2: Specimen 1, Cavity Configuration 3

In this experiment, we combined different cavity configurations, including an air
cavity, a water cavity, a thin air layer cavity, and a nonadjacent (in-depth) cavity into one
setup (Figure 4e). This time the analysis began with PCT to determine if this method can
provide us with any clue about the cavities in a more complicated configuration. Figure 9
shows a few selected EOFs for experiment 2. Even though the signs of cavities are not
as bold and clear as in experiment 1, they are still informative and all cavities, except the
small ball, can be detected. However, this time checking all first 10 EOFs from different
setups was required. Contrary to the previous experiment, in which EOF3-4 carried the
most information about cavities, in this experiment information spread among a larger
number of EOFs, including EOF8-9. Moreover, detecting the in-depth cavity required a
longer thermal stimulation.

As the usefulness of pre- and post-processing was demonstrated in the previous
experiment, they were also employed for experiment 2 (see Figure 10a–e). Figure 10f is
related to a test without specimen while maintaining the other parameters of the setup
exactly the same as in experiment 2. This is useful for performance comparison and
illustrating the accuracy and quality of the cavity detection by the proposed approach. We
also examined the effectiveness of other techniques, such as thresholding and gradients.
Figure 10h,i shows the power of the image gradients as four different areas representing
the four cavities can be easily differentiated from the rest.
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Figure 9. PCT analysis; experiment 2. (a) EOF2. (b) EOF3. (c) EOF3. (d) EOF3. (e) EOF4. (f) EOF7.
(g) EOF8. (h) EOF9. Heating up period for (a–h): 10, 10, 25, 40, 10, 25, and 40 s, respectively.

For a better understanding of the influence of different types of cavities in the IRT
results, the temperature graphs (Figure 11) of the relevant regions were studied. The
nondefective regions have the lowest temperature value during the cooling down phase.
The second lowest temperature belongs to zone 2, above cavity 2 (thin air); as indicated in
Figure 4e, a zone (1–5) is assigned to each cavity (1–5). The highest values were recorded for
zone 4 (thick air cavity) and zone 5 (water cavity), respectively. These results could be an-
ticipated in advance by analyzing the thermal effusivity of the cavity materials. According
to [67], the thermal effusivity of air, water, soil (avg. properties) are approximately 6, 1588,
and 1067 (588 for soil sandy dry) W

√
s/(m2 K). Since the air thermal effusivity is signifi-

cantly smaller than the soil’s, air cavity allows less thermal energy exchange, and thus the
specimen temperature in zone 5 cools down slower. Due to the same phenomenon during
the heating up, zone 5 warms up faster as is evident from the related graph in Figure 11.
The root of difference between the decay curves of zones 2 and 4 is the presence of a thicker
air layer for zone 4 which acts as a stronger insulator (between the soil and the specimen),
resulting in a higher temperature increase in the heating phase and a smaller decline in the
cooling period in zone 4. The behavior of cavity 5 (water) is more complex. As its thermal
effusivity is higher than both dry and average property soil, we expect lower temperatures
for this zone in comparison to the nondefective regions which are in contact with soil. We
think this inconsistency lies on two issues. First, this cavity is not made completely from
water, but a soaked sponge. Although we do not know the exact thermal effusivity for a
soaked sponge, it must be smaller than water. Second, the water cavity is surrounded by
cavity 4 (air) which is considerably larger. Since the highest temperature increase occurs
in zone 4, a large amount of heat laterally diffuses to its surroundings. The impact of the
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lateral heat conduction can be clearly seen in Figure 11e. As a result, the temperature of
zone 5 rises to a higher level than expected. Another interesting behavior of this zone is
that its temperature gradually rises above zone 4 at around 70 s. This phenomenon can be
described as follows. The high thermal effusivity of water causes quick cooling of zone
5 because of the absorption of a larger amount of energy. Over the course of heating and
cooling, the internal energy of cavity 4 increases owing to the heat transfer from zone 4
to cavity 4. Part of this energy is transferred to cavity 5 due to the adjacency of zones 4
and 5 and the higher temperature of zone 4. As the heat capacity of water is a few times
larger than that of air and soil, it can store a higher amount of heat energy. When the
temperature of the surroundings drops below the water cavity, the water role becomes
reverse and starts acting as a heat source until the system reaches the thermal equilibrium.
The small ball (cavity 3) could not be detected owing to its small size. Although we could
detect a deep cavity (cavity 1) using methods such as PCT and gradients, the temperature
curves revealed that there is a very small temperature difference between zone 1 and the
normal areas. Therefore, the reliability of this approach for detection of in-depth cavities is
of concern.
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Figure 10. LPT analysis; experiment 2. (a) An example of the raw image. (b–e) After pre- and post-
processing. (f) A sample thermogram for experiment 2 without any specimen for cavity configuration
3. (g) Thresholding. (h,i) Gradient of the image along the x and y direction: Gx =

∂I(x,y)
∂x and

Gy =
∂I(x,y)

∂y .



Appl. Sci. 2021, 11, 4051 16 of 23

50 100 150

50

100

150

200

250

300

350

400

Air cavity

Water cavity

Thin air cavity

No cavity

(a)

0 20 40 60 80 100 120

time (s)

1650

1700

1750

1800

1850

1900

1950

te
m

p
e

ra
tu

re

Air cavity

Water cavity

Thin air cavity

No cavity

(b)

Figure 11. Temperature comparison; experiment 2. (a) Selected points. (b) Temperature-time graph
for non-cavity regions vs. different cavities.

5.3. Experiment 3: Specimen 2, Cavity Configuration 4

The goal of this experiment was to verify the possibility of detecting air pockets behind
the real specimen using PCT and ATC. In this test, we could not detect any clear indication
of a cavity using either of these techniques; an example of the results is given in Figure 12b.
As the figure shows, there is no clear difference between sound and defective areas because
the recorded thermal images do not carry sufficient information to distinguish between
areas with the cavity and the rest. After further investigation we noticed that three matters
underlie this problem: low thermal emissivity, high thermal reflection, and complex
surface. Specimen 2 is a cut from a corrugated pipe with a series of ridges and grooves.
The presence of these folds causes nonuniform heating of the specimen surface. Specifically,
the ridges receive the largest portion of heat whereas slopes receive the smallest. This
causes a relatively regular nonuniformity in the thermograms recorded by the IR camera.
Consequently, the expected variations in the thermal pattern of areas with a cavity, which
are considerably smaller than these effects, are lost.

To handle the first two issues with the real specimen (i.e., specimen 2), its internal
layer (toward the camera) was coated by flat black paint and another experiment under
exactly the same conditions was carried out. Figures 12c,d and 13 show the best results
achieved for the LPT analysis, including PCT and ATC. Although the thermal contrast
is not as significant as for experiment 1, it is still sufficient to notice the cavity as well as
estimate its size, location, and even its shape.

(a) (b) (c) (d)

Figure 12. LPT analysis; Experiment 3. (a) LPT with no specimen. (b) LPT with original specimen
2. (c) LPT with painted (flat) specimen 2. (d) PCT for painted (flat) specimen 2. The same cavity
configuration was used for (a–d).
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Figure 13. ATC; Experiment 3. (a) Selected points. (b) Temperature-time graph and thermal contrast.

5.4. Experiment 4: Specimen 2, Specific Configuration

In the previous section, we showed and discussed the issue with the real specimen
and demonstrated how this problem can be overcome by painting the specimen surface.
However, we think in a practical setup, it might be addressed by other means as well.
For instance, if the temperature of the other side of the specimen is sufficiently colder than
the temperature of the air inside the pipe which can be possibly true in real scenarios,
the emissivity and other problems of the real specimen will not be an issue of concern.
To simulate such scenarios, some ice was placed between the original specimen (without
any painting) and the soil, then the thermal radiations from the specimen surface using
the same thermographic camera were recorded. In this setup, no other thermal stimuli
such as halogen lamps were used. The result for a sample frame is given in Figure 14. The
black/blue regions in the gray/color image, inscribed in a dashed oval, represent lower
temperatures and show the location which was exposed to the ice.

(a) (b)

Figure 14. IRT with cold stimuli; experiment 4. Blue regions inside the dashed oval show the effect
of a cold stimulus behind the specimen. (a) The processed image. (b) Color mapping.

5.5. Result of the Statistical Approach

We evaluated the performance of the proposed statistical approach using different
values of c1, c2 and pen. For experiment 3, we obtained the best detection result (Figure 15b)
with c1 = 1, c2 = 1.5 and pen = 0. Using the images from the cooling period yielded a
better outcome for both experiments (2 and 3) as illustrated in Figure 15c,d. In general, we
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recommend keeping the penalty value at 0. However, different visualizations of the defects
are available with the help of the pen factor. When pen = 1, the contour of the cavity can be
shown. This feature can be useful when dealing with an automated system. By choosing a
penalty around 0.5, both the contour and the surface of the cavity appear in the image but
with different colors. The effectiveness of this method was also examined for experiment
2 which contains multiple cavities in one image. Using the same parameters (c1, c2, pen),
the most pronounced temperature fluctuations (related to cavity 4) could be easily detected
(Figure 15f). By using c1 = 0.9, c2 = 1.1, we could adjust it to visualize cavity 2. This
selectivity feature of the algorithm is the outcome of extending Equation (12) to (13).

(a) pen = 0 (b) pen = 0 (c) pen = 0.5 (d) pen = 1

(e) pen = 0 (f) pen = 0 (g) pen = 1 (h) pen = 1

Figure 15. Probability map. (a–d) Experiment 3. (e–h) Experiment 2. (a,e) Computed using all frames.
(b–d,f–h) Computed using frames of the cooling down phase. All results, except the one shown in
(h), were obtained with the same c1 and c2; see the text for the details. pen: the penalty factor.

6. Discussion

In our tests, we observed that the thermal behavior of the real specimen was very
different from that of specimen 1 because of the dissimilarity in the material and the
surface appearance. Moreover, the thermal behavior of the whole system depends on
several other factors such the soil components, size and type of the pipe, the depth in
which the pipe has been buried, the pipe distance from the ground surface, and ambient
temperature. Preparing an experimental setup taking into account all these factors, even if
possible, would be too costly and time consuming. Therefore, to verify the performance
of the proposed approach for cavity detection, it is necessary to carry out further tests in
real setups.

Since the passive thermography approach could not provide enough information
about cavities in our experiment, the active approach was used. However, in real scenarios
the thermal behavior of the whole system will be largely different and therefore we think
that the passive thermography might be able to provide sufficient information for cavity
detection. Since the passive approach is easier and less expensive to implement, this
possibility should be investigated in a real setup.
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In the experiments, some unexpected thermal patterns were observed in thermograms.
Following further investigation, we realized that the presence of a thin layer of air between
the specimen and the soil was the main reason behind these unexpected behaviors. It
occurred because in our experimental setups, the specimens were placed on the surface
of the soil and in practice it was extremely difficult to level the soil surface. Even having
a leveled soil was not enough since the specimen surface was not perfectly leveled. As a
result, we could not completely eliminate the thin air layer. It is worth noting that thin
air layers adjacent to the specimen surface can cause a noticeable variation in the thermal
radiation from the specimen surface. Nevertheless, we later realized that this feature of
thermography can be very helpful in detecting other problems in a culvert. Formation of
thin air layers adjacent to a culvert pipe can indicate a sign of cavity creation in earlier stages,
and our experiments unexpectedly show that this stage can be identified through IRT.

Before achieving the reported results, a set of parameters had to be determined. For ex-
ample, the duration of thermal stimuli has a crucial impact on the quality of thermal images
and may dictate the level of information that can be extracted from thermograms. Very
short and weak thermal excitation may not be enough for the detection of the required
information while long and strong thermal stimuli may yield more fruitful thermograms,
but they extend the test period and usually are more costly. Moreover, the optimal pa-
rameters for PCT and ACT were not the same necessarily. For PCT, we obtained the best
result when the length of the heating up period was about 5–10 s whereas for ACT the
better results were achieved with longer thermal stimulation. Also, we noticed that the
detection of deeper cavities requires longer stimulation as the heat propagation is slow,
thereby taking more time to reach deeper layers. Consequently, conducting experiments
with different heating periods is necessary for a successful cavity detection. In addition to
the thermal stimuli, it is necessary to adjust a few other parameters such as the distance
between the camera and specimen, the distance between the thermal sources and specimen,
locations and directions of thermal sources (to minimize nonuniform excitation on the
specimen surface). We think the results, reported in this paper, can be improved by further
tuning of these parameters.

Future work should consider the limitations of the proposed approach for cavity
detection. To inspect a culvert in a real setup using the proposed approach, the IR camera
and halogen lamps should be placed inside the pipe. For large-span pipes (large than
2 m), this can be done in different ways, but for smaller pipes, we recommend using a
small robot to navigate through the pipe while the camera and lamps are installed on
it. Considering the size of the camera and lamps, and the required distance between the
camera and the interior surface of the camera, the current version of the proposed approach
is not suitable for pipes with a diameter smaller than 1.2 m. However, by deploying
modern cameras (e.g., FLIR Boson) which are available in very small sizes, inspecting
smaller pipes is practical; the size of a FLIR Boson without a lens is only 21 × 21 × 11 mm3.
Metallic materials generally have very low emissivity, thereby reflecting thermal waves
strongly. Generally speaking, IRT is not appropriate for inspection of low emissivity
materials including metals, unless surface coating is allowed [12,15]. In our laboratory
tests, we had to paint the specimen to deal with a very shiny surface of the specimen as
it was a cut from a brand-new pipe. However, this problem will be of less importance
as inspection is often carried out for old pipes whose surfaces become unpolished due
to erosion, accumulation of dirt, and other factors. In the worst-case scenario, the low
emissivity can be addressed by painting. In most experiments, the cavities were directly in
contact with the specimen. In experiment 3, one of cavities was placed at a distance of 1 cm
from the specimen and the gap was filled with the soil. Detecting this cavity was noticeably
more difficult than detecting the other cavities, and we expressed our concern about the
reliability of this approach for detecting deep cavities. This is consistent with the fact that
the main limitation of IRT is the penetration depth. Therefore, we suggest future research
to measure the maximum depth in which the detection is possible. Moreover, infrared
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waves cannot penetrate through water and therefore the surface areas of the culvert that
are under water cannot be investigated.

7. Conclusions

This study aimed to assess the potential of IRT as a complementary (or alternative)
approach to identify the presence of cavities in a certain type of culvert. Empirical studies in
a laboratory setup showed the efficacy of IRT for detecting cavities even of small sizes (a few
centimeters). The size and location of cavities are among the aspects that can be extracted
from analyzing thermograms. In examining the real specimen, we faced some difficulties
including the emissivity issue, which we could effectively deal with by coating. Although
this study showed a promising future for the application of IRT in culvert inspection, further
research is necessary. In particular, it is essential to verify the power of the technique in
real setups despite logistic and technical difficulties of the on-site evaluation. Another
direction that future research should consider is the fine tuning of the experimental setup
and parameters as discussed in Section 6.
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