
applied  
sciences

Article

Moving Vehicle Tracking with a Moving Drone Based on
Track Association

Seokwon Yeom * and Don-Ho Nam

����������
�������

Citation: Yeom, S.; Nam, D.-H.

Moving Vehicle Tracking with a

Moving Drone Based on Track

Association. Appl. Sci. 2021, 11, 4046.

https://doi.org/10.3390/app11094046

Received: 26 February 2021

Accepted: 27 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of ICT Eng., Daegu University, Gyeongsan 38453, Korea; qaws0040@daegu.ac.kr
* Correspondence: yeom@daegu.ac.kr; Tel.: +82-53-850-6643

Abstract: The drone has played an important role in security and surveillance. However, due to the
limited computing power and energy resources, more efficient systems are required for surveillance
tasks. In this paper, we address detection and tracking of moving vehicles with a small drone. A
moving object detection scheme has been developed based on frame registration and subtraction
followed by morphological filtering and false alarm removing. The center position of the detected
object area is the input to the tracking target as a measurement. The Kalman filter estimates the
position and velocity of the target based on the measurement nearest to the state prediction. We
propose a new data association scheme for multiple measurements on a single target. This track
association method consists of the hypothesis testing between two tracks and track fusion through
track selection and termination. We reduce redundant tracks on the same target and maintain the
track with the least estimation error. In the experiment, drones flying at an altitude of 150 m captured
two videos in an urban environment. There are a total of 9 and 23 moving vehicles in each video; the
detection rates are 92% and 89%, respectively. The number of valid tracks is significantly reduced
from 13 to 10 and 56 to 26 in the first and the second video, respectively. In the first video, the
average position RMSE of two merged tracks are improved by 83.6% when only the fused states are
considered. In the second video, the average position and velocity RMSE are 1.21 m and 1.97 m/s,
showing the robustness of the proposed system.

Keywords: drone surveillance; moving object detection; multiple target tracking; track association;
track fusion

1. Introduction

In recent years, the use of a small unmanned aerial vehicle (UAV) or drone is increasing
in various applications [1]. Aerial video surveillance is of particular interest among the
applications [2]. Multirotor drones can hover or fly as programmed while capturing video
from a distance [3]. This capture is cost effective and does not require highly trained
personnel. However, the limited computational power of a small drone is an important
factor that must be considered.

When the drone moves, the coordinates change as the surveillance coverage is shifted.
Therefore, the frame registration is required to generate fixed coordinates. The registration
process matches multiple images from varying scenes to the same coordinates [4]. Coarse-
to-fine level image registration was proposed in [5]. Frames from different sensors was
registered via modified dynamic time warping in [6]. Telemetry-assisted registrations of
frames from a drone were studied in [7]. In [8], the drone velocities were estimated using
frame registration based on sum of absolute difference (SAD).

Studies on target tracking with a small drone have been conducted with various
methods. They can be categorized as visual, non-visual, or combined trackers. The visual
trackers by a small drone mainly utilizes video streams. One is tracking with deep learning.
In [9], various deep learning-based trackers were compared with a camera motion model.
Testing results with UAV-based real video showed that small objects, large numbers of
targets, and camera motion degraded tracking performance even using high-end CPUs [10].
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The deep learning-based object detector and tracker require heavy computation with
massive training data [11,12], thus real-time processing can often be an issue to solve.

The other is based on conventional image processing techniques. In [13], the moving
objects are detected by background subtraction and the continuously adaptive mean-shift
tracking and the optical flow tracking were applied to the video sequences acquired by the
UAV. The particle filtering combined with the mean-shift method was developed to track a
small and fast-moving object in [14]. A correlation-based tracker was proposed to track
ground objects at low altitudes [15]. These methods also need to transmit high resolution
video streams to the ground or impose high computing on the drone. Indeed, the visual
trackers rarely evaluate the kinematic state of the target, such as position and velocity. The
initial location, target size, and number of targets are often assumed to be known to the
visual tracker. The tracking of high-resolution objects has been studied in [16,17], but they
are not suitable for wide range surveillance.

The accurate position of the target can be obtained with non-imaging sensing data
such as radar signals [18]. In [19], aerial video processing has been combined with the
high-precision GPS data from vehicles. Bayesian fusion of vision and radio frequency
sensors were studied for ground target tracking [20]. However, in those methods, the drone
or vehicles should be equipped with high-cost sensors that add more payload to the drone.

Multiple targets are tracked by continuously estimating their kinematic state such as
position, velocity, and acceleration. Highly maneuvering, closely located targets, heavy
clutters, and low detection probability are challenges in multiple target tracking [21]. The
Kalman filter is known to be optimal under independent Gaussian noise assumption in
estimating the target state [22]. The interacting multiple model (IMM) estimator was devel-
oped [23] and successfully applied to handle multiple targets in high maneuvering [24].

Data association, which assigns measurements to tracks, is also an important task for
tracking multiple targets in a clutter environment. The nearest neighbor (NN) measurement–
track association is the most effective in computing and has been successfully applied to
precision target tracking based on multiple frames [25–27]. The Bayesian data association
approach, probabilistic data association (PDA) and joint PDA (JPDA), makes a soft de-
cision on validated measurements using the association probability between the target
and the measurement [21]. However, in the scheme, the tracks should be initialized in
advance with prior knowledge of the number of targets. An efficient sub-event tracker
based on the IMM-JPDA approach was proposed to reduce the computational load in [28].
Another Bayesian approach with hard decision, multiple hypotheses tracking (MHT) [29],
requires hypothesis reduction due to exponentially increasing computational complexity.
The probabilistic MHT (PMHT) was developed as soft association in [30]. In the scheme,
the computational load increases linearly in the number of measurements and targets,
but the number of targets should be known and fixed. The closed-form solution of the
PMHT was proposed as the Gaussian Mixture PHD (GMPHD) in [31]. A non-Bayesian
data association approach, N-dimension assignment, has been developed to make hard
decision on the measurement [32]. However, the assignment technique assumes that, at
most, one measurement is detected on a single target. When multiple sensors are available,
the track-to-track fusion method has been developed, assuming multiple tracks arise from
the common process noise of the target [21]. Various track-to-track fusion methods have
been studied and verified in [33,34].

In the paper, we address the detection and tracking of moving vehicles with a mov-
ing drone. Considering the limited computing power and communication resources of
small drones, the drone surveillance system is configured as shown in Figure 1. In one
case, a singe drone processes both moving object detection and multiple target tracking
using an onboard computer. The kinematic states of the target or a simple alert signal is
transmitted to the ground. In another case, moving object detection is performed on the
drone instantly after video capture, and then the center positions of the extracted object
areas are transmitted to the ground control station to perform multiple target tracking. In
the latter, it is possible to associate the measurements of multiple drones with the proposed
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association method. Since the proposed scheme does not use intensity information with
heavy computation, there is no need to store or transmit a high-resolution video stream.
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During moving object detection, frame registration is performed between two consec-
utive frames to compensate for the drone’s movement [8]. The current frame compensated
for and subtracted from the previous frame, and thresholding is performed to generate a
binary image of the moving object. Two morphological filters (erosion and dilation) are
applied sequentially to the binary image. The erosion filter removes very small clutters,
and the dilation filter restores the boundaries of the object areas and connects fragmented
areas of one object. Finally, target blobs smaller than the assumed target size are removed.
The center location of the target area becomes the measurement of the next tracking stage.

The tracking is performed by the Kalman filter to estimate the kinematic state of the
target following the moving object detection. A nearly constant velocity (NCV) motion
model is used as the discrete time kinematic model for the target. The NCV model has
been successfully applied to the aerial early warning system to track 120 aerial targets with
high maneuvers up to 6 g [24] and other applications [34–36].

The track is initialized by the two-point differential initialization following the maxi-
mum speed gating process. The initial state of the track can affect tracking performance
severely. In the proposed scheme, no additional process for the initialization is required.

For measurement of track association, a position gating process excludes measure-
ments outside the validation region. Then, the NN association assigns valid measurements
to tracks. However, multiple tracks can be generated if multiple measurements on a single
target are detected [27]. In the paper, we propose a new association scheme, track–track
association, in order to maintain a single track for each target. In the proposed method,
first, it is an association test of two tracks that performs hypothesis testing using chi-square
statistics, which is the statistical distance between estimates of the current state of the two
tracks. Second, the track with the smallest determinant of the covariance matrix of the state
is maintained and the other is terminated. It is noted that covariance measures the expected
value of the squared error between the true state and the unbiased estimate. Finally, the
last update of the selected track is replaced by the fused estimate.

We also set the criteria for a valid track and the termination of the track. A track is
confirmed as a valid track if it continues longer than the minimum track life, and a track is
terminated after searching for the measurements for a certain number of allowed frames.

In the experiments, the drones captured two videos while flying at a height of 150 m in
an urban environment. The drone camera pointed directly downwards. In each video, there
are a total of 9 or 23 moving vehicles (cars, buss, motorcycles, and bicycles), respectively.
With the proposed association, the number of valid tracks was reduced from 13 to 10 in the
first video and 56 to 26 in the second video. In the first video (Video 1), considering only
the fusion state of the two targets, the sum of the position RMSE decreased from 5.2 m to
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0.85 m, showing a reduction rate of about 83.6%. In the second video (Video 2), the average
position and velocity RMSEs are 1.21 m 1.97 and m/s, respectively, showing the accuracy
of the proposed system. Figure 2 shows a block diagram of the moving vehicle detection
and multiple target tracking.
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The contributions of this paper are listed as follows: (1) we propose a new data associ-
ation scheme. The proposed track–track association is utilized with the NN measurement–
track association. The track association is based on the least covariance matrix while the
NN association is based on the least statistical distance. Therefore, the proposed data
association is easy to implement and provides fast computing. The experimental results
show that the proposed method is very effective when multiple measurements are de-
tected on a single target in consecutive frames. (2) The moving object detection-multiple
target tracking scheme is studied with a moving drone. In the previous studies, the video
is captured with a drone hovering at a fixed position. However, as the drone flies, the
coverage of surveillance expands by utilizing the drone as a dynamic sensor. A moving
drone has a wider range of surveillance at higher altitudes and at higher speeds, which
degrades image resolution and quality. Through the experiments, the proposed scheme
was applied to small size objects at slow-rate frame videos (10 fps). (3) We propose a
new configuration of drone surveillance as shown in Figure 1. Small drones have limited
computational resources in CPU, memory, battery, and bandwidth. We can build a more ef-
ficient surveillance system where storage or transmission of high-resolution video streams
is not essential.

The remainder of the paper is organized as follows: object detection is discussed in
Section 2. Section 3 demonstrates multiple target tracking. Section 4 presents experimental
results, and the conclusion follows in Section 5.

2. Moving Object Detection

This section briefly describes the moving object detection with a moving drone studied
in [8]. Moving object detection consists of frame registration and subtraction followed
by thresholding, morphological operations, and removing false alarms. Two consecutive
gray-scaled images Ik and Ik−1 are registered using the SAD between them. The SAD at
k-th frame is obtained as

SADk
(

px, py
)
=

N

∑
n=1

M

∑
m=1

∣∣Ik
(
m + px, n + py

)
− Ik−1(m, n)

∣∣, k = 2, . . . , K, (1)

where M and N are the image sizes in the x and y directions, respectively; K is the total
number of frames. The displacement vectors px and py are obtained in the x and y directions,
respectively, by minimizing the SAD as[

p̂x(k) p̂y(k)
]
= min(px py)SADk

(
px, py

)
. (2)



Appl. Sci. 2021, 11, 4046 5 of 20

The subtraction and thresholding generate a binary image after the coordinate com-
pensation as

Bk(m, n; k) =
{

1, i f
∣∣Ik
(
m + p̂x(k), n + p̂y(k)

)
− Ik−1(m, n)| 〉θT

0, otherwise

}
, (3)

where θT is a threshold value set to 85 and 30 for Video 1 and 2, respectively, in the
experiments. Two morphological operations, erosion and dilation, are sequentially applied
to the binary image. The structure elements for erosion and dilation are set at [1]2×2 and
[1]20×20, respectively. Finally, assuming the true size of the object is known, the false alarm
is removed as

Oi(m, n) =
{

1, size{Oi} > θs
0, otherwise

}
, (4)

where Oi is the i-th object area, and θs is the minimum object size, set to 400 or 100 for
Video 1 and 2, respectively, in the experiments.

3. Multiple Target Tracking

A block diagram of multiple target-tracking with the new association scheme is shown
in Figure 3. Each step of the block diagram is described in the following subsections.
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3.1. System Modeling

The kinematic state of a target is assumed to follow a nearly constant velocity (NCV)
motion. The uncertainty of the process noise, which follows the Gaussian distribution,
controls the kinematic state of the target. The discrete state equation for multiple targets is
as follows

xt(k + 1) = F(∆)xt(k) + q(∆)v(k), t = 1, . . . , NT , (5)

F(∆) =


1∆00
0100
001∆
0001

, q(∆) =


∆2/20

∆ 0
0∆2/2

0∆

 (6)

where xt(k) = [xt(k)vtx(k)yt(k)vty(k)]
T is the state vector of target t at frame k, xt(k) and

yt(k) are positions in the x and y directions, respectively; vtx(k) and vty(k) are velocities in
the x and y directions, respectively; NT is the number of targets, ∆ is the sampling time,
and v(k) is a process noise vector, which is Gaussian white noise with the covariance matrix
Qv = diag

([
σ2

x σ2
y

])
. The measurement vector for target t consists of the positions in the x

and y directions. The measurement equation is as follows

zt(k) =
[

ztx(k)
zty(k)

]
= Hxt(k) + w(k), (7)
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H =

[
1000
0010

]
, (8)

where w(k) is a measurement noise vector, which is Gaussian white noise with the covari-
ance matrix R = diag

([
r2

xr2
y

])
.

3.2. Two Point Intialization

Two-point initialization has been applied to target tracking by a drone [25–27]. The
initial state of each target is calculated by the two-point differencing following a maximum
speed gating. The initial state vector and covariance matrix for target t are, respectively:

x̂t(k|k) =


x̂t(k|k)
v̂tx(k|k)
ŷt(k|k)
v̂ty(k

∣∣k)
 =


ztx(k)

ztx(k)−ztx(k−1)
∆

zty(k)
zty(k)−zty(k−1)

∆

 , Pt(k|k) =


r2

x
r2

x
∆ 0 0

r2
x

∆
2r2

x
∆2 0 0

0 0 r2
y

r2
y

∆

0 0
r2

y
∆

2r2
y

∆2

 (9)

The state is confirmed as the initial state of the track if the following speed gating

is satisfied:
√
[v̂tx(k|k)]2 +

[
v̂ty(k

∣∣k)]2 ≤ Vmax, where Vmax is the maximum speed of
the target.

3.3. Prediction and Filter Gain

The state and covariance predictions are iteratively computed as

x̂t(k|k− 1) = Fx̂t(k− 1|k− 1), (10)

Pt(k
∣∣∣k− 1) = FPt(k− 1

∣∣∣k− 1)FT + Q, (11)

Q = q(∆)Qvq(∆)T , (12)

where x̂t(k|k− 1) and Pt(k|k− 1) , respectively, are the state and the covariance prediction
of target t at frame k; T denotes the matrix transpose. The residual covariance St(k) and the
filter gain Wt(k), respectively, are obtained as

St(k) = HPt(k
∣∣∣k− 1)HT + R, (13)

Wt(k) = Pt(k
∣∣∣k− 1)HTSt(k)

−1. (14)

3.4. Measurement–Track Association

Measurement to track association is the process of assigning measurements to estab-
lished tracks. The measurement gating is performed by the chi-square hypothesis test
assuming Gaussian measurement residuals [21]. The measurement in the validation region
is considered candidates for the target t at frame k as

Zt(k) =
{

zm(k)
∣∣∣νtm(k)

T [St(k)]
−1νtm(k) ≤ γg, m = 1, . . . , M(k)

}
, (15)

νtm(k) = zm(k)− Hxt(k|k− 1), (16)

where zm(k) is the m-th measurement vector at frame k, γg is the gating size for measurement
association, and M(k) is the number of measurements at frame k. The NN association rule
assigns track t to the m̂tk-th measurement, which is obtained as

m̂tk = arg min
m=1,...,mt(k)

||νtm(k)
T [St(k)]

−1
νtm(k)||, (17)
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where mt(k) is the number of valid measurements for target t at frame k. Any remain-
ing measurements that fail to associate with the target go to the initialization stage in
Section 3.2.

3.5. State Estimate and Covariance Update

The state estimate and the covariance matrix of targets are updated as follows:

x̂t(k
∣∣k) = x̂t(k

∣∣k− 1) + Wt(k)νtm̂tk (k), (18)

Pt(k
∣∣∣k) = Pt(k

∣∣∣k− 1)−Wt(k)St(k)Wt(k)
T . (19)

If no measurement can be associated with target t at frame k, they merely become the
predictions of the state and the covariance as

x̂t(k|k) = x̂t(k|k− 1), (20)

Pt(k|k) = Pt(k|k− 1). (21)

3.6. Track–Track Association

If multiple measurements are continuously detected on a single object, more than one
track can be generated. We develop the track–track association to eliminate redundant
tracks. Multiple tracks on the same target have the error dependencies on each other, thus
the following track-association hypothesis testing [21] is preceded as

[x̂s(k|k)− x̂t(k|k)]T [Tst(k)]
−1[x̂s(k|k)− x̂t(k|k)]T ≤ γ f ,

s, t = 1, . . . , N(k), s 6= t
(22)

Tst(k) = Ps(k|k) + Pt(k|k)− Pst(k|k)− Pts(k|k) (23)

Pst(k
∣∣∣k) = [I − bs(k)Ws(k)H]

[
FPst(k− 1

∣∣∣k− 1)FT + Q
]
[I − bt(k)Wt(k)H] (24)

where x̂s(k|k) and x̂t(k|k) are the state vector of track s and k, respectively, at frame k;
Ps(k|k) and Pt(k|k) are the covariance matrix of track s and k, respectively, at frame k;
γ f is a thresholding value for track association; N(k) is the number of tracks at frame k;
bs(k) and bt(k) are binary numbers that become one when track s or t is associated with a
measurement. If there is no measurement associated, it will be zero. In this case, the state
vector and the covariance matrix are replaced by predictions as in Equations (20) and (21).
The fused covariance in Equation (24) is a linear recursion and its initial condition is set
at Pst(0

∣∣0) = [0]4×4 . When the track association hypothesis is accepted, the most accurate
track is selected, the current state is replaced with a fused estimate, and the remaining
track is immediately terminated. The selection process is based on the determinant of the
covariance matrix because the more accurate track has less error (covariance). A track is
selected and fused as

ĉ = argmin
s,t

[|Ps(k|k)|, |Pt(k|k)|], (25)

x̂ĉ(k
∣∣∣k) = x̂s(k

∣∣∣k) + [Ps(k|k)− Pst(k|k)][Ps(k|k) + Pt(k|k)− Pst(k|k)− Pts(k|k)]−1[x̂t(k|k)− x̂s(k|k)], (26)

Pĉ(k
∣∣∣k) = Ps(k

∣∣∣k)− [Ps(k|k)− Pst(k|k)][Ps(k|k) + Pt(k|k)− Pst(k|k)− Pts(k|k)]−1[Ps(k|k)− Pts(k|k)]. (27)

Figure 4 illustrates the track–track association process. Assuming that there are two
tracks on the same target at frame k as shown in Figure 4a, the statistical distance between
the tracks is tested as shown in Figure 4b. In Figure 4c, the track with the least determinant
of the covariance matrix, which is track s, is selected. The state and covariance of track s
are replaced by fused ones and the other track t is terminated at the same time.
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Figure 4. Illustration of the track association process, (a) two tracks s and t; (b) track association hypothesis testing; (c) track
selection and fusion.

In the paper, we establish criteria for a valid track and track termination, respectively.
One is the minimum track life to become a valid track. Track life is the number of frames
between the last frame updated by a measurement and the initial frame [24]. Another
criterion is for track termination. The track is terminated if the search for a measurement
for a specific number of frames fails. In Figure 5, the track life is six frames, and the track is
terminated after six frames without updating measurements.
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4. Results
4.1. Video Description

Videos 1 and 2 were captured by a DJI Phantom 4 and Inspire 2 in urban environments,
respectively. The drones flew at the height of 150 m in a straight line in Video 1 [8] and
changed direction once in Video 2. The videos were captured in different weather and
lighting conditions. The drone’s speed was set to be constant on the controller by the
operator. The camera was pointed directly at the ground and captured video clips at 30 fps
for 15 and 24 s in Videos 1 and 2, respectively. It is processed every third frame for efficient
image processing, so a total of 151 and 242 frames are considered in each video and the
actual frame rate is 10 fps. The original frame size of Video 1 is 4096 × 2160 pixels, but
the frame is gray-scaled and resized by 50% to reduce the computational time. In Video
2, the original frame of 3840 × 2160 pixels is scaled the same way. One pixel corresponds
to 0.11 m after resizing. There are 9 moving vehicles (6 cars, 2 buses, 1 bike) and several
pedestrians in Video 1 while there are 23 moving vehicles (18 cars, 2 buses, 2 motorcycles, 1
bicycle) in Video 2. The details of the videos are described in Table 1.

Table 1. Video descriptions.

Video 1 Video 2

Multicopter/Camera Phantom 4/Bundle Inspire 2/Zenmuse X5
Flying speed (m/s) 5.1 5

Flying time (sec) 15 24
Flying direction West→East West→East→North

Actual fame number 151 241
Actual frame size (pixels) 2048 × 1080 1920 × 1080

Actual frame rate (fps) 10
Number of moving vehicles 9 23
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Figure 6a shows Targets 1–6 at the 54th frame of Video 1, and Figure 6b shows Targets
7–9 at the 131st frame. The drone flew slightly upwards from west to east, and the coverage
of the frame continued to shift in the same direction. Figure 7a shows Targets 1–10 at the
7th frame of Video 2, Figure 7b shows Targets 11–17 at the 117th frame, and Figure 7c
shows Targets 18–23 at the 218th frame. The drone flew west to east for 130 frames and
north for the remaining 111 frames in Video 2.
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Figure 7. Video 2, (a) Targets 1–10 at the 7th frame; (b) Targets 11–17 at the 117th frame; (c) Targets
18–23 at the 218th frame.

4.2. Moving Object Detection

The coordinates of the frame were compensated for and then, frame subtraction was
performed between the current and the preceding frames as in Equation (3). Figure 8
shows the intermediate results of the detection process of Figure 6b. Figure 8a is the binary
image generated by frame subtraction and thresholding. Figure 8b is the object area after
morphological operations (erosion and expansion) are applied to Figure 8a. Figure 8c
shows the rectangular windows including the detected area after false alarm removal in
Figure 8b. The red bounding boxes in Figure 8d are the boundaries of the object windows.
Figure 9 shows the detection results of Figure 7b.
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Figure 9. Video 2: moving object detection of Figure 7b, (a) frame registration and subtraction; (b) morphological filtering;
(c) removing false alarms; (d) detection results (bounding boxes).

The average detection rate of Video 1 is 92%. A total of 23 false alarms were detected
including 16 moving pedestrians, but the pedestrians were not considered targets of interest
in this study. The average detection rate of Video 2 is 89%. There were 47 false alarms,
of which 4 moving pedestrians were detected. All the centroids of the object windows
including false alarms of Video 1 and 2 are shown in Figures 10 and 11, respectively, in the
expanded frame. The number of detections is 709 and 1016 for each video, respectively.
The expanded frame of Video 1 is 2779 × 1096 pixels, equivalent to 305.7 × 120.6 m; Video
2 is 2641 × 1426 pixels, equivalent to 290.5 × 156.7 m. The position coordinates of the
expanded frame are compensated by

[
p̂x(k) p̂y(k)

]
obtained in Equation (2). It is noted

that the center locations are input to the next target tracking stage as measurements.
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4.3. Multiple Target Trackig

In this subsection, we show the target tracking results of Videos 1 and 2. The sampling
time in Equation (6) is 0.1 s because every third frame is processed. The parameters are
designed as in Table 2.

Table 2. Parameter design.

Video 1 Video 2

Vmax (m/s) for speed gating 30
σx = σy (m/s2) 30 10
rx = ry (m/s) 0.5 1.5

γg for measurent association 8 10
γ f for track association 170 70

Valid track criteria
(Minimum track life) 9

Track terminaion criteria
(Maximum searching number) 15

4.3.1. Tracking Results of Video 1

In Video 1, a total of 13 valid tracks are generated without track association; four
redundant tracks are generated for Targets 1, 3, 4, and 7. With track association, 3 of the 4
tracks are successfully merged, resulting in 10 valid tracks. Therefore, tracking efficiency
was improved from 69% to 90%. Figure 12a,b show the tracking results without and with
track association, respectively, in the expanded frame. Two supplementary multimedia
files (MP4 format) for tracking vehicles are available online. One is target tracking without
track association (Supplementary Material Video S1) and the other is using the proposed
method (Supplementary Material Video S2). The red bounding boxes of the MP4 file are the
boundaries of the object windows, the blue dots are position estimates, and the numbers
represent the track numbers in the order they were created.
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Figures 13–15 show the fusion results by presenting detailed trajectories of targets 1,
2, and 4, respectively. Two split tracks are merged into one track for Targets 1, 3, and 4.
However, no association occurred on track 7 in Figure 16.
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To evaluate the accuracy of the position and velocity estimates, the ground truth of
the target position for Video 1 is manually obtained as shown in Figure 17. The ground
truth of the velocity is obtained as the difference in position between consecutive frames
divided by the sampling time.
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Figures 18 and 19 show each target’s position and velocity errors. The position errors
of Targets 2 and 4 are reduced drastically at the moment when the track association occurs
as shown in Figure 18b,d. The number of track associations for Target 2 and 4 are 25 and
20, respectively, but only two associations occurred for Target 1.
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Table 3 show the average position and velocity RMSE with and without track associa-
tion, respectively. If there is more than one track for the target (Target 1, 2, 4), the longer
track is considered to obtain the RMSEs. The average RMSE of position decreased from
2.56 m to 2.42 m, but the average RMSE of velocity increased from 2.20 m/s to 3.19 m/s.

Table 3. Position and velocity RMSE of Video 1.

Target
1

Target
2

Target
3

Target
4

Target
5

Target
6

Target
7

Target
8

Target
9 Avg.

Position
(m)

Previous 6.01 2.88
0.62

2.34
0.58 2.34 6.29 0.84 1.13

2.56
Proposed 5.89 2.41 1.64 2.42

Velocity
(m/s)

Previous 2.32 1.06
0.86

1.15
1.56 1.89 4.61 1.95 4.41

2.20
Proposed 2.45 4.82 6.12 3.19

Table 4 only considers the fused states of Targets 2 and 4. The second and fourth rows
of the RMSE is counted for errors when track association occurs. Although the average
RMSE of velocity increases from 1.11 m/s to 1.77 m/s, the position RMSE shows the
accuracy improvement from 2.61 m to 0.67 m.

Table 4. Position and velocity RMSE of Fused States.

Target 2 Target 4 Avg.

Position
(m)

Previous 2.88 2.34 2.61
Fused State only 0.85 0.49 0.67

Velocity
(m/s)

Previous 1.06 1.15 1.11
Fused State only 2.33 1.21 1.77

4.3.2. Tracking Results of Video 2

In Video 2, 23 targets appear for 214 frames. Many redundant tracks are caused by the
multiple measurements on the same target without track association. A total of 56 valid
tracks are reduced to 26 with the proposed method. The tracking efficiency increased from
41% to 92% because two segmented tracks were generated from one target. Figure 20a,b
show the tracking results without and with track association, respectively, in the expanded
frame. Two supplementary multimedia files (MP4 format) for tracking vehicles are avail-
able online. One is target tracking without track association (Supplementary Material
Video S3) and the other is using the proposed method (Supplementary Material Video S4).
The symbols and the numbers in the MP4 files are displayed the same way as in Video 1.
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The ground truth of Video 2 is shown in Figure 21. Tables 5 and 6 show the average
position and velocity RMSEs without and with track association, respectively. The average
position RMSE decreased from 1.64 to 1.21 m while the average velocity RMSE increased
from 1.65 to 1.97 m/s.
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Table 5. Position RMSE of Video 2 (m).

Target
1

Target
2

Target
3

Target
4

Target
5

Target
6

Target
7

Target
8

Target
9

Target
10

Target
11

Target
12

Previous 2.40 2.61 1.94
2.31

0.60 1.53
1.65 1.08 0.27

0.34 1.42
0.26Proposed 1.41 2.55 0.84 0.47 0.66 0.31 0.66

Target
13

Target
14

Target
15

Target
16

Target
17

Target
18

Target
19

Target
20

Target
21

Target
22

Target
23 Avg.

Previous 1.55 2.73 0.21 1.92
3.04

2.94
1.61

0.96 4.01 1.29 0.99 1.64
Proposed 0.73 2.8 0.39 1.83 1.04 0.48 1.82 0.87 0.76 1.21

Table 6. Velocity RMSE of Video 2 (m/s).

Target
1

Target
2

Target
3

Target
4

Target
5

Target
6

Target
7

Target
8

Target
9

Target
10

Target
11

Target
12

Previous 0.95 1.27 1.36
0.89

1.85 2.39
5.97

1.05
1.12 0.95

1.89
0.81Proposed 1.95 1.32 1.65 1.68 2.31 0.91 1.76

Target
13

Target
14

Target
15

Target
16

Target
17

Target
18

Target
19

Target
20

Target
21

Target
22

Target
23 Avg.

Previous 1.18 2.66 1.10 1.15
1.49

1.14
0.99

0.89 1.12 1.54 4.28 1.65
Proposed 2.17 4.03 1.30 1.31 2.29 1.43 3.10 1.74 4.15 1.97

5. Discussion

The detection rates of Video 1 and 2 are 92% and 89%, respectively. The detection
rates were affected by simulating harsh conditions that the frames were gray-scaled and
resized by 50%, and the frame rate was modified to 1/3 of the original one. Missing target
detection degrades tracking performance; a long interval of missing targets may cause the
track to be terminated or segmented. Using full color images at the original resolution and
frame rate can increase the detection performance. A few false alarms are detected except
for targets of no interest (pedestrians).

Typically, data association suffers from high clutters, low detection, state and measure-
ment errors, and closely located targets. The NN is the most effective in computing and
requires no initial assumptions on the number and states of targets. Indeed, the measure-
ment characteristics in this study makes it possible to use the NN association as follows:
(1) the target is transformed from the visual shape in the image frame into a point object
in a Cartesian coordinate system during object detection, thus the measurement is not a
continuous value, but a discrete 2D signal. The measurement resolution is the same with
the spatial resolution of the image. Therefore, no false alarm or other targets can exist
around the point of the true target depending on the physical shape of the target and the
spatial resolution. In other words, as long as the validation region falls inside the target
body, there is no possibility of the association with false alarms or other targets. In conse-
quence, the accuracy of position estimates more matters than data association strategies.
It is noted that the proposed track association scheme increases the accuracy of the target
state in position as well as eliminating redundant tracks, (2) the false alarm rate is very low,
and its existence is limited in space. Most false measurements were caused by buildings
and some were caused by parked cars except for the non-target objects (pedestrians) in the
experiments, so it is effective to use the NN association.

The NCV model is adopted in the experiments. The NCV, nearly constant acceleration
(NCA), and coordinated turn (CT) models are most commonly used among various state-
space dynamic models [35,36]. The choice of the model depends on the target’s maneuver,
the measurement quality, and the measurement rate [36]. With high quality measurements,
the NCA model can produce the accurate estimate of the acceleration. The CT model is
often used for targets in horizontal planes and extended to 3D space [34]. We leave the
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investigation of the motion models in the various road environments such as highly curved
roads in highway interchanges as well as straight roads in the future study.

In Video 1, Target 2 is moving horizontally, thus most of the errors are found in
the x direction as shown in Figures 18b and 19b. In Figures 18d and 19d, the error of
Target 4 is mostly found in the y direction because the target moves vertically. When
the target states are fused, a more accurate position estimate is obtained although the
velocity estimate becomes less accurate. Considering only the association states of the two
targets, the position accuracy improved by 83.6%. In Video 2, a total of 23 various targets
are considered and the drone changes a direction once, which expands the surveillance
coverage in two dimensions. A total of 26 valid tracks are generated but two of them are
segmented tracks for one target (bicycle), thus the tracking efficiency is 92%. Only one
target (bus) was responsible for two additional tracks. Except for them, no redundant track
was generated. The position accuracy increased by 26%. The experimental results show
the proposed method is very effective in reducing redundant tracks and increasing the
position accuracy.

6. Conclusions

In this paper, a moving drone has captured multiple moving vehicles. The coordinates
of the frame were compensated for, and the moving objects were detected based on the
frame subtraction. The targets were tracked with two-point initialization, a Kalman filter,
and NN association. The track association scheme was proposed to merge redundant
tracks and reduce the number of valid trajectories. The positioning accuracy was improved
to show a higher accuracy of the fusion state.

The proposed tracking method is useful for stand-alone drone surveillance as well as
multiple drones. A specific vehicle can be continuously locked and tracked in the large area
by the drones’ hand-overing the target position. Thus, this system is suitable for vehicle
chase as well as traffic control or counting vehicles. Multiple drones sharing a ground unit
can improve target tracking accuracy, which remains for future study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11094046/s1, Video S1: Previous Target Tracking of Video 1, Video S2: Proposed Target
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Tracking of Video 2.
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