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Featured Application: This paper provides a theoretical basis for the calculation of particle break-
age at weak points of coarse-grained soil materials.

Abstract: Contact breakage of particles makes a large difference in the strength of coarse-grained soils,
and exploring the characteristics within the process of the breakage is of great significance. Ignoring
the influence of particle shape, the micromechanism of two spherical particles breaking under normal–
tangential contact conditions was investigated theoretically and experimentally. Through theoretical
analysis, the breakage form, the shape and size of the conical core, and the relationship between the
normal and tangential forces at crushing were predicted. Particle contact tests of two gypsum spheres
were carried out, in which the breakage forms, features of the conical cores and the normal and
tangential forces at crushing were recorded for comparison with the predicted values. The test results
and the theoretical predictions showed good agreement. Both the analysis and test demonstrate that
the presence of tangential forces causes the conical core to assume the shape of an oblique cone, and
the breakage form to change. Moreover, with increasing normal contact force, the tangential force
needed for crushing increases gradually first and then decreases suddenly.

Keywords: particle contact test; coarse-grained soil; normal–tangential contact; conical core

1. Introduction

Coarse-grained soils, such as gravel, are used in many fields, including earth dams,
harbor facilities, nuclear power waste storage areas, and roadbed materials [1]. As a
result of the large particle size, coarse-grained soils, in which the particle sizes are in
the range of some cm to some dozen cm, usually have different mechanical properties
compared with other soils. Since the 1960s, scholars worldwide have used theoretical
analysis [2–7], laboratory tests [8–11] and numerical simulations [12–17] to study the
strength and deformation characteristics of coarse-grained soils. In recent years, high-fill
engineering projects have become increasingly common due to the construction of dams
or embankments for infrastructures in mountainous regions. The problem of particle
fragmentation in such projects, which directly affects the reliability of the overall structure,
has attracted the attention of a growing number of academics [9,14,18–20].

Common methods used to study the fragmentation of coarse-grained soil particles
include the shear test [11,21–25], the triaxial test [9,26–28], the uniaxial compression
test [24,29] and the particle contact test [30–32], in which the first three methods are
all about the effect of particle breakage on soil properties. The particle contact test was
first proposed by Zhou [33], and has been increasingly adopted by scholars to study the
mechanical properties of the breakage of a single particle, as research on the macrome-
chanical properties of soils due to particle fragmentation has hit a bottleneck. There are
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many factors that influence the crushing characteristics of particles, such as the particle
shape [34], material [35], contact form [30–32] and force state [34,36], in which the effect
of particle shape has a strong uncertainty due to its randomness. The research on the
features of a single particle in the process of contact breakage is still in the initial stages, and
some scholars start from the simplest spherical particles to explore the micromechanism
of particle breakage. For instance, using a statistical approach, Zhou [35] investigated the
spherical particle crushing patterns of three materials, sandstone, limestone and slate, and
derived empirical equations for the conical core size and the critical normal force at overall
crushing. Through a combination of experiments and numerical simulations, Yu [37]
studied the micromechanism of ball–plane normal contact breakage of spherical particles.
Current studies on particle contact breakage have mainly focused on experimental studies
and numerical simulations, with relatively little theoretical research on this problem.

Theoretical analysis of the internal stress state of spherical rock particles subjected to
external forces has been carried out since the 1950s [3,38–41]. Based on the Hertz contact
model, many scholars have proposed various models to solve different contact problems,
such as Mindlin and Deresiewicz [42]. One of the most popular tests is the compression
test of spheres between a pair of diametrical concentrated loads, and the mechanical model
proposed by Hiramatsu and Oka [43] has been applied by various authors [40,44–47]. To
date, most of the experimental studies on the breakage mechanism of brittle spherical
rock materials subjected to external forces have been based on this model. It assumed
the brittle rock sphere as an isotropic elastic material and equated loads acting on both
ends of the sphere as uniform loads acting on a small area pointing to the center of the
sphere, which does not change with the loading. However, during the contact crushing
of two spherical particles, local compaction occurs at the contact point due to the stress
concentration, resulting in the emergence of a circular plane, which causes the boundary
conditions to change as the contact process progresses. The model of a sphere squeezed
by a symmetrical pair of concentrated loads cannot be applied to the conditions of contact
crushing between two spherical particles since the mechanism of the whole crushing
process cannot be revealed. In order to reveal the formation mechanism of the conical core,
the Hertz contact model is not suitable for this experiment since it is mainly used to solve
static stress distribution in an elastic body, while the formation process of the conical core
is a plastic deformation process.

According to the numerical simulation by Yu [37], Niu [48] divided the process of
particle contact breakage into three stages—local compaction, elastic deformation and
integral crushing—and gave solutions to the force–displacement curve, the conical core
size and the critical force at fracture under the condition of ball–ball normal contact, in
which only the normal force existed at the contact point. Nevertheless, in actual conditions,
there are not only normal forces but also tangential forces at the contact point of two
particles. Hence, it is necessary to explore the mechanism of contact fracture between two
spherical particles under normal–tangential contact conditions.

In this study, the particle breakage of two spheres under normal–tangential contact
conditions is discussed theoretically and experimentally. In the theoretical analysis, the
breakage form, the shape and size of the conical core, and the relationship between the
normal and tangential forces at failure are studied on the basis of the normal contact
test [48]. Then, particle contact tests of two gypsum spheres under normal–tangential
contact conditions are carried out to make a comparison with the theory. The theoretical
research and experimental results in this paper are in good agreement. This study sum-
marizes the variation rules of the breakage form and the conical core characteristics in
different force states, and gives a solution to the normal and tangential forces required for
particle crushing.

2. Theoretical Analysis

In this section, we derive a new solution applicable to the situation of normal–
tangential contact based on the theoretical analysis of the normal contact test [48]. In
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this paper, we assume that the spherical particles are of isotropic brittle material. Before
the analysis, the results of the normal contact test are reported here briefly.

2.1. Normal Contact

Niu [48] divided the process of the normal contact breakage of two spherical parti-
cles into three stages—local compaction, elastic deformation and integral crushing (see
Figure 1)—and within this process, the relationship between the normal force Fn and the
displacement of contact point s is as follows:

Fn =


π
3 δRs3 − π

12δs4, (0 < s ≤ s0)

πE
√

R2− (R − s0)
2

2(1 − ν2)
(s − s0), (s > s0 and Fn ≤ Fcr)

(1)

where δ, E and ν are hardness or crushing modulus, Young’s modulus and Poisson’s ratio
of the material, respectively; R is the radius of the sphere; Fcr is the normal force when
breakage occurs under normal contact conditions; s0 is the critical displacement separating
the local compaction stage and the elastic deformation stage, and in the following:

s0 =
3

√√√√ α

R
+

√
α2

R2 +
α3

27R6 +
3

√√√√ α

R
−

√
α2

R2 +
α3

27R6 , (2)

α =

[
E

2δ(1 − ν2)

]2
(3)

α is a dimensionless parameter determined by Young’s modulus, Poisson’s ratio and
hardness modulus, which has a powerful effect on the size of the conical core.
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Figure 1. A sketch of the contact crushing process of spherical particles under normal contact con-
ditions. S and H are the bottom area and the height of the conical core, respectively. 

In the stage of local compaction, due to stress concentration, the contact point turns 
into a circular compacted flat region that gradually gets larger with the generation and 
gradual increase in the contact pressure, while the elastic deformation of the whole sphere 
is so small to be neglected. As the elastic deformation stage starts, the local compacted 
region no longer enlarges and all the displacements of the contact point come from the 
elastic deformation of the whole sphere until the breakage occurs. The solutions of the 
conical core size are [48], as follows: 	S = π R2 	−  (R −  s0)2 , (4)

Figure 1. A sketch of the contact crushing process of spherical particles under normal contact
conditions. S and H are the bottom area and the height of the conical core, respectively.

In the stage of local compaction, due to stress concentration, the contact point turns
into a circular compacted flat region that gradually gets larger with the generation and
gradual increase in the contact pressure, while the elastic deformation of the whole sphere
is so small to be neglected. As the elastic deformation stage starts, the local compacted
region no longer enlarges and all the displacements of the contact point come from the
elastic deformation of the whole sphere until the breakage occurs. The solutions of the
conical core size are [48], as follows:

S = π

[
R2 − (R − s0

)2
]

, (4)

H =

√
R2 − (R − s0)

2. (5)
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2.2. Normal–Tangential Contact

Unlike the normal contact breakage, the breakage under normal–tangential contact
conditions needs to be discussed in two cases—the high–normal force level and the low–
normal force level. For the case of high–normal force level, the static frictional force
between the two spheres is able to reach the tangential force required for breaking, and
there is no relative sliding between them before the breakage occurs. On the other hand,
for the low–normal force level, relative slippage between the two spheres occurs as the
tangential force required for the particle crushing exceeds the maximum static frictional
force the contact surface can provide. These two cases are separately discussed in detail in
the following subsections.

2.2.1. High–Normal Force Level

In the case of the high–normal force level, the maximum static frictional force on the
contact surface between the two spheres is larger than the tangential force required for any
one sphere crushing, that is µFncr > Ftcr, and the breakage occurs without relative sliding
between the two particles. Fncr and Ftcr are the normal force and the tangential force at
crushing, respectively, and µ is the surface sliding friction coefficient of the material. In the
stages of local compaction and elastic deformation, only the normal force does work, while
the tangential force does not. As a result, the mechanism of these two stages is similar to
that under normal contact conditions, and only the integral crushing of the particle is to be
discussed next.

The solutions of stresses within the half-space along the line normal to and through
the center of the contact area and the displacement at the center of the contact area are
of interest as the area of the contact zone is much smaller than the particle size and they
lend themselves to simple mathematical manipulation. The normal stress components at
a point in the half-space (see Figure 2), under the action of a concentrated force P, are as
follows [49]:

σρ =
P

2πr2

[
−3ρ2z

r3 +
(1 − 2ν)r

r + z

]
, (6)

σϕ =
(1 − 2ν)P

2πr2

(
z
r
− r

r + z

)
, (7)

σz = −3Pz3

2πr5 . (8)
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Figure 2. Cylindrical coordinates ρ~ϕ~z and orthogonal normal stresses σρ, σϕ and σz. ρ and z are
the horizontal and vertical distances from the action point of the force P to the location of interest,
respectively. ϕ is the horizontal rotation angle of the location of interest relative to the y-axis.

The cylindrical coordinate system shown in Figure 3a is established with the central
point of the compacted area as the origin, and the z-axis is in the same direction as the
resultant force F between the two spheres. The stress components at the point M on the
z-axis inside the sphere can be obtained by superimposing Equations (6)–(8) on the contact
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surface. Figure 3b shows an inclined plane subjected to two vertical concentrated loads P
symmetrical to the origin O, in which θ is very small, and the normal stress component σz
of the point M on the z-axis is as follows:

σz = − 3P(z + ρ tan θ)3

2π
[
ρ2+(z + ρ tan θ)2

]5/2 −
3P(z − ρ tan θ)3

2π
[
ρ2+(z − ρ tan θ)2

]5/2

≈ − 6Pz3

2π
(
ρ2+z2

)5 , (9)

which are close to the calculation results in Figure 3c. The same conclusions are obtained
for σρ and σϕ. Consequently, the stress components at the point M in Figure 3a are obtained
through equivalenting the boundary condition as a uniform load q acting on a horizontal
circular area with radius a, as follows:

σz= q

[
1 − z3

(a 2+z2)3/2

]
, (10)

σρ= σϕ =
q
2

[
(1 − 2ν)+

z3

(a 2+z2)3/2
− 2(1 + ν)z

(a 2+z2)1/2

]
. (11)
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Figure 3. (a) The coordinate system with the center of the compacted area as the coordinate origin. Fn

and Ft are the normal and tangential forces between the two spheres, respectively. F is the resultant
force of Fn and Ft. θ = tan−1Ft/Fn; (b) a pair of concentrated loads P symmetrical to point O act on
an inclined plane with an inclination angle θ; (c) a pair of concentrated loads P symmetrical to point
O act on a horizontal plane. M is a point on the z-axis.

In this study, the simple two-parameter multiaxial failure criterion for brittle materials
proposed by Christensen [50,51] is applied. The criterion states that a material is at failure
when the following applies:

ψK√
3
σii+(1 + ψ)2sijsij >

K2

1 + ψ
, (12)
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where the parameter ψ and K are as follows:

ψ =
|σc|
σt
− 1, (13)

K =
1 + ψ√

3
|σc|, (14)

respectively. Russell and Muir [46] improved this criterion for ease of application, and
stated that a material is at failure when the following applies:

Kmob > K, (15)

Kmob = −
√

3(1 + ψ)2

ψ

sijsij

σii
. (16)

where sijsij and σii are the second invariant of the deviatoric stress tensor and the first
invariant of the stress tensor, respectively. According to Equations (10) and (11), they take
the values from the following:

sijsij =
q2

3

ν − 2ν + 1

2
[
1 + (z/a)2

]1/2 +
1[

1 + (z/a)2
]3/2 −

1
2


2

, (17)

σii= 2q

ν − 2ν + 1

2
[
1 + (z/a)2

]1/2 −
1

2
[
1 + (z/a)2

]3/2 +1

. (18)

By combining Equations (13), (14) and (16)–(18), the plot of Kmob within the sphere
along the z-axis is shown in Figure 4a. The point at which the Kmob value first reaches K
is the place where the crack starts from, and is also the vertex of the conical core. The
crack expands in the direction of the resultant force between two particles and eventually
penetrates the entire sphere, evolving into a rupture surface as shown in Figure 4c. The
angle between the rupture surface and the diameter passing through the center of the
bottom surface of the conical core is θ, which is called the inclination of the rupture surface.
Different from the right conical core in the normal contact test, the conical core in the
normal–tangential contact test is an oblique cone with an inclination of θ since its vertex
must be on the z-axis, as shown in Figure 4b. The bottom area S of the conical core can still
be calculated by Equation (4), while its height is calculating using the following:

H = cos θ

√
R2 − (R − s0)

2. (19)

Through Equations (13)–(18), it is easy to know that the resultant force when integral
fragmentation occurs is Fcr—the normal force at failure under normal contact conditions—
of which the value is determined by the property of the material. Furthermore, the
relationship between the normal and tangential forces when integral crushing occurs is as
follows:

Ftcr =
√

F2
cr − F2

ncr. (20)
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2.2.2. Low Normal Force Level

If the maximum static frictional force on the surface of the contact point is less than
the tangential force required for either sphere crushing, relative sliding between the two
particles will occur before breakage (see Figure 5a), which results in a reduction in the
contact area (see Figure 5b). The decrease in contact area leads to the increase in force
per unit area on the surface of the contact point. It is assumed that when the relative slip
between the two spheres is small, the increase in force per unit area on the surface of
the contact point does not cause a secondary occurrence of local compaction. With the
increasing uniform load q at the contact surface, the values of Kmob at each point inside the
sphere along the z-axis increase. Once the Kmob value at a point of the inner sphere along
the z-axis passing through the center of the bottom surface of the conical core reaches K,
the whole sphere crushes (see Figure 5c). Meanwhile, the relationship between the normal
and tangential forces at the moment of particle crushing is Ftcr= µFncr. When the normal
force is small enough, the relative slip is large, resulting in a small contact area between
the two particles and thus local compaction under the contact surface caused by stress
concentration occurs again rather than integral crushing.

To sum up, the relationship between the normal and tangential forces in the normal–
tangential contact test when the overall crushing occurs is obtained using the following:

Ftcr =

 µFncr, (Fnmin < Fncr <

√
F2

cr− F2
ncr

µ )√
F2

cr − F2
ncr, (

√
F2

cr− F2
ncr

µ ≤ Fncr ≤ Fcr)
(21)

where Fnmin is the minimum normal force required for spherical particle crushing under
normal–tangential contact conditions. If Fn < Fnmin, there will be a secondary occurrence
of local compaction at the contact point rather than particle breakage. Different from the
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normal contact test, both the rupture surface and the conical core have the same inclination
that takes the value of the following:

θ =

 tan−1 Ftcr
Fncr

, (F nmin < Fncr <

√
F2

cr− F2
ncr

µ )

tan−1 µ. (

√
F2

cr− F2
ncr

µ ≤ Fncr ≤ Fcr) .
(22)

The bottom area and the height of the conical core are solved using Equations (4) and
(19), respectively.
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3. Particle Contact Test

To verify the above theory, the authors performed normal–tangential contact tests
between two gypsum spherical particles, which is discussed in detail next.

3.1. Materials and Methods

The particular gypsum used in this study is the Sanxin dental plaster produced by
Yuyao Xinshi Gypsum Products Co., Ltd., Yuyao, Zhejiang, China. For 25% water content
(defined as the mass of water divided by the mass of dental stone powder), the 1-h and
long-term compressive strengths of the plaster made by the dental stone powder are about
35 and 75 MPa, respectively. The reason why gypsum was chosen as the test material
was that the sample preparation was simple, the influence of natural cracks in the rock
could be eliminated, and the isotropic brittle material could be well simulated. In this
experiment, gypsum was made by using water contents of 35% during mixing, and the
mixing time and curing time were 5 min and 14 days, respectively. Spheres with a diameter
of approximately 48 mm were prepared. This particle size was chosen because if the sphere
is too small, it would be hard to observe and measure the shape and size of the conical
core, and if it is too large, the exothermic hardening process of the gypsum may induce
temperature cracking inside the specimen. The basic mechanical parameters acquired by
rock tests of this high-strength gypsum material used in the test are shown in Table 1.
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Table 1. Physical parameters of the gypsum material.

UCS 1 Young’s
Modulus

Poisson
Ratio UTS 2 Crushing

Modulus
Surface Sliding

Friction Coefficient

53.1 GPa 5.7 GPa 0.23 3.0 MPa 11.2 GPa 0.32
1 Unconfined Compressive Strength. 2 Unconfined tensile strength.

Among these mechanical parameters, Young’s modulus, Poisson ratio and UCS were
obtained by compressing solid circular cylinders of the material with a length of 100 mm
and a diameter of 50 mm, while UTS was obtained by the Brazilian splitting test of
solid circular cylinders of the material with a length of 50 mm and a diameter of 50 mm.
Particle contact tests under ball–plane contact conditions were performed to obtain crushing
modulus of the spheres [48]. The surface sliding friction coefficient of gypsum material in
this test was obtained by the device shown in Figure 6 and the following equation:

µ = tan β − 0.5
t2cos β

. (23)

All of the results are the means of 5 repeated tests.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14 
 

(defined as the mass of water divided by the mass of dental stone powder), the 1-h and 
long-term compressive strengths of the plaster made by the dental stone powder are about 
35 and 75 MPa, respectively. The reason why gypsum was chosen as the test material was 
that the sample preparation was simple, the influence of natural cracks in the rock could 
be eliminated, and the isotropic brittle material could be well simulated. In this experi-
ment, gypsum was made by using water contents of 35% during mixing, and the mixing 
time and curing time were 5 min and 14 days, respectively. Spheres with a diameter of 
approximately 48 mm were prepared. This particle size was chosen because if the sphere 
is too small, it would be hard to observe and measure the shape and size of the conical 
core, and if it is too large, the exothermic hardening process of the gypsum may induce 
temperature cracking inside the specimen. The basic mechanical parameters acquired by 
rock tests of this high-strength gypsum material used in the test are shown in Table 1. 

Table 1. Physical parameters of the gypsum material. 

UCS 1 Young’s Modulus Poisson Ratio UTS 2 Crushing 
Modulus 

Surface Sliding Friction  
Coefficient 

53.1 GPa 5.7 GPa 0.23 3.0 MPa 11.2 GPa 0.32 
1 Unconfined Compressive Strength. 2 Unconfined tensile strength. 

Among these mechanical parameters, Young’s modulus, Poisson ratio and UCS were 
obtained by compressing solid circular cylinders of the material with a length of 100 mm 
and a diameter of 50 mm, while UTS was obtained by the Brazilian splitting test of solid 
circular cylinders of the material with a length of 50 mm and a diameter of 50 mm. Particle 
contact tests under ball–plane contact conditions were performed to obtain crushing mod-
ulus of the spheres [48]. The surface sliding friction coefficient of gypsum material in this 
test was obtained by the device shown in Figure 6 and the following equation: 

μ = tan β  −  
0.5

t2 cos β
	. (23)

All of the results are the means of 5 repeated tests. 

 
Figure 6. A device for measuring the surface sliding friction coefficient of the material. Both gyp-
sum cubes were fabricated by the same process as the spheres used in the formal test, and the 
lower cube was fixed on the slope. Two photoelectric gates were used to record the time interval t 
as the upper gypsum cubes passed through them. 

The equipment used in the test was the rock rheological testing system (see Figure 7) 
in the Key Laboratory of Geotechnical and Underground Engineering, Tongji University, 
China, which can provide a maximum vertical pressure of 500 kN and a horizontal pres-

Figure 6. A device for measuring the surface sliding friction coefficient of the material. Both gypsum
cubes were fabricated by the same process as the spheres used in the formal test, and the lower cube
was fixed on the slope. Two photoelectric gates were used to record the time interval t as the upper
gypsum cubes passed through them.

The equipment used in the test was the rock rheological testing system (see Figure 7) in
the Key Laboratory of Geotechnical and Underground Engineering, Tongji University, China,
which can provide a maximum vertical pressure of 500 kN and a horizontal pressure of 300
kN. The minimum controllable deformation value of this rock rheological testing system is
0.001 mm and the minimum controllable mechanical value is 5 N. The system is equipped
with a high-speed static force–displacement acquisition system, and the highest acquisition
frequency is 100 times per second. In the present study, the acquisition frequency was set to 5
times per second. The upper and lower spheres are fixed with circular arc-shaped supports.

In order to accurately control and measure the vertical and transverse forces, respec-
tively, the following loading methods are adopted. First, the vertical loading component
slowly applies a pressure to the upper sphere to a certain normal force grade Fn (Fn <
Fcr). Then, keep the vertical force unchanged and slowly apply a transverse force to the
upper sphere by using the transverse loading component until one of the spheres crushes.
The vertical loading component is controlled by force at a rate of 5 N/s, while the trans-
verse loading component is controlled by displacement at a rate of 0.001 mm/s. The air
temperature and relative humidity in the laboratory were 28 ◦C and 49%, respectively.
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Figure 7. An illustration of the rock rheological testing system. The roller gasket is used to eliminate
the influence of friction between the arc-shaped support and the loading component.

Before the formal tests, the authors derived the force required for the sphere crushing
under normal contact conditions by combining Equations (13)–(18), and Fcr= 8.021 kN.
Therefore, a total of 9 groups of normal–tangential contact tests were performed, and their
normal force grades were 6.016 kN, 6.417 kN, 6.818 kN, 7.219 kN, 7.620 kN, 7.700 kN, 7.780
kN, 7.861 kN and 7.941 kN, separately. For each normal force grade, 3 sets of replicate tests
were carried out. In the test, the tangential forces when particle breakage occurred were
recorded. Moreover, the inclination of the conical core and the rupture surface, as well as
the size of the conical core, were measured after particle breakage occurred.

3.2. Results

Table 2 shows a comparison between the test and the theoretical analysis, and they
are in good agreement. The heights of the conical cores are all about 2.9 mm and are not
listed here since their changes are very small for different normal force grades. It is clear
that in the normal–tangential contact test, the normal force grade has a great influence
on the features of particle breakage. In the low–normal force level, the size of the conical
core increases with the increasing normal force grade, while the inclination of the conical
core and the rupture surface is fixed. In the high–normal force level, the inclination of the
conical core and the rupture surface decreases with the increasing normal force grade, and
the conical core has a fixed size.

Table 2. Comparison between the predicted and measured values including the inclinations of the
rupture surface and the conical core, and the bottom areas of conical core. The heights of the conical
cores are not listed due to the small differences.

Fncr (kN) S (mm2)
Predicted S

(mm2) θ (◦) Predicted θ (◦)

6.015 19.97 21.18 18.4 17.8
6.416 20.56 22.60 19.3 17.8
6.817 24.91 24.01 15.8 17.8
7.218 23.62 25.43 17.1 17.8
7.619 25.79 26.84 15.6 17.8
7.700 27.33 26.91 14.9 16.3
7.780 25.30 26.91 13.7 14.1
7.860 26.68 26.91 13.1 11.5
7.940 27.34 26.91 10.3 8.1
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Figure 8 shows the relationship between Fncr and Ftcr, including the theoretical pre-
dictions and the data measured in the particle contact test. Obviously, when Fncr < 7.639

kN (
√

F2
cr− F2

ncr
µ ), the relationship between Ftcr and Fncr presents a titled straight line with

a slope of 0.32 (µ); when Fncr ≥ 7.639 kN (
√

F2
cr− F2

ncr
µ ), the Ftcr–Fncr curve is a circular arc

centered at the origin of the coordinate. The test under normal contact conditions [48]
can be regarded as a specific situation where the tangential force on the contact surface is
zero (see the purple circle in Figure 8). From the plot, the data measured in the test are in
good agreement with the predicted values. If the normal force is too small, the relative
slippage of the two spheres is too large, bringing about a secondary occurrence of local
compaction rather than the overall breakage. This situation is too complex and therefore is
not discussed in this paper.
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Figure 8. The predicted relationship between the normal and tangential forces at failure as well as
the experimental data. The red dot dash line divides the curve into the following two parts: the
low–normal force level and the high–normal force level.

4. Discussion

In the present study, particle breakage of two spheres under normal–tangential contact
conditions is investigated by theoretical analysis and experimental research. Considering
different normal forces, there are the following two types of particle breakage: the high–
normal force level in which there is no relative slippage between the spheres, and the
low–normal force level in which relative slippage occurs between the spheres.

In the high–normal force level, the size of the conical core is almost the same as that
in the normal contact test. The difference is that under normal contact conditions, the
conical core is a positive cone, while under normal–tangential contact conditions, it is an
inclined cone. Different from the normal contact test, there is an angle between the rupture
surface and the diameter passing through the center of the contact point. Furthermore, the
conical core and the rupture surface have the same inclination, which becomes smaller
with increasing normal force. The tangential force required for particle breaking decreases
with the increasing normal force, and the relationship between the normal and tangential
forces presents an arc with the origin of the coordinate as the center of the circle.

In the low–normal force level, both the bottom area and the height of the conical
core reduce as the normal force decreases, and the bottom is not a circle anymore. The
inclination of the conical core and the rupture surface has a fixed value—tan−1 µ. The
tangential force when particle breakage occurs is the sliding frictional force between the
two spheres, and it increases with the increasing normal force. When the normal force
is less than a certain value, and the contact area between the two spheres decreases to a
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certain extent due to relative slippage, local compaction occurs again rather than particle
breakage, which is not discussed here due to its complexity.

5. Conclusions

In this paper, the micromechanism of the breakage of two spherical gypsum particles
under normal–tangential contact conditions is investigated both theoretically and experi-
mentally. The theoretical analysis in this paper is based on the normal contact test. The
purpose of particle contact tests is to verify the validity of the theory. The test data are in
good agreement with the theoretical prediction. The following conclusions are made:

1. The normal–tangential contact breakage of two spherical particles is divided into two
cases depending on whether there is relative sliding—the high–normal force level
and the low–normal force level;

2. In the high–normal force level, the size of the conical core does not change with
the variation in the contact force, while its inclination decreases with the increasing
normal force. In the low–normal force level, the inclination of the conical core does
not change with the variation in the contact force, while the size becomes smaller
with the decreasing normal force;

3. The rupture surface when the breakage occurs has a fixed inclination in the low–
normal force level. However, it decreases with the increasing normal force in the
high–normal force level. The rupture surface and conical core always have the same
inclination;

4. As the normal force increases, the tangential force required for the overall breakage
increases first and then decreases.
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