
applied
sciences

Article

An Efficient Library for Reliability Block Diagram Evaluation

Laura Carnevali, Lorenzo Ciani , Alessandro Fantechi, Gloria Gori * and Marco Papini

����������
�������

Citation: Carnevali, L.; Ciani, L.;

Fantechi, A.; Gori, G.; Papini, M. An

Efficient Library for Reliability Block

Diagram Evaluation. Appl. Sci. 2021,

11, 4026. https://doi.org/10.3390/

app11094026

Academic Editors: Andrea Bondavalli

and Andrea Ceccarelli

Received: 30 March 2021

Accepted: 22 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Engineering (DINFO), School of Engineering, University of Florence, via di S. Marta 3,
50139 Florence, Italy; laura.carnevali@unifi.it (L.C.); lorenzo.ciani@unifi.it (L.C.);
alessandro.fantechi@unifi.it (A.F.); marco.papini@unifi.it (M.P.)
* Correspondence: gloria.gori@unifi.it

Abstract: Reliability Block Diagrams (RBDs) are widely used in reliability engineering to model
how the system reliability depends on the reliability of components or subsystems. In this paper,
we present librbd, a C library providing a generic, efficient and open-source solution for time-
dependent reliability evaluation of RBDs. The library has been developed as a part of a project for
reliability evaluation of complex systems through a layered approach, combining different modeling
formalisms and solution techniques at different system levels. The library achieves accuracy and
efficiency comparable to, and mostly better than, those of other well-established tools, and it is well
designed so that it can be easily used by other libraries and tools.

Keywords: Reliability Block Diagrams (RBD); hierarchical reliability model; reliability curve; reliabil-
ity evaluation; software libraries

1. Introduction

Reliability is defined as “the ability of a system or component to perform its required
functions under stated conditions for a specified period of time” [1]. Reliability is often
expressed through the usage of probability theory, i.e., it is defined as the probability that
the system has successfully performed its required functions in time interval [t0, t) given
that it was correctly operating at time t0 [2].

Reliability of a complex system is assessed by using a reliability model. Several
reliability models have been developed. These models can be divided into the following
two main categories:

• Combinatorial models: they allow to efficiently evaluate reliability under the strong
assumption of statistically independent components [3,4]. These models include
Reliability Block Diagrams (RBDs) [5,6], Fault Trees (FTs) [7,8], Reliability Graphs
(RGs) [9,10] and Fault Trees with Repeated Events (FTREs) [8,11].

• State-space based models: they allow for the modeling of several dependencies
among failures, including statistical, time and space dependency, at the cost of a diffi-
cult tractability due to the state-space explosion [3,4]. These models include Continu-
ous Time Markov Chains (CTMCs) [12,13], Stochastic Petri Nets (SPNs), Generalized
Stochastic Petri Nets (GSPNs) and Stochastic Time Petri Nets (STPNs) [14–17], Stochas-
tic Reward Nets (SRNs) [18,19] and Stochastic Activity Networks (SANs) [20,21].

The expressive power of state-space based models is obviously greater than the one of
combinatorial models. On the other hand, expressive power varies among the different
combinatorial models [22].

All models that exploit both the usage of combinatorial and state-space based so-
lutions for the quantitative evaluation are classified as hybrid models and are consid-
ered as the state-of-the-art approach to dependability evaluation [3]. Both Dynamic RBD
(DRBD) [23,24] and Dynamic FT (DFT) [25–27] are hybrid models, since they combine
CTMC [13] evaluation with, respectively, RBD [6] and FT [8] quantitative analysis. Hier-
archical models, i.e., models that combine the usage of different formalisms in order to

Appl. Sci. 2021, 11, 4026. https://doi.org/10.3390/app11094026 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7820-6656
https://doi.org/10.3390/app11094026
https://doi.org/10.3390/app11094026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11094026
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11094026?type=check_update&version=2

Appl. Sci. 2021, 11, 4026 2 of 24

analyze the system at different levels, have been proposed in order to both exploit the ben-
efits and to limit the drawbacks of combinatorial and state-space based models [3,28,29].

This paper is structured as follows: Section 1 presents the context and motivation for
this work; Section 2 recalls the definition of RBDs and the mathematics used to evaluate
them; Section 3 describes the design and optimizations of the implemented RBD computa-
tion library; Section 4 presents the materials and the methods used to obtain the results;
Section 5 evaluates the performance of the RBD computation library and discusses the
results; finally, Section 6 concludes the paper with some final remarks.

Context and Motivation

Our aim is to support the layered approach presented in [28,29], where RBDs are
adopted to model major transitions of system structure (e.g., in a reconfiguration), while
the finer modeling of the lower levels is based on STPNs and GSPNs. Our goal consists of
the definition of a predictive diagnostics approach for the health assessment of complex
systems. Specifically, we propose the usage of diagnostics data to estimate the reliability of
basic components, leveraging the usage of a reliability hierarchical model to estimate the
reliability curve of the system under analysis. By using this tuned reliability curve, we can
compute the probability of system failure in a given future time interval, thus implementing
a predictive diagnostics system. This approach requires a frequent evaluation of the
reliability curve, hence efficient tools to evaluate it are needed.

Consider, for example, the system shown in Figure 1. The system has been subdivided
into four statistically independent subsystems. The subsystems C1 and C2 model two
identical power supplies in current sharing, C3 is the computing subsystem, while C4
is the acquisition subsystem. Each separate subsystem can then be modeled using an
STPN/GSPN: in this example, all subsystems are modeled using GSPNs.

measure5

t19

fail_meas2

t8

t18
measure6

t0

t12

measures_failed

t9

t5

fail_meas1

adc

t4

t14

t7

fail_meas3

measure1

t11

t16

t1

fail_meas5

fail_meas6

fail_meas4

t6

measure4

t15

t13

t2

t3

fail

measure2

measure3

t10

t17

fail

ram

t5

t2cpu

eth t1

fpga

t8

C1

C2

C3 C4

fail_capacitor2

t7

t2

t6

t12

t3

capacitor2 t8

t11

fail_capacitor3

failed_capacitors

t13

fail_capacitor1

t5

rectifier

dcdc_switching

capacitor1

fail

t4

t0

t1

t14

capacitor3

t10

t9

Figure 1. Example of layered reliability model.

The approach to the reliability analysis using this layered model is shown in Figure 2.
The input data of this approach is the failure rate function λ(t) for each modeled component.
By inserting the failure rates into the STPN/GSPN models, we can analyze the models and
we obtain, for each modeled subsystem, its reliability curve. Please note that, by modifying

Appl. Sci. 2021, 11, 4026 3 of 24

the failure rate function λ(t) of at least one modeled component, we have an impact on
its distribution of failures and, as a consequence, we produce a reliability curve of the
modeled subsystem with a different shape. Furthermore, by varying both the failure rate
functions and their parameters, it is possible to refine the model, hence considering the
uncertainties of the model.

Finally, by feeding the reliability curves of all subsystems into the RBD model, we can
analyze the whole system and we obtain its reliability curve. Please note that the input
data of this second phase are the reliability curves of all subsystems obtained through
the analysis of the STPN/GSPN models. Thus, we combine the strength of combinatorial
approaches, i.e., their efficiency, with the one of state-space based ones, i.e., their ability to
model the statistical dependence of faults.

fail

ram

t5

t2cpu

eth t1

fpga

t8

STPN

C1

C2

C3 C4

RBD

Input data
(components λ(t))

Intermediate data
(subsystems R(t))

Output data
(system R(t))

Figure 2. Application of layered reliability evaluation.

This hierarchical approach to the reliability evaluation can be extended to model the
system-level reliability, i.e., the reliability of the whole system composed by both hardware
and software. In general, hardware-related failures are statistically independent from
software-related ones, i.e., software bugs [30,31]. The estimation of the number of failures
in the source code is a difficult task [32]. However, in recent years, several methodologies
have been developed to model and increase the software reliability [33–35].

The ORIS tool [36] has been adopted to support STPN and GSPN modeling. In this
paper, we focus on the implementation of an efficient tool to evaluate RBD blocks.

More specifically, we looked for a tool with the following characteristics:

• To be highly optimized.
• To allow the resolution of RBD basic blocks (excluding singleton given its trivial formula).
• To allow the reliability computation of an RBD basic block in a time interval.
• To be available as a free software.
• To be available for the most common Operating Systems (OS), i.e., Windows, Mac OS

and Linux.

Several tools for RBD definition and analysis exist, although the majority of them are
commercial tools. We provide a list of tools that were considered during our work:

• RBDTool: this open-source and multiplatform tool allows the definition of RBD
models and it provides support for their quantitative analysis [37].

• Edraw Block Diagram: this commercial tool allows the definition of RBD models [38].
• Reliability Workbench: this commercial tool allows the definition and analysis of

scalable RBD models through the usage of submodels. Furthermore, it supports the
minimal cut-set analysis of the RBD model [39].

• Relyence RBD: this commercial tool has features comparable with Reliability Work-
bench [40].

• SHARPE: the Symbolic Hierarchical Automated Reliability and Performance Evalu-
ator (SHARPE) tool is a general hierarchical modeling tool that analyzes stochastic
models of reliability, availability, performance and performability [41,42]. This tool al-

Appl. Sci. 2021, 11, 4026 4 of 24

lows the definition of hierarchical reliability models with several formalisms, including
RBDs, and it supports the time-dependent reliability analysis.

Of all considered tools, SHARPE is the closest to all our requirements. Since no one
fits completely all of them, we have implemented a custom library that provides the RBD
evaluation, from now on referred as librbd. More specifically, the librbd library supports the
numerical computation of the reliability curve for all RBD basic blocks, it exploits several
optimizations and multithreading paradigm, and it is multiplatform. Finally, we have
publicly released this open source library under the AGPL v3.0 license [43].

2. Reliability Block Diagrams

An RBD decomposes a system into its independent components and shows the logical
connections needed for the successful operation of the system [3–5,44,45]. The basic
assumptions of the RBD methodology are the following ones:

1. The modeled system, as well as each component, has only two states, i.e., success and failure.
2. The RBD represents the success state of the modeled system through the usage of

success paths, i.e., the connections of the success states of its components.
3. The system components are statistically independent. Under this assumption, the

probability of failure of the block A, P(A), is not related with the probability of failure
P(B) of the block B ∀ A, B such that A 6= B.

P(A|B) = P(A) ∀ A, B | A 6= B (1)

2.1. Basic Blocks

An RBD is built by drawing success paths between blocks composing the system. In
order to correctly model an RBD, the following basic blocks are defined:

• Singleton. This block is the simplest one and it is composed by a single component.
The block state is equal to success if and only if the component is in success state. An
example is a stand-alone Power Supply.

• Series. This block is composed by N components. The block state is equal to success
if and only if all the components are in success state. An example is a 2-out-of-2
computing system (2oo2).

• Parallel. This block is composed by N components. The block state is equal to success
if and only if at least one component is in success state, or, in other terms, the block
state is equal to failure if and only if all the components are in the failure state. An
example is a redundant Power Supply system with current sharing.

• K-out-of-N (KooN). This block is composed by N components. The block state is
equal to success if and only if at least K components out of N are in success state. An
example is a 2-out-of-3 computing system (2oo3).

• Bridge. This block is composed by 5 components arranged as shown in Figure 3. The
block state is equal to success if at least one of the four following conditions is satisfied:

1. Components A and B are correctly operating.
2. Components C and D are correctly operating.
3. Components A, E and D are correctly operating.
4. Components C, E and B are correctly operating.

An example is a network infrastructure.

Appl. Sci. 2021, 11, 4026 5 of 24

A

C

E

B

D

Figure 3. Layout of RBD bridge block.

2.2. Quantitative Evaluation Using RBDs

In this section, we recall the mathematical formulas used to quantitatively evaluate
the probability that a block is correctly operating, i.e., its state is equal to success, by using
the RBD formalism. More specifically, we firstly introduce the general formulas that can
be always used; afterwards we present simplified formulas that can be used if and only
if all components inside a block are equal, i.e., they have the same probability of being in
success state.

Let pi be the probability that the state of the i-th component is equal to success, and let
qi = 1− pi be the probability that the state of the i-th component is equal to failure.

Since a singleton block is composed by only one component, its probability of being
in success state psingleton is trivially equal to the probability of being in success state of its
sole component p.

2.2.1. Quantitative Evaluation: General Formulas

The following general formulas can be used to quantitatively evaluate the probability
that the state of an RBD block composed by N components is equal to success:

• Series. The probability of success of the series block pseries is computed as:

pseries =
N

∏
i=1

pi (2)

• Parallel. The probability of failure of the parallel block qparallel is computed as:

qparallel =
N

∏
i=1

qi =
N

∏
i=1

(1− qi) (3)

The probability of success of the parallel block pparallel is thus computed as:

pparallel = 1−
N

∏
i=1

(1− pi) (4)

• K-out-of-N (KooN). In order to compute the probability of success of a KooN block,
we can use one of the following approaches:

1. Let C(N, i, j) be the j-th unique combination of i out of N components correctly
working. For a given couple <i, N>, the number of unique combinations is
equal to the binomial coefficient (N

i). We define path(N, i, j) as the specific
realization of one of the possible system states for which i components out of
N are correctly working while the other (N − i) have failed: the exact set of

Appl. Sci. 2021, 11, 4026 6 of 24

the working components is selected through the usage of unique combination
C(N, i, j). Its probability of occurrence is:

Ppath(N,i,j) = ∏
l∈C(N,i,j)

pl · ∏
m/∈C(N,i,j)

qm (5)

The state of a KooN block is equal to success if and only if the current system
state is satisfied by one path of at least K working components. The probability
of success of the KooN block can be defined as:

pKooN =
N

∑
i=K

(N
i)

∑
j=1

Ppath(N,i,j) (6)

2. Observe that the probability of success of a system with 0 or more components
out of I in success state is equal to 1 and observe that the probability of success of
a system with J or more components out of I with J > I in success state is equal
to 0. A recursive approach for evaluating the probability of success of a KooN
system is derived by conditioning on the state of the N-th component [3]. The
N-th component can assume only two states, success with probability pN and
failed with probability qN . Let us assume that the N-th component is correctly
working: for a KooN system to be correctly operating, we need at least K − 1
working components out of the remaining N − 1. If, on the other hand, the N-th
component is failed, we need at least K working components out of the remaining
N − 1 in order to have a correctly operating KooN system. The probability of
success of a KooN block can then be recursively computed as:

pKooN = qN · pKoo(N−1) + pN · p(K−1)oo(N−1)

p0ooI = 1

pJooI = 0 ∀J > I

(7)

• Bridge. In order to compute the probability of success of a bridge block, we apply the
same decompositional approach used in the second set of formulas to compute the
probability of success of a KooN block. Let us analyze the bridge block by conditioning
the status of component E. If E is failed, the state of the block is equal to success if
either A and B or C and D are correctly operating, i.e., if the parallel of two series A, B
and C, D is satisfied. The probability of occurrence of this first event is equal to the
probability of failure of E. On the other hand, if E is correctly operating, the state of
the block is equal to success if at least one component between A and C is correctly
operating and if at least one component between B and D is correctly operating, i.e., if
the series of two parallel A, C and B, D is satisfied. The probability of occurrence of
this second event is equal to the probability of success of E. The probability of success
of a bridge block can then be computed through the formula:

pbridge = pE · (1− qA · qC) · (1− qB · qD)+

+ qE · (1− (1− pA · pB) · (1− pC · pD))
(8)

One could argue that the formulas to compute probability of success of series and
parallel blocks are specific cases of the KooN block: series block can be treated as a NooN
block, while parallel block can be treated as a 1ooN. On the other hand, the mathematical
representation for the specific cases of series and parallel blocks is simpler, thus justifying
the usage of two additional formulas.

Appl. Sci. 2021, 11, 4026 7 of 24

2.2.2. Quantitative Evaluation: Identical Components’ Formulas

Under the assumption of N identical components having probability of success p,
the following simplified formulas can be used to evaluate the probability of success of an
RBD block:

• Series. By substituting pi with p in Equation (2), we can compute the simplified
probability of success of the series block pseries as:

pseries = pN (9)

• Parallel. By substituting pi with p in Equation (4), we can compute the simplified
probability of success of the parallel block pparallel as:

pparallel = 1− (1− p)N (10)

• K-out-of-N (KooN). By substituting pi with p in Equations (5) and (6), we can compute
the simplified probability of success of the K-out-of-N block RKooN as:

pKooN =
N

∑
J=K

(
N
J

)
· pJ · (1− R)N−J (11)

• Bridge. By substituting pA to pE with p and qA to qE with q in (8), we obtain simplified
probability of success of the bridge block pbridge as:

pbridge = p · (1− q2)2 + q · (1− (1− p2)2) (12)

2.3. Reliability Evaluation Using RBDs

The same mathematics described in Section 2.2 can be used to analytically compute
the reliability curve of a block given the reliability curves of its components. In order to
perform this time-dependent analysis, it is sufficient to replace each occurrence of px and
qx in equations from Equation (2) to Equation (12) with, respectively, Rx(t) and Fx(t).

The statement above is trivial and it is justified as follows: recall the probabilistic
definition of reliability, i.e., the probability that the state of a given system or component
at a given time t is equal to success given that it was correctly operating at the initial time
t0. We can then apply the same mathematics in Section 2.2 to quantitatively evaluate the
probability that the state of an RBD block is equal to success at time t, i.e., its reliability.

The described approach can be easily adapted to those applications for which the
analytical reliability curve is not needed but only samples acquired from it are sufficient. For
example, the reliability curve of a system can be sampled at time instants t0 + k · ∆t, where
t0 is the initial time, k ∈ N and ∆t is the sampling period, by sampling the reliability curves
of its components and by applying the proper equations for each evaluated time instant.

3. RBD Computation Library-librbd

As already stated in Section 1, our aim was to develop a library with the following
characteristics:

• To be highly optimized;
• To support the most common OSes, i.e., Windows, Mac OS and Linux;
• To support the numerical computation of the reliability curve for all RBD basic blocks;
• To be available as a free software.

In order to meet the third goal, librbd implements the resolution formulas for series,
parallel, KooN and bridge RBD blocks over time by accepting the following parameters:

• Number N of components within the block;
• Number T of temporal instants to be analyzed;
• Reliability values R for the modeled components over the requested time instants.

Appl. Sci. 2021, 11, 4026 8 of 24

In order to meet the first two goals, several optimizations have been designed and imple-
mented, as described in Section 3.1. Finally, in Section 3.2 we validate the results obtained
using librbd by comparing the reliability curves of several blocks with the ones obtaining
by using SHARPE tool.

3.1. Design

The two goals of portability and optimization tend to be in contrast. Interpreted
languages, for example, are portable by nature, but they often lack performance; compiled
languages, on the other hand, offer greater performance, but they are less portable when
an interaction with the OS is required [46]. We decided to implement librbd in C language,
at the cost of introducing small parts of conditional compilation when an interaction with
the OS is needed. Furthermore, librbd is available both as a dynamic and static library.

In order to minimize numerical errors, all computations are performed using double-
precision floating-point format (double) compliant with binary64 format [47].

Both the uncertainties and the numerical errors are due to the chosen format and, since
the reliability is a real number in range [0, 1], they are limited to the maximum resolution
of floating-point numbers in the same range as described in [47].

We decided to implement both formulas for RBD blocks with identical components
and for RBD blocks with generic components. This choice implies doubling the Application
Programming Interfaces (APIs), thus almost doubling the size of the library itself, but it
allows for the achievement of higher performance in the identical case, especially for
KooN blocks.

3.1.1. Optimizations for KooN Computation

Several optimizations have been designed and implemented for RBD KooN blocks.
Two trivial optimizations, applicable to both RBD KooN blocks with generic and

identical components, have been implemented. A KooN system with K = N is solved as
an RBD series block, while a KooN system with K = 1 is solved as an RBD parallel block.

A major optimization, applicable to both RBD KooN blocks with generic and identical
components, minimizes the number of computational steps. This optimization exploits the
formula of the trivial configuration 0ooN, which is shown in Equation (13):

R0ooN =
N

∑
i=0

(N
i)

∑
j=1

Ppath(N,i,j) = 1 (13)

Starting from Equation (13), we divide the outer sum into two separate sums, the first
one ranging from 0 to K− 1, the second one ranging from K to N, and we substitute the
contribution shown in Equation (6). Finally, we resolve for RKooN as:

K−1

∑
i=0

(N
i)

∑
j=1

Ppath(N,i,j) +
N

∑
i=K

(N
i)

∑
j=1

Ppath(N,i,j) = 1

FKooN + RKooN = 1

RKooN = 1− FKooN

(14)

where FKooN is the unreliability of a KooN block, i.e., the probability of having at least
N − K + 1 components failed in a block of N components. We finally observe that, when
N − K > K− 1, we can compute RKooN exploiting Equation (14) decreasing the mathemat-
ical complexity.

For RBD KooN blocks with identical components, we compute and store all coefficients
(N

i) , ∀i ∈ [K, N] that will be used during the computation of the reliability for each
time instant. For RBD KooN blocks with generic components, we try to compute all
combinations of i out of N components with i ∈ [K, N] that are needed to compute the
reliability for each time instant. The number of these combinations is equal to ∑N

i=K (N
i).

Appl. Sci. 2021, 11, 4026 9 of 24

The last optimization, which is applicable to RBD KooN blocks with generic com-
ponents, is the adoption of a heuristic to decrease the computation time by using either
Equation (7) or Equation (14). The number of recursion steps performed while applying
Equation (7) is limited to N2 [41]. On the other hand, the number of iterative steps per-
formed while applying Equation (14) is limited to ∑N

i=K (N
i), with K ≥ N/2. The chosen

heuristic used to compute reliability of a KooN block with generic components is the
following one:

• Use Equation (7) when all the following conditions are true:

– The OS is able to allocate the memory to store all combinations of i out of N
components with i ∈ [K, N] that are needed to compute the reliability for each
time instant;

– ∑N
i=K (N

i) < N2.

• Use Equation (14) otherwise.

Algorithm 1, together with auxiliary functions shown in Algorithm 2, is used to
compute the reliability of an RBD KooN block with generic components, while Algorithm 3
is used to compute the reliability of an RBD KooN block with identical components.

Algorithm 1: Computation of RBD KooN block with generic components.
Input: Reliability Ri of each component
Result: Reliability R of KooN block
begin

N_square = N · N;
sum_nCi = 0;
if (N − K) ≤ (K− 1) then

for i ∈ [K, N] do
sum_nCi = sum_nCi + (N

i);
if sum_nCi <= N_square then

R = 0;
for i ∈ [K, N] do

for j ∈ (N
i) do

R = R + ReliabilityStep(N, i, j);
else

R = ReliabilityRecursive(N, K);
else

for i ∈ [0, K− 1] do
sum_nCi = sum_nCi + (N

i);
if sum_nCi <= N_square then

R = 1;
for i ∈ [0, (K− 1)] do

for j ∈ (N
i) do

R = R− ReliabilityStep(N, i, j);
else

R = ReliabilityRecursive(N, K);

Appl. Sci. 2021, 11, 4026 10 of 24

Algorithm 2: Auxiliary functions for computation of RBD KooN block with
generic components.

Input: Reliability Ri of each component
Input: j-th combination of iooN components C(N, i, j)
Function ReliabilityStep(N, i, j)

Rstep = 1;
for l ∈ [1, N]) do

if l ∈ C(N, i, j) then
Rstep = Rstep · Rl ;

else
Rstep = Rstep · (1− Rl);

return Rstep;
Function ReliabilityRecursive(i, j)

if j = 0 then
return 1;

if j > i then
return 0;

return (1− Ri) · ReliabilityRecursive(i− 1, j) +
Ri · ReliabilityRecursive(i− 1, j− 1);

Algorithm 3: Computation of RBD KooN block with identical components.
Input: Reliability Rc of each component
Result: Reliability R of KooN block
begin

if (N − K) ≤ (K− 1) then
R = 0;
for i ∈ [K, N] do

R = R + (N
i) · Ri

c · (1− Rc)N−i;
else

R = 1;
for i ∈ [0, (K− 1)] do

R = R− (N
i) · Ri

c · (1− Rc)N−i;

3.1.2. Symmetric Multi-Processing (SMP)

In order to further increase performance, librbd adopts the Symmetric Multi-Processing
(SMP) paradigm. The external library chosen for adding SMP support is pthreads. This
library implements the management of threads and is compliant with the POSIX standard
OS interface [48]. This library is always available on fully and mostly POSIX-compliant
OSes (e.g., Mac OS and Linux). Microsoft Windows does not offer a native support to
pthreads, but it is still possible to use it through one of the following two methods:

• Download pthreads-win32, a freely available library which implements a large sub-
set of the POSIX standard threads related API for Windows [49]. After pthreads-
win32 has been downloaded, it is possible to use the desired IDE and Compiler
(e.g., Visual Studio).

• Download and install Cygwin, a freely available environment (i.e., tools and libraries)
which provides a large collection of GNU and Open Source tools, including GCC, and
a substantial POSIX API functionality, including pthreads-win32 [50].

In order to fully exploit the SMP paradigm, a key point is the subdivision of the task
into batches. For this particular problem, the best subdivision is to assign a subset of data,
i.e., a batch, to each thread. In particular, each thread receives as input the reliability values
of all components over a subset of time instants. Furthermore, librbd interrogates the OS to
retrieve the total number of CPU cores and uses this number as the maximum number of
threads that can be created.

Appl. Sci. 2021, 11, 4026 11 of 24

The usage of the SMP paradigm adds an overhead: each time an application requests
the creation of a new thread and each time a thread terminates its computation, the OS
has to perform additional operations. This overhead negates the benefits of SMP when
the computational task is too small. In order to mitigate this issue, several tests have been
conducted to find a minimum to the batch size. This minimum has been empirically set to
10, 000 time instants.

The SMP functionality can be enabled or disabled at compile time. When SMP is not
needed, i.e., when librbd is built as a Single Threaded (ST) library, it is compiled providing
external compiler flag CPU_SMP defined with value 0. When SMP is needed, librbd is
compiled without providing external compiler flag CPU_SMP or by defining it with a value
different from 0.

3.2. Validation

To validate the developed library, we perform a comparison of librbd output with
the one obtained by using SHARPE tool [41]. Two different RBD models for each RBD
block have been generated, one using identical components and the other using generic
components. The validation process has been carried out by using fifteen electronics
components with constant failure rate validated using Telcordia SR-332 [51]: their failure
rate is shown in Table 1. The eight RBD blocks modeled during the validation process are
shown in Table 2.

Table 1. Components and their respective failure rate λ.

Component Failure Rate λ (h−1) Component Failure Rate λ (h−1)

C1 0.0000084019 C9 0.0000027777
C2 0.0000039438 C10 0.0000055397
C3 0.0000078310 C11 0.0000047740
C4 0.0000079844 C12 0.0000062887
C5 0.0000091165 C13 0.0000036478
C6 0.0000019755 C14 0.0000051340
C7 0.0000033522 C15 0.0000095223
C8 0.0000076823

Table 2. RBD models used during validation.

RBD Block Topology T (h) Components

Series identical 15 components 200,000 C1
Series generic 15 components 200,000 All
Parallel identical 15 components 200,000 C1
Parallel generic 15 components 200,000 All
KooN identical 8oo15 200,000 C1
KooN generic 8oo15 200,000 All
Bridge identical 5 components 200,000 C1
Bridge generic 5 components 200,000 From C1 to C5

For each RBD model, we have produced an output file containing the reliability
of each analyzed time instant using both librbd and SHARPE. The reliability has been
formatted using scientific notation with eight decimal places. Please note that, due to
the chosen numerical representation, the uncertainty of the comparison operations is
limited to 1.00× 10−8. The reliability curves obtained for each analyzed block are shown
in Figure 4a–h. For a better graphical visualization, only the first 100,000 h are plotted
for each reliability curve. The blue line represents the reliability curve obtained using
librbd, while the red one uses SHARPE tool. In all the figures, the blue and red curves are
overlapping, with the blue line completely hiding the red one. The visual inspection of
the reliability curves obtained from the RBD models with both librbd and SHARPE tool
proves the validity of the developed library.

Appl. Sci. 2021, 11, 4026 12 of 24

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

librbd

SHARPE

Time (hours)

R
el

ia
b

ili
ty

(a) Series identical.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

librbd

SHARPE

Time (hours)

R
el

ia
b

ili
ty

(b) Series generic.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000100,000
0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

librbd

SHARPE

Time (hours)

R
el

ia
b

ili
ty

(c) Parallel identical.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000100,000
0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

librbd

SHARPE

Time (hours)

R
el

ia
b

ili
ty

(d) Parallel generic.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

librbd

SHARPE

Time (hours)

R
el

ia
b

ili
ty

(e) KooN identical.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

librbd

SHARPE

Time (hours)

R
el

ia
b

ili
ty

(f) KooN generic.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

librbd

SHARPE

Time (hours)

R
el

ia
b

ili
ty

(g) Bridge identical.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

librbd

SHARPE

Time (hours)

R
el

ia
b

ili
ty

(h) Bridge generic.

Figure 4. Validation of reliability of RBD blocks.

Appl. Sci. 2021, 11, 4026 13 of 24

To further strengthen the results of this validation we have computed, for each ana-
lyzed RDB model, the error function as the difference between the two reliability curves
and we have computed the maximum and minimum value of this error function. The
obtained minimum and maximum error are shown, for each RBD model, in Table 3. We
suppose that this error is due to the different implementation of the two tools, in particular
regarding the exact sequence of operations performed over floating-point numbers. From
the analysis of the obtained results, we can observe that the maximum and minimum
error between the two solutions is lower than the maximum uncertainty, hence it can be
considered negligible.

Hence, we can conclude that librbd produces the valid result, i.e., the correct reliability
curve, for each implemented RBD basic block.

Table 3. Error function between librbd and SHARPE tool.

RBD Block Error Function
Minimum Maximum

Series identical −1.00 × 10−13 1.00 × 10−13

Series generic −1.00 × 10−13 1.00 × 10−11

Parallel identical 0.00 × 100 0.00 × 100

Parallel generic 0.00 × 100 0.00 × 100

KooN identical −1.00 × 10−9 0.00 × 100

KooN generic −1.00 × 10−9 0.00 × 100

Bridge identical 0.00 × 100 0.00 × 100

Bridge generic 0.00 × 100 0.00 × 100

3.3. librbd Usage

This section covers the library API. As already stated, librbd provides, for each RBD
basic block, two distinct interfaces, one for the case of generic components and the other
one for identical components. The library exposes a single header file, “rbd.h”, which
provides access to the entire API.

3.3.1. API for Generic Components

The following interfaces are used to evaluate the reliability of RBD blocks with
generic components:

• int rbdSeriesGeneric(double *R, double *O, unsigned char N, unsigned int T)
• int rbdParallelGeneric(double *R, double *O, unsigned char N, unsigned int T)
• int rbdKooNGeneric(double *R, double *O, unsigned char N, unsigned char K, unsigned

int T)
• int rbdBridgeGeneric(double *R, double *O, unsigned char N, unsigned int T)

The capitalized and bold characters identify the following input parameters:

• N: the number of components inside the block. Note that, for the bridge block, the
number of components must be equal to 5.

• K: the minimum number of components inside the block. Note that this parameter is
available for KooN blocks.

• T: the number of time instants over which the reliability curve is computed.
• R: the reliability curves for the input components. Since this is the generic components

case, this parameter underlies an N × T matrix.
• O: the computed reliability curve, returned as an array of T elements.

All interfaces return 0 in case of successful computation and a negative number otherwise.

3.3.2. API for Identical Components

The following interfaces are used to evaluate the reliability of RBD blocks with identi-
cal components:

• int rbdSeriesIdentical(double *R, double *O, unsigned char N, unsigned int T)
• int rbdParallelIdentical(double *R, double *O, unsigned char N, unsigned int T)

Appl. Sci. 2021, 11, 4026 14 of 24

• int rbdKooNIdentical(double *R, double *O, unsigned char N, unsigned char K, un-
signed int T)

• int rbdBridgeIdentical(double *R, double *O, unsigned char N, unsigned int T)

The capitalized and bold characters identify the following input parameters:

• N: the number of components inside the block. Note that, for the bridge block, the
number of components must be equal to 5.

• K: the minimum number of components inside the block. Note that this parameter is
available for KooN blocks.

• T: the number of time instants over which the reliability curve is computed.
• R: the reliability curves for the input components. Since this is the identical compo-

nents case, this parameter underlies an array of T elements.
• O: the computed reliability curve, returned as an array of T elements.

All interfaces return 0 in case of successful computation, a negative number otherwise.

3.3.3. Example of librbd Usage

Let us consider the system shown in Figure 1. Since components C1 and C2 are
identical in parallel configuration, the reliability curve of this first block can be computed
by invoking rbdParallelIdentical. Finally, the reliability of the whole system can be
computed through a series block with components C3 and C4 and the reliability of the
previously evaluated parallel block by invoking rbdSeriesGeneric.

Listing 1 shows the C source code used to implement and analyze the described
system. The reliability curves of all components are evaluated over T = 10 time instants.
The source code, through the consecutive invocation of two different librbd APIs, evaluates
the reliability of the whole system. Finally, the evaluated reliability is printed to the
standard output.

The C source code related to the described example and shown in Listing 1 has been
compiled and executed. Its output is shown in Listing 2.

4. Materials and Methods

In this section, we present the materials and the methods used to evaluate the per-
formance of librbd. In particular, in Section 4.1 we present the materials used, while in
Section 4.2 we discuss the methodology adopted to evaluate the performance of librbd and
to compare it with SHARPE.

4.1. Materials

The five PCs listed in Table 4 have been used in order to measure the performance of
librbd [43].

Both librbd and test binaries were built using the following compiling options:

• Optimization level set to the maximum level (−O3);
• Target architecture set as follows:

– Advanced Micro Devices X86-64 (amd64) for Intel CPUs;
– ARMv6 with VFPv2 coprocessor (armv6+fp) for ARM CPU.

To compare the performance of librbd, we use SHARPE [41,42] since it is the closest
tool to all our requirements. SHARPE tool is available on Windows OS only. To perform
the comparison with SHARPE tool, we exploited the dual boot-able PC1. The second OS
installed on this machine is Windows 7 with Cygwin GCC 7.4.0.

Appl. Sci. 2021, 11, 4026 15 of 24

Listing 1: Example of librbd usage.
#include <stdio.h>
#include <string.h>
#include “rbd.h” /* Include librbd header */

void main (void){
/* Input data r_c1 - Reliability of C1/C2 as T array */
double r_c1[10] = {

1.000, 0.930, 0.860, 0.790, 0.720,
0.650, 0.580, 0.510, 0.440, 0.370

};
/* Input data r_c3 - Reliability of C3 as T array */
double r_c3[10] = {

1.000, 0.980, 0.960, 0.940, 0.920,
0.900, 0.880, 0.860, 0.840, 0.820

};
/* Input data r_c4 - Reliability of C4 as T array */
double r_c4[10] = {

1.000, 0.970, 0.950, 0.910, 0.880,
0.860, 0.830, 0.780, 0.720, 0.610

};
/* Intermediate data r_tmp - Reliability as NxT matrix */
double r_tmp[3][10];
/* Output data - Reliability of the system as T array */
double r_system[10];

/* Compute reliability of parallel block and store */
/* result in first row of r_tmp */
rbdParallelIdentical (&r_c1[0], &r_tmp[0][0], 2, 10);

/* Copy reliability of C3 to second row of r_tmp */
memcpy (&r_tmp[1][0], &r_c3[0], sizeof(double) * 10);
/* Copy reliability of C4 to third row of r_tmp */
memcpy (&r_tmp[2][0], &r_c4[0], sizeof(double) * 10);

/* Compute reliability of series block and store */
/* result in r_system */
rbdSeriesGeneric (&r_tmp[0][0], &r_system[0], 3, 10);

/* Print computed reliability */
for (int i = 0; i < 10; i++) {

printf ("Reliability %d: %.6f\n", i, r_system[i]);
}

}

Listing 2: Output of librbd example.
Reliability 0: 1.000000
Reliability 1: 0.945942
Reliability 2: 0.894125
Reliability 3: 0.817677
Reliability 4: 0.746127
Reliability 5: 0.679185
Reliability 6: 0.601557
Reliability 7: 0.509741
Reliability 8: 0.415135
Reliability 9: 0.301671

Appl. Sci. 2021, 11, 4026 16 of 24

Table 4. PCs used for performance evaluation.

Name Chassis CPU & RAM OS & Compiler

PC1 Workstation

Intel i7-2600 Ubuntu
@ 3.8GHz 18.04_amd64

16GB-DDR3 GCC
@ 1333MHz 5.4.0

PC2 Notebook

Intel i7-6700HQ Mac OS
@ 3.5GHz 10.13.6

16GB-LPDDR3 Apple LLVM
@ 2133MHz 10.0.0

PC3 Notebook

Intel i7-7700HQ Ubuntu
@ 3.8GHz 18.04_amd64

32GB-DDR4 GCC
@ 2400MHz 5.4.0

PC4 Notebook

Intel i5-8365U Windows
@ 1.9GHz 10

16GB-DDR4 Cygwin GCC
@ 2666MHz 7.4.0

PC5

4×Cortex-A53 Raspberry Pi OS
Raspberry @ 1.2GHz 10_AArch32

Pi 3 1GB-LPDDR2 GCC
@ 900MHz 8.3.0

4.2. Methods

The evaluation of performance has been conducted through the usage of a test appli-
cation instrumented in order to measure the execution time of librbd of several RDB blocks
over different time instant configurations. In particular, we defined the following set of
RBD models to be used during the execution time monitoring:

• Series blocks with 2, 3, 5, 10 and 15 generic components;
• Series blocks with 2, 3, 5, 10 and 15 identical components;
• Parallel blocks with 2, 3, 5, 10 and 15 generic components;
• Parallel blocks with 2, 3, 5, 10 and 15 identical components;
• 1oo2, 2oo3, 3oo5, 5oo10 and 8oo15 blocks with generic components;
• 1oo2, 2oo3, 3oo5, 5oo10 and 8oo15 blocks with identical components;
• Bridge block with generic components;
• Bridge block with identical components.

Each RBD model has been analyzed for 50,000, 100,000 and 200,000 time instants. To
further investigate the performance of KooN RBD blocks, we used the following models
and we analyzed them over 100,000 time instants:

• All blocks ranging from 1oo15 to 15oo15 with generic components;
• All blocks ranging from 1oo15 to 15oo15 with identical components.

The chosen instrumentation method has been implemented through a succession
of invocations to clock_gettime API, one immediately preceding the librbd invocation
and the other one as soon as librbd returned. The usage of this API has the following
advantages and drawbacks:

• It returns a monotonic clock (i.e., guaranteed to be nondecreasing), which allows to
measure the time spent in executing a program routine with a time resolution up to
nanoseconds;

• It takes into account not only user time (application time) but also system time;
• It is defined by The Open Group POSIX standard [48].

In order to minimize the impact from the second point, each experiment has been
repeated 15 times and, after all experiments were run, the median time of execution has
been selected. We chose the median time since it minimizes the impact of the time spent by
the OS which is unrelated to the RBD block analysis.

Appl. Sci. 2021, 11, 4026 17 of 24

To compare the performance of librbd w.r.t. SHARPE, we define the following set of
RBD models analyzed for 100,000 time instants:

• Series blocks with 2, 3, 5, 10 and 15 generic components;
• Series blocks with 2, 3, 5, 10 and 15 identical components;
• Parallel blocks with 2, 3, 5, 10 and 15 generic components;
• Parallel blocks with 2, 3, 5, 10 and 15 identical components;
• 1oo2, 2oo3, 3oo5, 5oo10 and 8oo15 blocks with generic components;
• 1oo2, 2oo3, 3oo5, 5oo10 and 8oo15 blocks with identical components;
• Bridge block with generic components;
• Bridge block with identical components.

The comparison experiments were done for series, parallel, KooN and bridge blocks
for a time interval of 200,000 time instants. The failure rate λ of each component has been
chosen using the same criteria described in Section 3.2 and in Table 1.

To compare the execution time, we created a test application that uses librbd to run the
aforementioned RBD models and that produces an output log file with the same formatting
of SHARPE tool.

5. Results and Discussion: Evaluation of librbd Performance

In this section, we evaluate the performance of the librbd library. In Section 5.1 we
evaluate the execution time of librbd using different computers and different RBD layouts.
Finally, in Section 5.2, we compare the execution time needed to analyze the same problem
by both SHARPE and librbd.

5.1. Evaluation of librbd Execution Time

The measurement experiments were performed as described in Section 4.2 and the
execution time results are presented in Tables 5–14 for generic and identical components,
for each of the different RBD blocks (namely, series, parallel, N/2ooN, Koo15, bridge).

As expected, for both series and parallel blocks with generic and identical components
(see Tables 5–8), we observe that the computation time is linear w.r.t. both the number of
time intervals and the number of components.

This result hence confirms the correctness of librbd design w.r.t. the optimization of
both series and parallel blocks.

Table 5. Performance evaluation of series generic block.

Topology # Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

2 50,000 0.436 0.268 0.228 0.657 2.812
2 100,000 0.247 0.365 0.290 0.896 4.336
2 200,000 0.548 0.706 0.621 1.692 8.156
3 50,000 0.174 0.260 0.228 0.671 2.446
3 100,000 0.380 0.419 0.307 0.904 4.732
3 200,000 0.701 0.851 0.657 1.659 11.720
5 50,000 0.193 0.264 0.289 0.646 4.229
5 100,000 0.412 0.394 0.436 0.927 6.505
5 200,000 0.902 0.792 0.729 1.767 13.761

10 50,000 0.351 0.351 0.317 0.706 8.312
10 100,000 0.884 0.637 0.634 1.021 13.734
10 200,000 1.754 1.190 1.144 1.972 27.330
15 50,000 0.538 0.491 0.433 0.760 11.697
15 100,000 1.279 0.873 0.848 1.117 20.715
15 200,000 2.650 1.831 1.646 2.034 41.191

Appl. Sci. 2021, 11, 4026 18 of 24

Table 6. Performance evaluation of series identical block.

Topology # Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

2 50,000 0.388 0.263 0.220 0.633 2.325
2 100,000 0.252 0.343 0.290 0.958 3.785
2 200,000 0.511 0.638 0.597 1.709 6.790
3 50,000 0.163 0.255 0.205 0.690 1.510
3 100,000 0.365 0.370 0.306 0.869 3.521
3 200,000 0.602 0.774 0.626 1.558 6.591
5 50,000 0.179 0.260 0.253 0.683 1.865
5 100,000 0.329 0.356 0.411 0.856 3.098
5 200,000 0.561 0.690 0.694 1.740 6.862

10 50,000 0.287 0.267 0.274 0.667 2.146
10 100,000 0.532 0.379 0.438 0.925 4.041
10 200,000 0.673 0.725 0.737 1.839 8.507
15 50,000 0.413 0.314 0.347 0.737 2.419
15 100,000 0.573 0.469 0.565 0.932 4.262
15 200,000 0.874 0.933 0.935 1.874 7.831

Table 7. Performance evaluation of parallel generic block.

Topology # Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

2 50,000 0.197 0.310 0.204 0.685 1.978
2 100,000 0.278 0.430 0.392 0.858 4.053
2 200,000 0.594 0.861 0.635 1.588 8.407
3 50,000 0.183 0.295 0.198 0.655 3.190
3 100,000 0.356 0.432 0.456 0.884 5.626
3 200,000 0.691 0.804 0.663 1.698 11.161
5 50,000 0.206 0.313 0.226 0.686 4.056
5 100,000 0.474 0.433 0.456 0.951 7.139
5 200,000 0.940 0.858 0.734 1.655 14.948

10 50,000 0.446 0.355 0.419 0.651 9.915
10 100,000 0.879 0.617 0.709 0.947 16.667
10 200,000 1.797 1.232 1.110 1.891 29.725
15 50,000 0.548 0.440 0.552 0.765 13.544
15 100,000 1.347 0.945 0.896 1.089 22.388
15 200,000 2.649 1.853 1.916 2.110 42.094

Table 8. Performance evaluation of parallel identical block.

Topology # Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

2 50,000 0.181 0.302 0.199 0.641 1.406
2 100,000 0.260 0.396 0.342 0.838 3.983
2 200,000 0.523 0.821 0.629 1.627 7.381
3 50,000 0.178 0.292 0.197 0.642 1.637
3 100,000 0.360 0.423 0.444 0.831 3.316
3 200,000 0.566 0.756 0.623 1.630 6.872
5 50,000 0.187 0.292 0.224 0.704 2.093
5 100,000 0.401 0.383 0.438 0.868 3.784
5 200,000 0.594 0.776 0.673 1.527 7.597

10 50,000 0.290 0.284 0.315 0.627 2.068
10 100,000 0.561 0.394 0.489 0.854 4.145
10 200,000 0.718 0.754 0.718 1.700 7.429
15 50,000 0.388 0.305 0.347 0.688 2.522
15 100,000 0.642 0.476 0.552 0.918 4.626
15 200,000 0.801 0.892 0.951 1.997 8.311

Appl. Sci. 2021, 11, 4026 19 of 24

Table 9. Performance evaluation of N/2ooN generic block.

Topology # Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

1oo2 50,000 0.183 0.306 0.211 0.667 1.810
1oo2 100,000 0.254 0.402 0.393 0.791 3.873
1oo2 200,000 0.561 0.782 0.617 1.540 8.123
2oo3 50,000 0.669 0.768 0.709 0.776 6.478
2oo3 100,000 1.265 1.278 1.280 1.163 12.146
2oo3 200,000 2.724 2.299 2.787 2.122 21.686
3oo5 50,000 2.453 2.419 2.716 2.103 30.528
3oo5 100,000 4.313 5.402 4.468 4.090 44.617
3oo5 200,000 7.224 9.466 8.448 7.611 82.247

5oo10 50,000 20.584 45.096 20.462 35.188 299.916
5oo10 100,000 44.083 88.876 46.227 78.124 506.973
5oo10 200,000 78.657 178.793 80.726 288.728 986.001
8oo15 50,000 558.292 1212.422 571.278 1838.166 7753.987
8oo15 100,000 1167.856 2406.377 1194.093 3694.708 15,316.800
8oo15 200,000 2233.662 4784.158 2278.303 7666.604 30,172.290

Table 10. Performance evaluation of N/2ooN identical block.

Topology # Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

1oo2 50,000 0.171 0.293 0.199 0.617 1.397
1oo2 100,000 0.250 0.378 0.367 0.805 3.613
1oo2 200,000 0.533 0.748 0.598 1.537 8.085
2oo3 50,000 0.377 0.334 0.380 0.649 3.745
2oo3 100,000 0.616 0.482 0.718 1.002 6.674
2oo3 200,000 0.980 0.856 1.149 2.099 12.279
3oo5 50,000 0.491 0.372 0.579 0.964 5.452
3oo5 100,000 0.840 0.682 0.882 1.148 9.192
3oo5 200,000 1.251 1.244 1.513 2.056 15.876

5oo10 50,000 0.658 0.708 0.764 0.961 10.244
5oo10 100,000 1.315 1.396 1.220 1.309 15.746
5oo10 200,000 2.169 2.339 1.990 4.621 28.266
8oo15 50,000 1.422 1.168 1.720 2.651 18.303
8oo15 100,000 3.027 2.456 2.810 4.756 27.901
8oo15 200,000 4.403 4.035 4.940 10.613 48.033

Table 11. Performance evaluation of Koo15 generic block.

Topology # Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

1oo15 100,000 1.280 0.765 0.929 2.305 17.021
2oo15 100,000 10.944 10.057 9.167 24.552 88.657
3oo15 100,000 73.165 61.577 64.344 155.191 571.809
4oo15 100,000 183.721 341.797 183.270 604.827 2025.680
5oo15 100,000 406.931 836.953 418.733 1297.444 4983.553
6oo15 100,000 740.532 1503.090 753.573 2314.167 9237.214
7oo15 100,000 1062.330 2126.853 1071.369 3260.557 13,325.713
8oo15 100,000 1190.309 2386.732 1192.385 4171.043 15,280.717
9oo15 100,000 1064.583 2134.690 1052.093 3688.210 13,398.969

10oo15 100,000 742.056 1511.135 758.824 2466.044 9164.543
11oo15 100,000 411.900 837.570 417.853 1287.806 4967.779
12oo15 100,000 183.203 341.557 189.317 590.764 2015.668
13oo15 100,000 62.120 107.026 72.951 107.102 664.601
14oo15 100,000 9.432 15.416 10.368 17.220 100.526
15oo15 100,000 1.440 0.933 1.041 2.163 18.609

Appl. Sci. 2021, 11, 4026 20 of 24

Table 12. Performance evaluation of Koo15 identical block.

Topology # Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

1oo15 100,000 0.663 0.430 0.635 2.083 4.653
2oo15 100,000 0.828 0.883 0.884 2.908 8.284
3oo15 100,000 1.154 1.185 1.064 3.054 11.596
4oo15 100,000 1.454 1.401 1.402 3.385 14.935
5oo15 100,000 1.848 1.660 1.535 3.183 18.000
6oo15 100,000 2.147 1.898 1.723 3.513 21.169
7oo15 100,000 2.478 2.136 1.968 3.734 24.497
8oo15 100,000 3.063 2.475 2.831 5.842 27.787
9oo15 100,000 2.731 2.118 2.596 6.283 24.446

10oo15 100,000 2.432 1.900 2.418 4.917 21.156
11oo15 100,000 2.072 1.646 1.931 3.696 18.043
12oo15 100,000 1.562 1.414 1.666 3.144 14.822
13oo15 100,000 1.240 1.181 1.340 2.564 11.546
14oo15 100,000 0.933 0.935 1.128 2.342 8.221
15oo15 100,000 0.635 0.464 0.641 1.980 4.719

Table 13. Performance evaluation of bridge generic block.

Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

50,000 0.253 0.263 0.240 1.361 2.962
100,000 0.406 0.449 0.452 1.736 5.967
200,000 0.853 0.823 0.774 3.375 10.985

Table 14. Performance evaluation of bridge identical block.

Times Execution Time (ms)
PC1 PC2 PC3 PC4 PC5

50,000 0.235 0.248 0.218 1.377 1.600
100,000 0.338 0.341 0.395 1.673 3.272
200,000 0.548 0.706 0.649 3.293 7.289

The experiments with N/2ooN blocks are used to evaluate the worst case execution
time of KooN blocks (see Tables 9–10). Using the optimized computation Algorithms 1 and 2
for KooN blocks with generic components we verify that the complexity is O(N2 · T)
and that the complexity for KooN blocks with identical components computed using
Algorithm 3 is O(N · T). The experiments with Koo15 blocks are used to evaluate the
impact of the optimized algorithms for KooN computation with a fixed number of compo-
nents (see Tables 11–12). For these experiments, we observe that the execution time is, as
expected, symmetrical w.r.t. the worst case K = N/2.

The experiments performed on all KooN blocks are aligned with the foreseen com-
plexity and hence they validate the correctness of both librbd design and optimization
algorithms implemented for the most complex RBD block.

Finally, as expected, for bridge block with both generic and identical components, we ob-
serve that the computation time is linear w.r.t. the number of time intervals (see Tables 13 and 14).

In addition, for this last result, we confirm the correctness of librbd design w.r.t. the
optimization of bridge blocks.

Finally, it is important to note the execution times on the different PCs. We observe that,
for all Intel i7 CPUs, we have obtained comparable results. The difference between the Intel
i5 CPU and the other Intel CPUs may be due to both differences in the CPU architecture and
in the OS used. Finally, we observe a sensible difference between all Intel-based PCs and
the ARM-based one. This may be due to several architectural differences of the two CPU
architectures. The principal one could be that, while the tested ARM CPU incorporates
4 physical cores, i.e., with the number of concurrently executing threads equal to 4, the
tested Intel CPUs incorporate 4 physical cores with Hyper-Threading technology, thus

Appl. Sci. 2021, 11, 4026 21 of 24

providing a number of concurrently executing threads ranging from 4 to 8. Nonetheless,
the performed experiments show promising results also on low-power and low-cost CPUs.

5.2. Comparison with SHARPE

SHARPE provides a Graphical User Interface for specifying performance, reliability
and performability models through the usage of a specification language. It then provides
analysis and solution methods for the previously generated models. The analysis methods
are available as a Command Line Interface executable. This tool acquires the input model
through the usage of a SHARPE specification language file and produces as output a textual
log file.

The comparison experiments were performed as described in Section 4.2 and the
obtained results are presented in Table 15. We observe that the execution times of librbd
are significantly lower than the ones obtained by using SHARPE.

Table 15. Execution time comparison.

RBD Block Topology Execution Time (s) Gain (%)librbd SHARPE

Series generic

2 0.10 0.98 89.95
3 0.10 1.12 91.04
5 0.11 0.98 88.97

10 0.10 1.94 94.60
15 0.10 2.59 96.19

Series identical

2 0.10 0.90 89.24
3 0.11 0.96 88.32
5 0.11 0.90 87.72

10 0.12 1.23 90.40
15 0.10 1.45 93.31

Parallel generic

2 0.11 0.98 89.08
3 0.10 1.12 91.20
5 0.11 0.98 89.22

10 0.10 2.03 94.95
15 0.10 2.78 96.36

Parallel identical

2 0.10 0.92 89.19
3 0.11 0.95 88.74
5 0.11 0.92 88.51

10 0.12 1.31 91.16
15 0.10 1.59 93.85

KooN generic

1oo2 0.11 1.01 89.37
2oo3 0.12 1.15 89.95
3oo5 0.11 1.01 89.44

5oo10 0.15 2.28 93.21
8oo15 2.35 3.36 29.96

KooN identical

1oo2 0.11 0.88 87.80
2oo3 0.11 0.89 88.13
3oo5 0.11 0.88 87.71

5oo10 0.08 1.31 94.20
8oo15 0.08 1.81 95.71

Bridge generic 5 0.10 1.64 94.16

Bridge identical 5 0.09 1.66 94.35

6. Conclusions and Future Work

In this paper, we presented librbd, an open source optimized library for reliability
evaluation using the RBD formalism. After the mathematical background description, we
illustrated the library design and characteristics. Then, we showed its execution times on
different platforms and performed a comparison with the most similar tool identified at
the state-of-the-art. The good results achieved enable the usage of librbd in hierarchical
approaches for reliability evaluation exploiting strengths of both combinatorial and state-
space based models. In particular, the comparison experiments show that the execution
time of librbd is, in general, almost 9 times faster than the one obtained using SHARPE.

Appl. Sci. 2021, 11, 4026 22 of 24

These good results encourage the usage of librbd to implement a prognostics application
that leverages a frequent computation of the tuned reliability curve.

Future research and advancements of librbd include the following:

• Development of a tool that allows the graphical definition of RBDs and their analysis
through the usage of librbd.

• Development of a tool that allows the graphical definition of hierarchical models
(RBDs and STPNs/GSPNs) and that integrates librbd and SIRIO library for their
quantitative evaluation.

• Usage of native Windows APIs for SMP to decrease the execution time on this OS.
• Investigation on the performance loss experienced for KooN block with generic com-

ponents. This performance loss is visible with N = 15 and it is probably due to a
nonoptimized usage of the cache memory.

Author Contributions: Conceptualization, L.C. (Laura Carnevali), L.C. (Lorenzo Ciani), A.F. and
M.P.; methodology, L.C. (Laura Carnevali), L.C. (Lorenzo Ciani), A.F. and M.P.; software, M.P.; vali-
dation, A.F., G.G. and M.P.; formal analysis, G.G. and M.P.; investigation, G.G. and M.P.; resources,
M.P.; data curation, M.P.; writing—original draft preparation, M.P.; writing—review and editing,
L.C. (Laura Carnevali), L.C. (Lorenzo Ciani), A.F., G.G. and M.P.; visualization, G.G. and M.P.; super-
vision, A.F.; project administration, A.F.; funding acquisition, A.F. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CTMC Continuous Time Markov Chain
DFT Dynamic FT
DRBD Dynamic RBD
FT Fault Tree
FTRE FT with Repeated Events
GSPN Generalized Stochastic Petri Net
OS Operating System
RBD Reliability Block Diagram
RG Reliability Graph
SAN Stochastic Activity Network
SMP Symmetric Multi-Processing
SPN Stochastic Petri Net
SRN Stochastic Reward Net
STPN Stochastic Time Petri Net

References
1. ISO/IEC/IEEE. International Standard-Systems and Software Engineering—Vocabulary; ISO/IEC/IEEE 24765:2010(E); IEEE:

New York, NY, USA, 2010; pp. 1–418. [CrossRef]
2. CENELEC. EN 50126-1: Railway Applications–The Specification and Demonstration of Reliability, Availability, Maintainability and Safety

(RAMS)-Part 1: Generic RAMS Process; Technical Report; CENELEC: Brussels, Belgium, 2017.
3. Trivedi, K.S.; Bobbio, A. Reliability and Availability Engineering; Cambridge University Press: Cambridge, UK, 2017. [CrossRef]
4. Mahboob, Q.; Zio, E. Handbook of RAMS in Railway Systems: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018. [CrossRef]
5. Moskowitz, F. The analysis of redundancy networks. Trans. Am. Inst. Electr. Eng. Part I Commun. Electron. 1958, 77, 627–632.

[CrossRef]

http://doi.org/10.1109/IEEESTD.2010.5733835
http://dx.doi.org/10.1017/9781316163047
http://dx.doi.org/10.1201/b21983
http://dx.doi.org/10.1109/TCE.1958.6372698

Appl. Sci. 2021, 11, 4026 23 of 24

6. IEC. IEC 61078: Reliability Block Diagrams; Technical Report; IEC: Geneva, Switzerland, 2016.
7. Hixenbaugh, A.F. Fault Tree for Safety; Technical Report; Boeing Aerospace Company: Seattle, WA, USA, 1968.
8. IEC. IEC 61025: Fault Tree Analysis (FTA); Technical Report; IEC: Geneva, Switzerland, 2006.
9. Rubino, G. Network reliability evaluation. In State-of-the-Art in Performance Modeling and Simulation; Gordon & Breach Books:

London, UK, 1998.
10. Bryant, R.E. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. Comput. 1986, C-35, 677–691. [CrossRef]
11. Ericson, C. Fault Tree Analysis-A History. In Proceedings of the 17th International System Safety Conference, Orlando, FL, USA,

16–21 August 1999; pp. 1–9.
12. Stewart, W. Introduction to the Numerical Solution of Markov Chains; Princeton University Press: Princeton, NJ, USA, 1994.
13. IEC. IEC 61165: Application of Markov Techniques; Technical Report; IEC: Geneva, Switzerland, 2006.
14. Molloy, M. Performance Analysis Using Stochastic Petri Nets. IEEE Trans. Comput. 1982, 31, 913–917. [CrossRef]
15. Marsan, M.A.; Conte, G. A class of generalized stochastic petri nets for the performance evaluation of multiprocessor systems.

ACM Trans. Comput. Syst. 1983, 2, 93–122. [CrossRef]
16. Vicario, E.; Sassoli, L.; Carnevali, L. Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE

Trans. Softw. Eng. 2009, 35, 703–719. [CrossRef]
17. IEC. IEC 62551: Analysis Techniques for Dependability—Petri Net Techniques; Technical Report; IEC: Geneva, Switzerland, 2012.
18. Ciardo, G.; Blakemore, A.; Chimento, P.F.; Muppala, J.K.; Trivedi, K.S. Automated Generation and Analysis of Markov Reward

Models Using Stochastic Reward Nets. In Linear Algebra, Markov Chains, and Queueing Models; Meyer, C.D., Plemmons, R.J., Eds.;
Springer-Verlag: New York, NY, USA, 1993; pp. 145–191.

19. Ciardo, G.; Trivedi, K.S. A decomposition approach for stochastic reward net models. Perform. Eval. 1993, 18, 37–59. [CrossRef]
20. Meyer, J.; Movaghar, A.; Sanders, W. Stochastic Activity Networks: Structure, Behavior, and Application. In Proceedings of the

International Workshop on Timed Petri Nets, Torino, Italy, 1–3 July 1985; pp. 106–115.
21. Sanders, W.H.; Meyer, J.F. Stochastic Activity Networks: Formal Definitions and Concepts. In Lectures on Formal Methods and

Performance Analysis: First EEF/Euro Summer School on Trends in Computer Science Bergen Dal, The Netherlands, 3–7 July 2000;
Brinksma, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 315–343. [CrossRef]

22. Malhotra, M.; Trivedi, K.S. Power-hierarchy of dependability-model types. IEEE Trans. Reliab. 1994, 43, 493–502. [CrossRef]
23. Distefano, S.; Puliafito, A. Dynamic reliability block diagrams: Overview of a methodology. In Proceedings of the European

Safety and Reliability Conference 2007, ESREL 2007-Risk, Reliability and Societal Safety, Stavanger, Norway, 25–27 June 2007;
Volume 2.

24. Distefano, S.; Puliafito, A. Dependability Evaluation with Dynamic Reliability Block Diagrams and Dynamic Fault Trees. IEEE
Trans. Dependable Secur. Comput. 2009, 6, 4–17. [CrossRef]

25. Dugan, J.B.; Bavuso, S.J.; Boyd, M.A. Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 1992,
41, 363–377. [CrossRef]

26. Codetta-Raiteri, D. The Conversion of Dynamic Fault Trees to Stochastic Petri Nets, as a case of Graph Transformation. Electron.
Notes Theor. Comput. Sci. 2005, 127, 45–60. [CrossRef]

27. Volk, M.; Weik, N.; Katoen, J.P.; Nießen, N. A DFT Modeling Approach for Infrastructure Reliability Analysis of Railway Station
Areas. In Formal Methods for Industrial Critical Systems; Larsen, K.G., Willemse, T., Eds.; Springer International Publishing: Cham,
Switzerland 2019; pp. 40–58.

28. Carnevali, L.; Ciani, L.; Fantechi, A.; Papini, M. A novel layered approach to evaluate reliability of complex systems. In
Proceedings of the 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI), Florence, Italy,
9–12 September 2019; pp. 291–295. [CrossRef]

29. Papini, M. Reliability Evaluation of an Industrial System Through Predictive Diagnostics. Ph.D. Thesis, Universitá degli Studi di
Firenze, Florence, Italy, 2021.

30. Iannino, A.; Musa, J.D. Software Reliability. In Advances in Computers; Marshall, C.Y., Ed.; Elsevier: Amsterdam, The Netherlands,
1990; Volume 30, pp. 85–170. [CrossRef]

31. Lyu, M. Handbook of Software Reliability Engineering; McGraw-Hill, Inc.: New York, NY, USA, 1996.
32. Mzyk, R.; Paszkiel, S. Influence of Program Architecture on Software Quality Attributes. In Control, Computer Engineering and

Neuroscience; Paszkiel, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 322–329. [CrossRef]
33. Wood, A. Predicting software reliability. Computer 1996, 29, 69–77. [CrossRef]
34. Pham, H. System Software Reliability (Springer Series in Reliability Engineering); Springer-Verlag: Berlin/Heidelberg, Germany, 2006.

[CrossRef]
35. Ballerini, S.; Carnevali, L.; Paolieri, M.; Tadano, K.; Machida, F. Software rejuvenation impacts on a phased-mission system for

Mars exploration. In Proceedings of the 2013 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Pasadena, CA, USA, 4–7 November 2013; pp. 275–280. [CrossRef]

36. Paolieri, M.; Biagi, M.; Carnevali, L.; Vicario, E. The ORIS Tool: Quantitative Evaluation of Non-Markovian Systems. IEEE Trans.
Softw. Eng. 2019, in press. [CrossRef]

37. RBDTool. Web Page. Available online: http://pages.mtu.edu/~pjbonamy/rbdtool.html (accessed on 13 November 2019).
38. Edraw Block Diagram. Web Page. Available online: https://www.edrawsoft.com/reliability-block-diagram-software.php

(accessed on 23 April 2021).

http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1982.1676110
http://dx.doi.org/10.1145/190.191
http://dx.doi.org/10.1109/TSE.2009.36
http://dx.doi.org/10.1016/0166-5316(93)90026-Q
http://dx.doi.org/10.1007/3-540-44667-2
http://dx.doi.org/10.1109/24.326452
http://dx.doi.org/10.1109/TDSC.2007.70242
http://dx.doi.org/10.1109/24.159800
http://dx.doi.org/10.1016/j.entcs.2005.02.005
http://dx.doi.org/10.1109/RTSI.2019.8895568
http://dx.doi.org/10.1016/S0065-2458(08)60299-5
http://dx.doi.org/10.1007/978-3-030-72254-8_33
http://dx.doi.org/10.1109/2.544240
http://dx.doi.org/10.1007/1-84628-295-0
http://dx.doi.org/10.1109/ISSREW.2013.6688906
http://dx.doi.org/10.1109/TSE.2019.2917202
http://pages.mtu.edu/~pjbonamy/rbdtool.html
https://www.edrawsoft.com/reliability-block-diagram-software.php

Appl. Sci. 2021, 11, 4026 24 of 24

39. Reliability Workbench. Web Page. Available online: https://www.isograph.com/software/reliability-workbench/rbd-analysis/
(accessed on 23 April 2021).

40. Relyence RBD. Web Page. Available online: https://www.relyence.com/products/rbd/ (accessed on 23 April 2021).
41. Sahner, R.A.; Trivedi, K.S.; Puliafito, A. Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using

the SHARPE Software Package; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1996. [CrossRef]
42. SHARPE. Web Page. Available online: https://sharpe.pratt.duke.edu/ (accessed on 23 April 2021).
43. librbd. Web Page. Available online: https://github.com/marcopapini/librbd (accessed on 23 April 2021).
44. Siewiorek, D.P.; Swarz, R.S. Reliable Computer Systems: Design and Evaluation, 3rd ed.; A. K. Peters, Ltd.: Natick, MA, USA, 1998.
45. Catelani, M.; Ciani, L.; Venzi, M. RBD Model-Based Approach for Reliability Assessment in Complex Systems. IEEE Syst. J. 2019,

13, 2089–2097. [CrossRef]
46. Fourment, M.; Gillings, M. A comparison of common programming languages used in bioinformatics. BMC Bioinform. 2008,

9, 82. [CrossRef] [PubMed]
47. IEEE. IEEE Standard for Floating-Point Arithmetic. In IEEE Std-754-2019 (Revision IEEE-754-2008); IEEE: New York, NY, USA,

2019; pp. 1–84.
48. IEEE. IEEE Standard for Information Technology–Portable Operating System Interface (POSIXTM) Base Specifications, Issue 7. In

IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008); IEEE: New York, NY, USA, 2018; pp. 1–3951. [CrossRef]
49. pthreads-win32. Web Page. Available online: http://sourceware.org/pthreads-win32/ (accessed on 23 April 2021).
50. Cygwin. Web Page. Available online: https://www.cygwin.com/ (accessed on 23 April 2021).
51. Telcordia SR-332. Reliability Prediction Procedure for Electronic Equipment; Technical Report Issue 4; Telcordia Network Infrastructure

Solutions (NIS): Bridgewater, NJ, USA, 2016.

https://www.isograph.com/software/reliability-workbench/rbd-analysis/
https://www.relyence.com/products/rbd/
http://dx.doi.org/10.1007/978-1-4615-2367-3
https://sharpe.pratt.duke.edu/
https://github.com/marcopapini/librbd
http://dx.doi.org/10.1109/JSYST.2018.2840220
http://dx.doi.org/10.1186/1471-2105-9-82
http://www.ncbi.nlm.nih.gov/pubmed/18251993
http://dx.doi.org/10.1109/IEEESTD.2018.8277153
http://sourceware.org/pthreads-win32/
https://www.cygwin.com/

	Introduction
	Reliability Block Diagrams
	Basic Blocks
	Quantitative Evaluation Using RBDs
	Quantitative Evaluation: General Formulas
	Quantitative Evaluation: Identical Components' Formulas

	Reliability Evaluation Using RBDs

	RBD Computation Library-librbd
	Design
	Optimizations for KooN Computation
	Symmetric Multi-Processing (SMP)

	Validation
	librbd Usage
	API for Generic Components
	API for Identical Components
	Example of librbd Usage

	Materials and Methods
	Materials
	Methods

	Results and Discussion: Evaluation of librbd Performance
	Evaluation of librbd Execution Time
	Comparison with SHARPE

	Conclusions and Future Work
	References

