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Featured Application: Deep learning is an effective strategy for determining skeletal and smooth
muscle conditions to help clinic personnel in landmark identification, muscle site, and reliability
testing using segmentation or classification via ultrasound images.

Abstract: Deep learning has aided in the improvement of diagnosis identification, evaluation, and the
interpretation of muscle ultrasound images, which may benefit clinical personnel. Muscle ultrasound
images presents challenges such as low image quality due to noise, insufficient data, and different
characteristics between skeletal and smooth muscles that can affect the effectiveness of deep learning
results. From 2018 to 2020, deep learning has the improved solutions used to overcome these
challenges; however, deep learning solutions for ultrasound images have not been compared to the
conditions and strategies used to comprehend the current state of knowledge for handling skeletal
and smooth muscle ultrasound images. This study aims to look at the challenges and trends of
deep learning performance, especially in regard to overcoming muscle ultrasound image problems
such as low image quality, muscle movement in skeletal muscles, and muscle thickness in smooth
muscles. Skeletal muscle segmentation presents difficulties due to the regular movement of muscles
and resulting noise, recording data through skipped connections, and modified layers required for
upsampling. In skeletal muscle classification, the problems faced are area-specific, thus making a
cropping strategy useful. Furthermore, there is no need to add additional layer modifications for
smooth muscle segmentation as muscle thickness is the main problem in such cases.

Keywords: segmentation framework; classification method; network architecture; muscle disease;
ultrasonography

1. Introduction

Muscle diseases are a significant public health issue and are known to increase mor-
tality and morbidity risk factors [1]. Because of this risk, high rates of muscle disease
investigation are common in clinical practice. Bruyere et al. described muscle problems
in clinics, where 53.30% assessed muscle mass daily in clinical practice, 54.50% assessed
muscle strength problems, and around 60% of geriatricians, endocrinologists, and rheuma-
tologists estimated muscle mass [2]. The massive prevalence of muscle disease investigation
in clinical practice can be supported with ultrasound devices, which offer responsiveness
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and precision for detecting muscles disease in the range of 90 to 95% [3]. Muscle ultra-
sound images are a beneficial tool for investigating muscle disease in clinical and research
environments [4].

Ultrasonography has transformative potential for measuring muscle health with the
emerging interest in documenting and understanding muscle atrophy and function in every
patient condition [5]. Additionally, ultrasound characteristics pose specific challenges in
1D [6], 2D [7], 3D [8], and 4D [9] images, such as image quality due to noise, scarce data,
low image quality, and hand-held or operator skill, which may have a substantial influence
on the efficacy of deep learning performance when compared with X-ray, computed tomog-
raphy (CT), or magnetic resonance imaging (MRI) images [10] due to the special attention
and resources required in the deep learning process. Furthermore, the challenges in the
muscle ultrasound imaging process include the identification of landmarks, reliability
testing, muscle site tracking, image acquisition and analysis, equipment use, normative
data, and the interpretation of results [11,12]. The limitations of muscle ultrasound imaging
can be overcome with good training for clinical personnel and clinical experience [4], and
such practice is common in clinics and is painless and noninvasive [13]; however, it is
costly and time consuming. Deep learning is an upcoming solution for the detection of
landmarks [14], muscle site tracking, reliability checking, and the analysis and interpre-
tation of ultrasound images which may support novice clinical personnel [15,16]. Deep
learning has an advantage over other classification and segmentation strategies featuring
artificial intelligence in that the efficiency of segmentation can be greatly improved through
different sets of filters that can be implemented for each stage in a convolutional neural
network (CNN) based and an overall deeper network structure. Methods supervised by
deep learning methods are expected to be superior because they use pixel-level annotation,
which provides crucial information for dealing with various intensity patterns, especially
at the edges of muscle ultrasound images [17–19].

Deep learning in ultrasound images has been used to support clinical tasks since
2015 [20], such as identification of the abdominal plane [21,22], frame labeling on fetal
pregnancy images [23], analyzing abdominal circumference [24], vessel detection [25],
tongue contour extraction [26], carotid plaque classification [27], thyroid nodule detec-
tion [28], and the identification liver cancer [29]. Studies on deep learning ultrasound
images with organs, the thyroid, breast, liver, heart, bone, and brain can be found in the
literature [20]; however, few studies in the literature on deep learning muscle ultrasound
images in skeletal and smooth muscles describe or summarize the strategies required to
overcome the inherent challenges.

In 2018 (Figure 1), deep learning was increasingly used to support skeletal muscle
and smooth muscle ultrasound imaging in order to improve reliability testing for the
classification of muscle types [30], classifying muscles by gender [31], and the classification
of muscle vibration [32]. Additionally, it supported the identification of landmarks such as
segmentation in the orientation of muscle fibers [33] and tracking the cross-sectional area
of the rectus femoris [34]. In addition, deep learning methods have visualized the neck
muscle pattern landmark and muscle–tendon landmark [35,36]. Besides, deep learning has
assisted measurement and tracking in the urogenital hiatus and puborectalis muscle [37].
Moreover, deep learning methods have been evaluated regarding the ciliary muscle for
glaucoma interpretation and measured bladder wall thickness [38,39]. Deep learning will
be especially beneficial when considering ultrasound muscle images with different types
of muscles, namely skeletal muscles, smooth muscles, and cardiac muscles [40,41].
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Figure 1. The purposes of deep learning in studies of skeletal and smooth muscle areas from 2018–2020.

As far as we know, there has been no discussion about cardiac muscle tissue in deep
learning from 2018 to 2020. Cardiac muscles are one of three types of muscle, with the
other two being skeletal and smooth muscles [42]. We found seven studies on skeletal
muscles and three studies on smooth muscles from 2018 to 2020 which had case conditions
and deep learning performance parameters. For skeletal muscle ultrasound imaging,
image noise and muscle movement require special treatment for deep learning architecture
and segmentation [30,41]. Smooth muscle research has focused on measuring muscle
thickness [38]; however, the treatment of image problems in skeletal muscles and smooth
muscles has not been compared in order to understand the current state of knowledge.
Therefore, it is necessary to comprehend the comparison of deep learning conditions and
strategies between ultrasound muscle images.

This study aims to look at the trends and challenges of deep learning to overcome
muscle ultrasound imaging problems from 2018 to 2020 by comparing the conditions and
strategies in skeletal muscles and smooth muscles to assess the current state of knowledge.
This study will enhance knowledge of the deep learning conditions and strategies for
handling muscle ultrasound images.

2. Methods
2.1. Analysis of the Literature

We performed a thorough analysis of literature using the Scopus, Web of Science,
and PubMed search engines between 2018–2020, which was conducted in July 2020 with
the keywords “deep learning” and “ultrasound” and “muscle” and found 83 studies in
total. We included 10 peer-reviewed journal publications and conference proceedings. The
Journal of Ultrasound Medical, Journal of Imaging, Journal of the Royal Society Interface,
Sensors Journal, Ultrasound Obstet Gynecol, Biomedical Signal Processing and Control,
IEEE Journal of Biomedical and Health Informatics, SPIE Medical Imaging, International
Conference on Applied Human Factors and Ergonomics, and IEEE Conference Proceedings
describe the application of deep learning in muscle ultrasound imaging. All search results



Appl. Sci. 2021, 11, 4021 4 of 14

were imported into EndNote Reference Manager Version 9.1 to collect and automatically
detect duplicate data (Figure 2).

Figure 2. A review of deep learning in muscle ultrasound imaging.

2.2. Data Eligibility Requirement

Animal, non-muscle (such as bone, organ, tissue, thyroid, cancer, and tumor), non-
deep learning (such as machine learning and big data), and non-ultrasound (such as
MRI, CT-Scan and X-Ray) studies were excluded. Reviews, case studies, letters, opinions,
and mini-articles were exempted. Two researchers separately analyzed the results and
addressed discrepancies by discussion (P.A. and C.L.). The abstracts and full texts of the
related papers were thoroughly read, and only those that met the requirements were chosen.
There were 10 studies that met the criteria in the results. The researchers then confirmed
the selected papers and addressed any disagreements; if any disagreement remained, a
third researcher was invited to discuss it and the findings were evaluated (Y.L.). There was
no disagreement in the selection of papers in this review.

2.3. Data Analysis

The findings were divided into three groups: skeletal muscle segmentation, smooth
muscle segmentation, and skeletal muscle classification (Figure 1). Besides, the following
data are summarized: (1) the muscle type, which provides information about the skeletal or
smooth muscle type; (2) the deep learning approach for the segmentation or classification
of ultrasound images; (3) citations, containing author information and the year the article
was published; (4) the research objectives that cover specific muscle areas; (5) the deep
learning architecture method; (6) the dataset as a reference for a deep learning model
studying ultrasound images; (7) the output regarding matrix performance to view the deep
learning results; and (8) image solutions to determine the method used to solve problems
in muscle ultrasound images to improve deep learning performance from 2018 to 2020
(Table 1).
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Table 1. Deep learning approaches with image solution strategies to handle skeletal and smooth muscle ultrasound image problems. (CNN: Convolutional Neural Network, DCNN:
Deconvolutional Neural Network, RAN: Region Adaptive Network, Deep-CNN: Deep Convolutional Neural Network, MD: Mean Difference, MAE: Mean Absolute Error, RMSE: Root
Mean Square Error, HD: Hausdorff Distance).

Muscle Type Deep Learning
Method Citation Purpose Method Dataset

(Images) Output Image Solution

Skeletal Segmentation Chen et al., 2019 [34] Cross-sectional area
Rectus femoris CNN 81,600

Dice: 0.90 ± 0.02
Precision: 0.93 ± 0.02

Recall: 0.88 ± 0.04
180◦ rotation

Segmentation Cunningham et al.,
2018 [33]

Fiber orientation in medial
gastrocnemius and soleus DCNN 1008

MD 3.27◦ ± 10.
MAE 10◦ ± 8.09◦

RMSE 10.62◦
−5◦ +5◦ rotation

Segmentation Zhou et al., 2020 [36] Tracking the myotendinous
junction in the gastrocnemius RAN 300 Dice 80.1% Transfer Learning

Segmentation Loram et al., 2020
[35]

Objective visualization and
pattern analysis neck muscle U-Net 3272

Dice 64 ± 21%
HD 5.7 ± 4.0 mm
Precision 94 ± 3%

−8◦ +8◦ rotation

Classification Xu et al., 2020 [31] Gender classification in the
tibialis anterior area CNN (VGG-16) 115,916

Accuracy:
VGG-16 95.2%

(Alex Net 83.3%
Google Net 84.4%)

4 Random rotation
angles and flipping

Classification Katakis et al., 2018
[30]

Muscle type of the rectus
femoris, tibialis anterior,

gastrocnemius medialis and
bicep brachii

Deep-CNN (VGG-F) 300
Accuracy: VGG-F 89.4%

(VGG-16 87.5%,
VGG-19 87.2%)

Transfer learning

Classification Tsai et al., 2020 [32] Bicep vibration muscle CNN (AlexNet) 120,423
Accuracy: AlexNet 82.5%

(VGG-16 79.9%,
VGG-19 79.7%)

45◦ rotation, flipping,
adjust contrast

Smooth Segmentation Minhaz et al., 2020
[39] 3D assessment ciliary muscle U-Net 1000

Dice 0.72 ± 0.070
Accuracy 0.93 ± 0.010
Sensitivity 0.79 ± 0.070

No

Segmentation van den Noort et al.,
2019 [37]

Area measurement in
urogenital hiatus and
puborectalis muscle

CNN 713 Dice 0.94 ± 0.020 and
0.73 ± 0.090 No

Segmentation Akkus et al., 2020
[38]

Fully automated segmentation
Bladder wall thickness. U-Net 800 Dice 0.93 ± 0.040 mm

RMSE 0.70 ± 0.20 mm

10 times
random elastic

deformation
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3. Results and Discussion
3.1. Numbers of Studies

The two deep learning approaches, classification and segmentation, were found in 10
studies on ultrasound muscle images. In 2018, there were two studies on segmentation
and one study on ultrasound muscle classification. In 2019, there was only one study
on segmentation. Moreover, in 2020, muscle images on ultrasound using deep learning
increased to seven studies (five studies on segmentation and two studies on classification).
As a result, in deep learning studies on ultrasound muscle images, studies on segmentation
dominated with seven studies compared to studies on classification with three studies
(Figure 3).

Figure 3. The development of deep learning studies for muscle ultrasound images from 2018 to 2020.

3.2. Network Architecture

Based on ten studies on deep learning on ultrasound muscle images, it was found that
the U-Net and CNN architectures were the most used network architectures in segmenta-
tion [34,35,37–39]. Meanwhile, the RAN was the latest development of the region-based
convolutional neural network (RCNN) [36]. The classification entirely uses a CNN based
on AlexNet, Deep-CNN, and VGG [30–32] (Figure 4).

Figure 4. Various network architectures used in deep learning studies on muscle ultrasound images

3.3. Segmentation in Skeletal Muscle

Skeletal muscle ultrasound imaging is the largest area of deep learning research
regarding muscle ultrasound images [20]. There were seven studies on the use of deep
learning with two purposes, with four studies on segmentation and three classification
studies. In the segmentation of skeletal muscle ultrasound images, the output was helping
clinics with landmark identification. The problems in skeletal muscle tissue, in general,
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are noise on the image and are related to movement [30]. Because of these problems, for
segmentation in skeletal muscle images, it is necessary to modify the network architecture
to achieve the maximum performance results. The Dice similarity coefficient is common
to be used in segmentation task [19]. The Dice similarity coefficient is also considered
superior because it does not only measure the proper marking of the number of pixels but
also the precision of boundary segmentation [43].

3.4. Segmentation Architecture in Skeletal Muscle

The network architecture used for the skeletal muscle segmentation requires specific
layer treatments to maximize deep learning performance. It is necessary to combine
three different layer types in the network architecture for upsampling with a feature
representation phase and score map reconstruction phase in segmentation (Figure 5A).
Chen et al. (2019) built a CNN to segment the rectus muscle using a deconvolutional
layer, a concatenation layer, and a convolutional layer plus a rectified linear unit (ReLU)
activator. The convolution layer was the core building block of the CNN. The layer’s
parameters consisted of a small number of learnable filters (or kernels) that were wide
and deep [44]. The CNN network consisted of two stages: the feature map extraction
function and the reconstruction of the score map. The deconvolutional layer multiplies
a single input with a learned filter to generate an output patch. In this situation, the
patches that overlap in the output are simply added to create the result [45]; however, the
deconvolution would cause the loss of the high-resolution information in images [34,46].
The concatenation layer connects the enlarged score map with the corresponding feature
map. It fuses the feature maps in the previous pooling layers or convolution layers with the
current feature maps in the deconvolution layer to overcome high-resolution information
loss [47,48]. The skip connection layer design could capture more multiscale contextual
information to improve segmentation accuracy [19]. The convolution layer integrated the
image information after the concatenation layer. The performance of the proposed model
was evaluated and compared to state-of-the-art muscle segmentation methods. During
voluntary contraction, a real-time ultrasound image sequence was obtained from the rectus
femoris muscle to establish an automated tracing method for the cross-sectional area and
shows high matrix performance.

A deconvolutional layer without a concatenation layer can be used for segmentation in
skeletal muscles [49] (Figure 5B,D); however, when using the deconvolutional layer in up-
sampling, it needs to go through the fully connected layer between the convolutional layer
and the ReLu activator to consider cropping strategies for the preprocessing. Cunningham
et al. used a DCNN in 2018 to look at the shape of a fiber pathway and muscle location
with a fully connected layer to combat overfitting using DCNN architecture [33]. Like
Cunningham et al., Zhou et al. determined the mechanics and pathological conditions of a
muscle–tendon complex in 2020 and monitored the myotendinous junction in ultrasound
images using a RAN. The RAN used a deconvolutional layer without a concatenation
layer [36]; however, the RAN was not fully connected using the cropping strategy for
regions of interest (ROI) in preprocessing. The ultrasound image on the myotendinous
junction had characteristic distribution data with noise in different slice hyperplanes which
can reduce segmentation accuracy. Therefore, a U-shaped segmentation network in each
layer consists of the convolutional layer, followed by a batch normalization layer and a
ReLu [50,51]. In skeletal muscle ultrasound imaging, the use of a RAN presents advantages
in applications that use single-shot techniques and transfers learning to solve the inherent
muscle ultrasound imaging problems. A RAN was proposed with a unified framework,
transfer learning, and region cropping strategies to address the challenges of poor image
quality, scarce data, and data imbalance; however, RANs are not currently used in areas
other than CNNs, which are often used in the context of skeletal muscles.
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Figure 5. Segmentation in skeletal muscles; (A) CNN architecture with three different layers in the upsampling for rectus
femoris segmentation. (B) DCNN architecture with fully connected layer for segmenting fiber orientation. (C) U-Net
architecture with two different layers in upsampling for neck muscle pattern segmentation. (D) RAN architecture with two
different layers for downsampling and upsampling for tracking the myotendinous junction.
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In a different skeletal muscle area, the concatenation layer without the deconvolution
layer is possible for segmentation in skeletal muscles to preserve image details using the
concatenation layer and convolutional layer with ReLu (Figure 5C). Loram et al. (2020)
used U-Net to find precisely identify a detailed location and see the longitudinal record
effect on individual neck muscles. Deep learning with concatenation layers followed by
a convolutional layer plus ReLu in upsampling U-Net network architecture was used
to ensure image detail for the same injection site in [35]. In this case, the deep learning
precision outcome is the main factor that represents image detail as clinical personnel
can see the impact of health progress after continuous injection at an exact location. A
concatenation layer is required to improve precision sharpness, which is followed by a
convolution layer to acquire the final output to overcome the imaging problem [52]. This
strategy can help increase the precision of feature identification and decrease the degree of
information loss [35,53,54].

Two phases and skip connections are always used in the skeletal muscle segmentation
(Figure 5). Two phases are used because the ultrasound image has a noise problem,
while the area to be segmented is small and close to other muscles that move constantly.
Additionally, the use of two phases is an effort to maintain the accuracy of segmentation for
muscle identification supported by using a skip connection to eliminate singularities [55,56].
Skip connections are additional connections between nodes in different layers of the neural
network [57]. Skip connections can operate with very few training images and yield precise
segmentation [36]. Skip connections are essential for preserving boundary details when
dealing with limited image quality [58]; however, the resulting network architecture has
different scenarios as the network architectures are specific for their given purposes and
dataset; however, data imbalances and scarce images are common occurrences with skeletal
muscles. The popular solution to solve data imbalances and limited numbers of images is
to use an augmentation method with image rotation [30,31,33–35,39] where the orientation
ranges from 5◦ to 180◦. Apart from rotation and image flipping, transferred learning is
used to solve image quality problems and data imbalances in skeletal muscle segmentation
applications.

3.5. Segmentation in Smooth Muscle

Meanwhile, in smooth muscles, the general challenge is to measure the thickness of a
specific muscle type rather than a complete skeletal muscle [38]. Smooth muscles are located
on internal organs and do not have transverse lines, unlike skeletal muscles [59]. The
network architecture used in smooth muscle segmentation does not require modifications
such as those with skeletal muscles.

3.6. Segmentation Architecture in Smooth Muscles

CNN and U-Net can be used for smooth muscle segmentation. Akkus et al. (2020)
and Minhaz et al. (2020) used U-Net with a convolutional layer and ReLu with biomedical
images. Both were created [60] to perform muscle thickness segmentation with a bladder
wall thickness layout and to identify the best possible location [38]. This was performed
alongside the use of segmented 3D ultrasound images of the ciliary muscles [39]. This
study found high accuracy and was the only study with 3D images produced by muscle
ultrasound imaging from 2018 to 2020. Furthermore, van den Noort et al. (2019) used a
CNN to measure the area of the urogenital hiatus and puborectalis muscle by automated
segmentation [37]. The CNN was used with a self-normalizing neural network. A self-
normalizing neural network is used to reduce network complexity and use a smaller
mini-batch size without sacrificing the generalization performance [61]. The study showed
the highest Dice result for the urogenital hiatus matrix (Table 1).

Different from skeletal muscles, smooth muscles rarely have problems with imbalances
and scarce data. Of the three cases, there is one study that used augmentation to solve
image scarcity with smooth muscles. Akkus et al. had difficulties with the amount of
image data, requiring data augmentation with a ten times random elastic deformation
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approach. Adding the amount of images and increasing the measurements improved the
performance of deep learning for the bladder wall muscle thickness [38]. Two studies
used a sufficient dataset, where Minhaz et al. (2020) used 3D ciliary muscle images with
1000 images, and deep learning achieved high accuracy without a scarce data solution [39].
Additionally, van den Noort et al. produced measurements with 2D images with a CNN
with the urogenital hiatus and puborectalis muscle [37] with 713 images and achieved the
highest Dice coefficient without any scarce data solution.

3.7. Classification in Skeletal Muscle

Based on the reviews shown in Table 1 for the classification of muscles using deep
learning from 2018 to 2020, three network architectures were useful for classifying skeletal
muscle. The use of augmentation, rotation, and transferred learning is needed to solve
problems in skeletal muscle area data. Besides, cropping strategies need to be considered
to classify skeletal muscles, especially in the calf muscle area.

3.8. Classification Architecture in Skeletal Muscle

CNNs and deep CNNs have been commonly used as base architectures for the classi-
fication of muscle ultrasound images [20]. Specifically, VGG-16 and AlexNet are variations
of a CNN which are used to classify muscle gender and bicep vibration, while VGG-F
is a variation of a deep CNN which is used to classify calf muscle types. The difference
between the two lies in the number of layers. The deep CNN uses five convolutional
layers followed by two fully connected layers and is useful for classifying many labels. For
example, Katakis et al. (2018) classified eight classes. Meanwhile, CNN-based AlexNet and
VGG-16 were used to classify two and three classes, respectively.

VGG-16 was used for gender classification in the anterior tibialis area. The VGG-
16 accuracy was 95.2% compared to 83.30% for AlexNet and 84.40% for GoogleNet in
previous trial studies [31]; however, the training data weakness arises from the fact that
the full-frame ultrasound images caused inaccuracy, namely 100% for males and 49.30%
for females, thus requiring cropping strategies to perform more detailed classification and
eliminate the lower part and right side. The same problem occurred in classification with
VGG-F when classifying muscle types in the transverse and longitudinal planes in the
musculoskeletal area [30]. A cropping strategy was implemented by excluding the fasciae
and muscle tendons, where only the muscle mass in the fiber area was classified. VGG-F
outperformed VGG-16 and VGG-19 for muscle type classification with an accuracy of
89.44%. A cropping strategy can help a classification process to gain more leverage for
specific area identification [62,63].

In contrast, with deep learning classification of bicep vibration, the cropping strategy
was not used because it requires an entire image to identify the difference in muscle
thickness on the bicep vibration. AlexNet provided 82.50% of the results and is comparable
with VGG-16 and VGG-19 for the test results with the same number of images [32].

3.9. Dataset Requirement

Referring to Table 1, the ranges used for the dataset in the training process with the
ultrasound muscle images are 300 to 120,423 images. The minimum dataset without an
image data solution was shown by van den Noorth et al. (2019) [37] with 713 images for
measuring the area in urogenital hiatus and puborectalis muscle with CNN segmentation.
The largest dataset without an image solution featured 1000 images for 3D image assess-
ment with the U-Net architecture approach for segmentation [39]. The datasets used in the
ten studies were derived from capturing B-mode ultrasound images. In addition, the use
of segmentation in thyroid nodules can be used in real-time [64]. This allows the possible
application of real-time deep learning with muscle ultrasound images.

Difficulties with the number of images were common challenges among the two
studies which did not use augmentation or transferred learning techniques with the muscle
ultrasound images. In comparison to other artificial intelligence techniques, deep learning
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requires a higher amount of data, therefore the data quantity required for training needs
to be known. Furthermore, data augmentation would not support geometries such as
3D images [65], except for automatically segmenting 3D volumes of biomedical images,
where multidimensional gated recurrent units are used as the main layers of the neural
network model. The method proposed involved on-the-fly data augmentation [66,67] or
manual augmentation of data in robust 3D models with different orientations and sizes [68];
however, gated recurrent units and automatic on-the-fly data augmentation requires further
investigation in the context of muscle ultrasound images.

3.10. Matrix Performance Result

In the segmentation, the most popular matrix performance output was the Dice coeffi-
cient. The highest Dice value was found for UH segmentation with a gain of 0.94 ± 0.02
with a CNN network architecture with smooth muscles, while the highest precision was
that of the cross-sectional area of the rectus femoris with a value of 0.93 ± 0.02 based on a
CNN architecture with skeletal muscles. Furthermore, the accuracy results were the most
popular for classification. VGG-16 shows the highest results for gender classification with
95.20% accuracy.

3.11. Limitation

There are two limitations in this study. The first limitation is that the muscle segmen-
tation and classification studies use data augmentation or transferred learning because
of the inherent muscle ultrasound image problems; however, both solutions currently
still have disadvantages and need further investigation [69]. Future work will discover
additional solutions for muscle ultrasound image problems, such 4D ultrasound, on-the-fly
data augmentation for 3D images, and active learning as an alternative for augmentation or
transferred learning to overcome such limitations [70,71]. The second limitation is that this
study is limited by two types of muscles: skeletal muscles and smooth muscles, without
examining cardiac muscles. The difficulty with cardiac muscle ultrasound imaging is the
sequential nature of muscle data. A deep learning model which can read sequential data is
needed, such as a long short-term memory (LSTM) model [72,73].

4. Conclusions

Deep learning is an effective strategy for determining skeletal muscle and smooth
muscle conditions to help clinical personnel in landmark identification, muscle site identifi-
cation, and reliability testing using segmentation or classification via ultrasound imaging.
The inherent challenge relating to skeletal muscle segmentation is that such muscles move
regularly and that this produces noise, thus skipped connections and modified layers in
upsampling are needed to ensure that data are recorded. There is no need to add additional
layer modifications for smooth muscle segmentation because muscle thickness is the main
problem. In skeletal muscle classification, the problems faced are area-specific, thus making
a cropping strategy useful. The use of segmentation with B-mode ultrasound imaging
allows the possible application of real-time deep learning to muscle ultrasound images.
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