
applied  
sciences

Article

Ensemble Learning Approach for the Prediction of Quantitative
Rock Damage Using Various Acoustic Emission Parameters

Hang-Lo Lee , Jin-Seop Kim *, Chang-Ho Hong and Dong-Keun Cho

����������
�������

Citation: Lee, H.-L.; Kim, J.-S.; Hong,

C.-H.; Cho, D.-K. Ensemble Learning

Approach for the Prediction of

Quantitative Rock Damage Using

Various Acoustic Emission

Parameters. Appl. Sci. 2021, 11, 4008.

https://doi.org/10.3390/app11094008

Academic Editor: Daniel Dias

Received: 16 March 2021

Accepted: 26 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute, 111,
Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057, Korea; hanglolee@kaeri.re.kr (H.-L.L.);
chhong@kaeri.re.kr (C.-H.H.); dkcho@kaeri.re.kr (D.-K.C.)
* Correspondence: kjs@kaeri.re.kr

Abstract: Monitoring rock damage subjected to cracks is an important stage in underground spaces
such as radioactive waste disposal repository, civil tunnel, and mining industries. Acoustic emission
(AE) technique is one of the methods for monitoring rock damage and has been used by many
researchers. To increase the accuracy of the evaluation and prediction of rock damage, it is required
to consider various AE parameters, but this work is a difficult problem due to the complexity of
the relationship between several AE parameters and rock damage. The purpose of this study is to
propose a machine learning (ML)-based prediction model of the quantitative rock damage taking
into account of combined features between several AE parameters. To achieve the goal, 10 granite
samples from KAERI (Korea Atomic Energy Research Institute) in Daejeon were prepared, and a
uniaxial compression test was conducted. To construct a model, random forest (RF) was employed
and compared with support vector regression (SVR). The result showed that the generalization
performance of RF is higher than that of SVRRBF. The R2, RMSE, and MAPE of the RF for testing data
are 0.989, 0.032, and 0.014, respectively, which are acceptable results for application in laboratory scale.
As a complementary work, parameter analysis was conducted by means of the Shapley additive
explanations (SHAP) for model interpretability. It was confirmed that the cumulative absolute energy
and initiation frequency were selected as the main parameter in both high and low-level degrees of
the damage. This study suggests the possibility of extension to in-situ application, as subsequent
research. Additionally, it provides information that the RF algorithm is a suitable technique and
which parameters should be considered for predicting the degree of damage. In future work, we will
extend the research to the engineering scale and consider the attenuation characteristics of rocks for
practical application.

Keywords: rock damage; acoustic emission; random forest; support vector regression; SHAP

1. Introduction

Monitoring rock damage induced by cracks is an important stage in underground
spaces such as radioactive waste disposal repository, civil tunnel, and mining industries.
The occurrence of rock damage begins from microcracks. As these cracks propagate and
bond each other, an excavation damaged zone (EDZ) is formed near the facility [1]. The
EDZ affects the degradation of the rock properties which leads to a decrease in the facility’s
stability. Most of the rock damage occurs immediately after excavation due to stress
disturbance and redistribution, but in the deep geological environment, the progressive
damage of the rock is generated due to high in-situ stress.

The occurrence of cracks is accompanied by an increase of the specimen’s volume.
Thus, the volume change is related to the degree of damage in the rock sample [2]. Based
on this principle, Martin and Chandler [3] and Martin et al. [4] determined a crack damage
criterion using crack volumetric strain. They divided a damage evolution into four stages:
crack closure (σcc), crack initiation (σci), crack coalescence (σcs), and crack damage (σcd)
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(Figure 1). Crack closure stress is defined as the point at which the axial stiffness curve
changes from nonlinear to linear or where the crack volumetric strain converges to zero. The
crack initiation stress is defined by the onset of stable crack growth and is indicated as the
point at which the crack volumetric strain deviates from zero. Therefore, the range between
crack closure and crack initiation is considered as the region showing elastic behavior.
Meanwhile, the crack coalescence is referred to as the point where large irregularities
in the volumetric stiffness occur. The crack damage stress is characterized by unstable
growth of crack and associated with the reversed region in the curve of the total volumetric
strain [1,5].

Figure 1. Typical stress−strain plot for crack growth of rocks (Martin et al. [4]). A crack damage
threshold can be divided into four stages using volumetric stiffness and crack volumetric strain:
crack closure (σcc), crack initiation (σci), crack coalescence (σcs), and crack damage (σcd).

In recent years, the use of acoustic emission (AE) in underground spaces has been
increased. AE technique is a kind of nondestructive method to monitor crack growth in a
brittle material. When a material is subjected to a progressive load and cracks develop, it
would lead to a sudden release of strain energy of the material, which generates an elastic
stress wave from cracks of the materials. Many researchers used AE method to associate
crack damage of brittle rocks [1,6,7]. Ranjith et al. [8] used an AE event to correlate rock
damage growth. They observed the change of the curve trend of cumulative AE count and
then characterized crack evolution into four stages. Some researchers tried to correlate
crack evolution characteristics with AE count from the uniaxial compression test [1,9].
Wu et al. [10] evaluated the quantitative damage stress using cumulative AE count. The
results showed that the AE cumulative count curve is divided into three stages according
to the axial stress level: the slowly increasing stage, the steady stage, and the sharply
increasing stage. Hatton et al. [11] and Cox et al. [12] evaluated the degree of rock damage
using the b-value originating from seismology, which is calculated from a relation of AE
amplitude and AE frequency. Later, Shiotani and Ohtsu [13] improved the b-value taken
into account for a signal attenuation according to AE sensors location. Carpinteri et al. [14]
concluded that the b-value reflects the initiation and propagation of cracks in pre-peak
stage in the investigation of the AE from different sized rock. Kim [15] performed a uniaxial
compression test for granite specimens and confirmed that the rock damage estimated
from the cumulative AE energy is similar to the damage for the crack volumetric strain.
Subsequently, he extended the scope of application to the in-situ rock in consideration of
crack size and wave attenuation [16]. Zhao et al. [17] studied the relation between crack
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development and AE hit for Beishan granite. The result showed that the number of AE hit
increased as the stress increased and increased sharply as the stress is close to rock failure.
There are some works to evaluate the failure pattern of rock damage based on multi-AE
parameters [18,19]. They classified the rock failure into shear and tensile mode by using
AE frequency and RA value which is a multi-AE parameter obtained from dividing the AE
rise time by the AE amplitude. Yang et al. [20] introduced damage-related indicators such
as AE activity and AE fault total area which are relevant to AE magnitude and AE event
for predicting a rock failure precursor.

The aforementioned research gives insights into evaluating the rock damage using
different AE parameters, such as AE event or hit, amplitude, frequency, energy, count,
and rise time. To increase the accuracy of the evaluation and prediction of rock damage,
it is necessary to consider various AE parameters, but this work is a tough problem due
to the complexity of the relationship between several AE parameters and rock damage.
In recent years, machine learning (ML) techniques have been utilized to analyze the
complex relationship between inputs and targets in the field of rock engineering with AE
technique, such as crack recognition [21], crack localization for rocks [22], ultrasonic wave-
based damage detection [23], and damage identification using ultrafast wave scattering
simulation [24]. However, there is no ML-based predictive model for quantitative damage
of rocks. Among the various ML algorithm, ensemble-based random forest (RF) gives
different advantages for modeling: (1) it is a kind of ensemble model that combines a
variety of single decision trees to improve the predictive power and overcome outliers,
(2) it has been validated to have a better predictive power compared with a single ML-based
model in the literature [25,26].

The purpose of this study is to propose an ML-based prediction model of the quantita-
tive rock damage taking into account of combined features between several AE parameters.
In the main study, 10 granite samples from KAERI (Korea Atomic Energy Research In-
stitute) in Daejeon are prepared, and a uniaxial compression test under the condition of
progressive loading in laboratory scale is executed to obtain the dataset, including the
AE parameters and the degree of rock damage based on crack volumetric strain [27]. To
consider combined features between rock damage and various AE parameters, ML-based
random forest (RF) is employed and compared with support vector regression (SVR). As a
complementary work, parameter analysis is conducted by means of the recently published
Shapley additive explanations (SHAP) [28] for model interpretability. The rest of this paper
is organized as follow: Section 2 presents the process of experimental test and illustrates
ML-based technique; Section 3 covers the result and discussion, and Section 4 describes
a conclusion.

2. Experimental Test and Machine Learning Technique
2.1. Sample Preparation and Uniaxial Compression Test

To execute the uniaxial compression test, we obtained the granite (RG-2) from KAERI
(Korea Atomic Energy Research Institute) in Daejeon, South Korea. (Figure 2). KURT was
constructed for the purpose of simulating the radioactive waste disposal environment [29].
With consideration of the practical purpose for achieving the required depth, the tunnel
has a downward slope of 10% and a size of 6 × 6 m. The geological formation of KURT
generally comprises Mesozoic two-mica granite, and detailed topographic and geological
information and host rock conditions of this site can be found in the literature [29]. Ten
granite samples were collected from 56.2 to 60.8 m depth and made by satisfying the NX
size suggested by ISRM (2007) [30] as shown in Figure 3. The flatness of the initial and end
surfaces was adjusted to less than 0.02 mm.

A uniaxial compression test was carried out and the deformation and failure behavior
of samples were observed. The average ratio of length to diameter for specimens is 2.4,
which is somewhat lower than 2.4 suggested by ISRM (2007) [30]. Biaxial strain gauges
(AP-11-TS50N-120-EC, CAS) with a data logger (UCAM 20PC, KYOWA) were attached to
the rock surface for monitoring the rock deformation according to the vertical stress level
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in increments of 0.2 MPa/s (Figure 4). The tests were conducted by increasing the loading
rate of 0.19–0.21 MPa/s on the specimens using the stress-controlled mode to simulate
the progressive damage of rocks. Figure 5 shows a representative stress–strain curve for
sample No. 2. A description of this curve will be given in Section 2.2. Testing times from
the stress initiation to the rock failure were recorded as 9–17 min. The descriptive statistics
for the rock properties are summarized in Table 1.

Figure 2. Korea Underground Research Tunnel (KURT) located in Daejeon, South Korea. This facility
was constructed for the purpose of simulating the radioactive waste disposal repository.

Figure 3. Ten granite specimens to be used in the compression test. These were obtained from the
RG-2 section in KURT which comprises Mesozoic two-mica granite.

Figure 4. Bi-axial strain gauge and eight acoustic emission sensors attached to the specimen surface.
The strain gauge was installed to the center of the vertical axis and AE sensors were attached in a
spiral direction for a wide range of crack detection.
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Figure 5. Volumetric strain and stiffness curves (sample No. 2) with respect to the stress level in the
increment of 0.2 MPa/s. The degree of damage for granite was calculated by normalizing the crack
volumetric strain after crack initiation stress level (σci).

Table 1. Descriptive statistics of 10 granite specimens collected from KURT.

Properties Min Mean Max Std CV

Bulk density (g/cm3) 2.67 2.68 2.69 0.01 0.00

Young’s modulus (GPa) 27.24 37.73 49.76 7.40 0.20

Poisson’s ratio 0.28 0.36 0.43 0.05 0.14

Uniaxial compressive strength (MPa) 98.2 147.7 200.5 35.1 0.2

Simultaneously, eight AE sensors (AE603SW-GA), which have a sensitivity of 115 dB,
a valid frequency of 30–300 kHz, and a resonance frequency of 60 kHz, were used to acquire
AE signals. For ensuring reliable data, the sensors were attached to the rock specimen
using an epoxy bond (Araldite Rapid corporation: relative density of −1.17 at 25 Celsius,
specific acoustic impedance of 12.8× 106 kg/m2 · s), eliminating the air and minimizing the
measurement error in the acoustic impedance [31]. The AE voltage was amplified to 60 dB
for detection efficiency using a preamplifier. As a data acquisition system, a RECTUSON
10-channel analyzer was used, where the peak definition time, hit definition time, and hit
locking time were specified as 50, 100, and 500 µs to extract the signal concerning rock crack.
The threshold of a lower limit for AE signal detection was set to 65 dB. Additionally, only
signals obtained from the sensor attached to the middle of the specimen were considered
under the detected condition by more than 6 out of 8 AE sensors. The AE voltage was
amplified to 60 dB for detection efficiency using a preamplifier. To remove the noise of AE
signals, filtering with wavelet transform was used. The specifications of equipment used
for the uniaxial compression test are summarized in Table 2.
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Table 2. Equipment specification for uniaxial compression and acoustic emission test.

List Content

Uniaxial compression testing machine KDU-200 (Kyung Do Precision)

Data logger UCAM 20PC (KYOWA)

Strain gauge AP-11-TS50N-120-EC (CAS)

AE data acquisition system RECTUSON 10 channel analyzer (RECTUSON)

AE sensor AE603SW-GA

2.2. Degree of Rock Damage and AE Parameters

From the result of the compression test, the volumetric strain, stiffness, and in-elastic
volumetric strain were calculated to evaluate the degree of damage for rocks according to
the vertical stress level (loading rate: 0.2 MPa/s) (Figure 5). The in-elastic volumetric strain
can be calculated by the Equations (1) and (2) based on the stress–strain relationship;

εie
υ = ευ − εe

υ = ευ − (εe
Axial + εe

Lateral) (1)

εie
υ = ευ −

1− 2υ

E
σAxial (2)

where, ευ is a volumetric strain, εe
υ is an elastic volumetric strain, and εie

υ indicates the
in-elastic volumetric strain. εe

Axial and εe
Lateral mean the axial and lateral strain. E, υ and

σAxial indicate the elastic modulus, Poisson’s ratio, and axial stress, respectively. Martin [32]
defined this in-elastic volumetric strain as the crack volumetric strain that is attributed
to axial cracking and proposed using the crack volumetric strain to characterize a crack
initiation. Based on this principle, in this study, the crack volumetric strain was associated
with rock damage to quantify the degree of damage. The crack volumetric strain can
be calculated by subtracting an in-elastic volumetric strain by their maximum value. By
normalizing the crack volumetric strain, the degree of damage is finally calculated.

In this study, the degree of damage only higher than the crack initiation stress (σci)
was considered as valid values to collect the reliable dataset. Here, the crack initiation
stress refers to the stress point at which the crack volumetric strain becomes zero [3]. If the
stress level is lower than the crack initiation stress, the crack closure is dominant in this
range, not crack initiation [1].

From the AE data acquisition system, we also collected the AE dataset for 10 granite
specimens. As AE input parameters were chosen, an amplitude, hit, count, rise time,
absolute energy, and initiation frequency were selected through the literature review in
Section 1. A visual explanation of these AE parameters is depicted in Figure 6.

Figure 6. Example of six acoustic emission (AE) parameters in an AE signal. In this study, these AE
parameters were transformed as cumulative values and used as inputs for predicting the degree of
rock damage.
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2.3. Machine Learning Technique
2.3.1. Single Model: Support Vector Regression

Support vector regression (SVR), proposed by Vapnik et al. [33], is a kind of supervised
learning technique This method has a generalization ability even with restricted number of
dataset since it is based on the principle of structural risk minimum rather than empirical
risk minimization [34]. Here, generalization ability means the state that is not overfitting
for specific and biased data.

SVR is not sensitive to margin error (ε) and learns to include as many datasets as
possible in a limited ε-tube (Figure 7). Even if the training set is newly added, the errors are
considered as zero within the allowed ε. However, if the training sets are outside the ε-tube,
a non-zero value of the slack variable (ζ) occurs, which indicates the degree of margin
violation. Based on the above principle, SVR can be composed of the optimization problem
(Equation (3)) that has a global optimum point;

minimize
w, b, ζ

1
2

wTw + C
m

∑
i=1

(
ζ+i + ζ−i

)
(3)

Figure 7. Concept of support vector regression. It learns to include as many datasets as possible in
a limited ε-tube and a constraint of the slack variable. Even if the training set is newly added, the
errors are regarded as zero within the allowed ε. However, if the training set is outside the ε-tube, a
non-zero value of the slack variable (ζ) occurs, which indicates the degree of margin violation.

Equation (3) must be subject to the following conditions;

yi −
(

wT · φ(xi) + b
)
≤ ε + ζ+i (4)

yi −
(

wT · φ(xi) + b
)
≤ ε + ζ+i (5)

ζ+i , ζ−i ≥ 0 (6)

where, x and y are an input vector and actual output. w is a weight vector of input vector.
C > 0 is a regularization parameter indicating a penalty for the sample error exceeding
the margin. A larger C value means a smaller slack variable is allowed, whereas a smaller
C value means a larger slack variable is allowed. φ is a function that maps the input
space of the training set into a high-dimensional feature space. To solve the Equation (3),
Lagrangian dual formulation, which includes a dot product between two φ functions,
should be calculated. Fortunately, the dot product between φ functions can be easily
calculated as a kernel function (K) as shown in Equation (7);

K
(
xi, xj

)
= φ(xi)

Tφ
(
xj
)

(7)



Appl. Sci. 2021, 11, 4008 8 of 16

K plays the role of expanding the input space of the training sets into a high-dimensional
space, which makes it possible to express a nonlinearity problem. Since the related theory
is out of the scope of this study, it is recommended to refer to the literature [33]. There
are several types of K established by researchers, and the functions used in this study are
summarized in Table 3.

Table 3. Representative kernel functions of SVR used in this study.

Kernel Function Formula

Linear function K
(

xi, xj

)
=
〈

xi, xj

〉
Radial basis function K

(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
2.3.2. Ensemble Model: Random Forest

Random forest (RF), suggested by Breiman [35], is one of the ensemble techniques
composed of a bunch of decision trees (DT) [36]. The DT is a decision support algorithm
that uses a tree-like model of decisions and their possible output. The DT algorithm
is conducted by partitioning a data space into subspace. During the building of a DT,
three components are created, namely internal node, terminal node, and branch of DT. The
internal node is linked with decision functions to determine which next node to face. The
terminal node is the node that is no longer to be separated in a DT. This node is the space
to classify samples that fall into the node. Branch of DT plays a role of connecting internal
and external nodes in a DT.

RF is more powerful algorithm and has been validated to be more robust in many
more data sciences than a DT [25,37]. The principle behind the RF is to create a variety
of overfitted DTs in different directions and is to average the results of each DT. It is an
effective way to reduce the overfitting problem. DTs can be implemented by randomly
sampling the dataset for each DT (bagging) and by selecting an input parameter randomly
(Figure 8). RF is the convenient method in that it does not need to consider the data scales
and works properly without the delicate hyper-parameter tuning. A detailed explanation
and theory of RF can be found in [35].

Figure 8. Principle of a random forest (RF). Bagging is the process of data sampling from a training set,
randomly. Sampled datasets are used to make different kinds of decision trees (DTs). In the prediction
phase, all the values predicted from various DTs are averaged and it is called the prediction value of RF.
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3. Result and Discussion
3.1. Data Preparation

The mechanical data points from the compression test were recorded in units of
0.1 MPa, while AE data points are only recorded when the valid cracks are detected
in the rock sample. For matching the two different types of dataset, a smooth spline
approximation for 10 granite specimens was used. The AE parameters used in this study
were AE amplitude, hit, count, rise time, absolute energy, and initiation frequency. These
six parameters were converted to cumulative values and used as inputs for predicting the
degree of rock damage. Figure 9 shows the scatter plots for the relationship between inputs
and output. Although 10 granite specimens were extracted from the same borehole in RG-2
section, the curves for each input showed different trends. This phenomenon seems to
be due to the difference of properties such as rock strength, stiffness, and Poisson’s ratio
(Table 1) and shows that predicting the degree of rock damage using only one or two AE
parameters is a difficult problem.

Figure 9. The changes of the damage for cumulative AE parameters such as (a) amplitude, (b) hit, (c) count, (d) rise time,
(e) absolute energy, and (f) initiation frequency. Although 10 granite specimens were extracted from the same borehole in
RG-2 section, the curves for each input showed different trends. This phenomenon seems to be due to the difference of
properties such as rock strength, stiffness, and Poisson’s ratio and indicates that predicting the degree of rock damage using
only one or two AE parameters is a difficult problem.

To prepare a dataset for ML-based models, the inputs values were normalized in the
range from 0 to 1 for eliminating a scale effect. The entire dataset (5301 data points) was
divided into training (80%) and testing (20%) set, randomly. Here, the training set was
used for model training and hyper-parameter tuning, while the testing set was used for
model evaluation [38].

3.2. Model Optimization and Generalization Performance

To select the best model, the hyper-parameter set should be optimized. This process
is the essential step because the performance of a model varies significantly depending
on the hyper-parameter set. The procedure of optimizing a model is divided into five
stages: (1) a hyper-parameter tuning space is specified; (2) an arbitrary hyper-parameter
set within a given range is chosen using random-search method. Here, random-search
is the method sampling hyper-parameter set randomly in the range of specified tuning
space; (3) a model is built for the training set with a given hyper-parameter set and is
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evaluated through cross-validation. Here, the cross-validation is the one of validation
methods used for selecting the optimum hyper-parameter set in the given space. The
principle of cross-validation is to divide a training set into k-folds, and then one fold is
used as the validation data for the model which is fitted by the rest of folds. This process
is repeated k times and all the outputs are evaluated through evaluation metric; (4) after
repeating the stage 3 several times, only the hyper-parameter set with the best value of
evaluation metric is chosen; (5) based on the hyper-parameter set selected from the stage 4,
the stages 1–4 are repeated until the hyper-parameter set converges to the optimum set.
From the process, final hyper-parameter space and optimum set selected are summarized
in Table 4. As for an evaluation metric, the RMSE was selected and the equation can be
expressed as Equation (8);

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

where yi is the actual output and ŷi is the corresponding predicted output. The RMSE
history for the final cycle of stage 5 according to the models such as random forest (RF),
linear and nonlinear support vector regression (SVRLinear, SVRRBF) are shown in Figure 10.
Here, the vertical axis indicates the result of the sorted root mean squared error (RMSE)
in descending order. The results show that the RMSE for SVRLinear and SVRRBF were
0.182 and 0.104, respectively. In other words, the performance of SVRRBF showed about
1.8 times higher than that of the SVRLinear. This result implies that the relationship between
the AE parameters and the degree of damage is a complex and nonlinear problem. As
for comparison between two different nonlinear models, the RF (RMSE = 0.048) showed
2.2 times higher optimizing performance than the SVRRBF (RMSE = 0.104).

Table 4. Hyper-parameter tuning spaces and optimized values for each ML method.

Model Hyper-Parameter Description Tuning Range Optimized Value

RF
Max_depth The maximum depth of tree 1–20 11
Max_n_tree The maximum number of tree in RF model 1–1500 959

Max_features The maximum number of input parameter to consider 1–6 3

SVRRBF

C Regularization parameter 100–100,000 90,575
ε It specifies the epsilon-tube in SVRRBF model 0.1–0.5 0.128
γ The coefficient for radial basis function 0.01–1 0.735

SVRLinear
C Regularization parameter 100–100,000 47,107
ε It specifies the epsilon-tube in SVRLinear model 0.1–1 0.123

Figure 10. Cross-validated RMSE in descending order versus the number of iterations. The results
show that the performance of SVRRBF is about 1.8 times higher than that of the SVRLinear. This
result implies that the relationship between the AE parameters and the degree of damage is a
complex and nonlinear problem. As for comparison between two different nonlinear models, the RF
(RMSE = 0.048) showed 2.2 times higher optimizing performance than the SVRRBF (RMSE = 0.104).
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To verify a generalization performance, the optimized nonlinear models were exam-
ined for a testing set that was not used to construct the models (Figure 11). As evaluation
indices for the models, R-squared (R2), RMSE, and mean absolute percentage error (MAPE)
were selected in this study and the formulation of R2 and MAPE can be expressed as
Equations (9) and (10), respectively;

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (9)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (10)

Figure 11. Actual damage versus the damage predicted by (a) SVRRBF and (b) RF for the testing set. The solid line indicates
the relationship ypredicted = yActual. Data points for a good prediction would lie close to the solid line. In Figure 11a, some
data points far from the solid line seem to have increased the prediction error. On the other hand, the data points in Figure 11b
were overall close to a solid line, which indicates that RF is higher generalization performance compared with SVRRBF.

In Figure 11, the solid line indicates the relationship ypredicted = yActual. Data points
for a good prediction would lie close to the solid line. The result showed that R2, RMSE,
MAPE for the SVRRBF were 0.899, 0.101, and 0.058, whereas as for the RF, the values were
0.989, 0.032, and 0.014, respectively. In Figure 11a, some data points far from the solid
line seem to have increased the prediction error. On the other hand, the data points in
Figure 11b were overall close to a solid line, which indicate that RF is higher generalization
performance compared with SVRRBF. Based on the results, we selected the RF model as the
best fitting model and their information is summarized in Table 4.

3.3. Parameter Analysis

To capture an insight for the RF model, not only predictive performance but also model
interpretability should be accompanied simultaneously. The Shapley additive explanations
(SHAP) proposed by Lundberg and Lee [28] is the integrated framework for interpreting the
model’s prediction, which can express each parameter importance for a specific prediction
to magnitudes and directions. The SHAP value is based on Shapley values originated from
coalitional game theory and a local interpretable model agnostic explanation (LIME) that
gives insights for local interpretability. The LIME value has a limitation of being unfair
in terms of collaborative game theory. To complement this shortcoming, the SHAP value
improved this unfairness of LIME by employing the Shapley value. A detailed explanation
and theory of SHAP can be found in [28].

In this study, SHAP analysis for the RF model was performed (Figure 12). In this
graph, an individual point represents the SHAP value of each dataset. The higher the
SHAP value, the higher the positive contribution to the damage value. On the other hand,
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the lower the SHAP value, the higher the negative contribution to the damage value. The
degree of ‘high’ and ‘low’ values for the parameter can be distinguished by colors ‘red’ and
‘blue’, respectively. As shown in Figure 12, the degree of contribution to the damage value
for the cumulative absolute energy strongly increased when the cumulative absolute energy
increased. In general, the cumulative energy is related to the energy released by the crack
growth of the rock [39] and is known to be directly proportional to the actual energy of the
rock [27]. The result suggests that AE absolute energy is still the main parameter that has a
major influence on the degree of damage even under the condition considering various
AE parameters. The cumulative initiation frequency also contributed to the damage value
positively when this value also increased. The distribution of frequency is known to be
concerned with the stress level including rock type and the degree of fracturing [40]. Based
on the result, an AE frequency seems to be definitely associated with the degree of damage,
but it is unsuitable to use alone due to the low importance relatively. In addition, since
the value varies with the type of AE sensor and the adhesion condition to rock [41], AE
frequency should be considered with several AE parameters.

Figure 12. Distribution of SHAP values for cumulative AE parameters. An individual point repre-
sents the SHAP value of each dataset. The higher the SHAP value, the higher the positive contribution
to the damage value. On the other hand, the lower the SHAP value, the higher the negative con-
tribution to the damage value. The degree of ‘high’ and ‘low’ values for the parameter can be
distinguished by colors ‘red’ and ‘blue’, respectively.

For a better understanding of these results, we plotted the force plots for specific data
points corresponding to a high and low damage level, respectively (Figure 13). In the case
of a data point belonging to the high level of damage (0.99), it was confirmed that the
cumulative absolute energy and initiation frequency strongly give a positive contribution
to the damage value (Figure 13a). In the opposite case at which the damage value is
0.02, the above two parameters strongly offered a negative contribution to the damage
value (Figure 13b). Figure 14 shows the absolute average of the SHAP values for each
parameter. The result showed that the average value of the cumulative absolute energy is
0.152, which is the highest value among the several AE parameters. This result is in good
agreement with several studies [15,42,43]. Obviously, other parameters also contribute to
the prediction of rock damage. These results provide rationality for considering various
AE parameters for predicting the degree of rock damage.
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Figure 13. Force plots of specific data points in (a) high damage and (b) low damage level. In the case of a data point
belonging to the high level of damage (0.99), it was confirmed that the cumulative absolute energy and initiation frequency
strongly give a positive contribution to the damage value (Figure 13a). In the opposite case at which the damage value is
0.02, the above two parameters strongly offered a negative contribution to the damage value (Figure 14b).

Figure 14. Averaged absolute values of SHAP. The result showed that the cumulative absolute energy is the highest value among the
several AE parameters. Obviously, other parameters also contribute to the prediction of rock damage. These results provide rationality
for considering various AE parameters for predicting the degree of rock damage.

4. Conclusions

Monitoring rock damage induced by cracks is an important stage in geotechnical
engineering. AE technique is a useful method for monitoring rock damage and has been
used by many researchers. To increase the accuracy of the evaluation and prediction
of rock damage, it is necessary to consider various AE parameters, but this work is a
tough problem due to the complexity of the relationship between several AE parameters
and rock damage. In this study, we proposed a random forest-based prediction model
of the quantitative rock damage taking into account combined features between several
AE parameters. To fulfill this purpose, 10 granite samples from KAERI in Daejeon were
prepared, and a uniaxial compression test under the condition of progressive loading in
laboratory scale was conducted to obtain the dataset, including the AE parameters and the
degree of rock damage based on crack volumetric strain. To consider combined features
between rock damage and various AE parameters, an RF algorithm was employed and
compared with SVR. As an additional work, parameter analysis was conducted by means
of the SHAP for model interpretability. The conclusions derived from the results can be
summarized as follows;

1. It was confirmed that the relationship between cumulative AE parameters and the
degree of damage shows a strong nonlinear tendency by comparing SVRRBF with
SVRLinear;
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2. The R2, RMSE, and MAPE of the RF for the testing set was 0.989, 0.032, and 0.014
respectively, which are higher generalization performance than that of SVRRBF and
are acceptable results for application in the laboratory scale;

3. In both high and low levels degree of the damage, the cumulative absolute energy
and initiation frequency were selected as the main parameters affecting the prediction
of the damage. However, care should be taken that the initiation frequency should be
considered with several AE parameters since this value is sensitive to the type of AE
sensor and the adhesion condition to a rock surface;

4. Other AE parameters such as AE count, amplitude, rise time, and hit also contributed
to the prediction of rock damage. These results provide rationality for considering
various AE parameters for predicting the degree of rock damage.

Although the results of this simulation model cannot be used directly to make predic-
tions in situ due to the scale effect, discontinuity, and attenuation characteristics for in-situ
rocks, this study suggests the possibility of extension to in-situ application in underground
spaces, as subsequent research. Additionally, it provides information that the RF algorithm
is a suitable technique and which parameters should be considered for predicting the
degree of damage. In future work, we will extend the research to the engineering scale and
consider the attenuation characteristics of rocks for practical application.
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