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Abstract: Anomaly detection in complex networks is an important and challenging task in many
application domains. Examples include analysis and sensemaking in human interactions, e.g., in
(social) interaction networks, as well as the analysis of the behavior of complex technical and cyber-
physical systems such as suspicious transactions/behavior in financial or routing networks; here,
behavior and/or interactions typically also occur on different levels and layers. In this paper, we
focus on detecting anomalies in such complex networks. In particular, we focus on multi-layer
complex networks, where we consider the problem of finding sets of anomalous nodes for group
anomaly detection. Our presented method is based on centrality-based many-objective optimization
on multi-layer networks. Starting from the Pareto Front obtained via many-objective optimization,
we rank anomaly candidates using the centrality information on all layers. This ranking is formalized
via a scoring function, which estimates relative deviations of the node centralities, considering the
density of the network and its respective layers. In a human-centered approach, anomalous sets of
nodes can then be identified. A key feature of this approach is its interpretability and explainability,
since we can directly assess anomalous nodes in the context of the network topology. We evaluate
the proposed method using different datasets, including both synthetic as well as real-world network
data. Our results demonstrate the efficacy of the presented approach.

Keywords: anomaly detection; network centrality; multi-layer network; many-objective optimization

1. Introduction

With the current trends and advances in the digital transformation, an ever-increasing
amount of complex relational data is observed. Naturally, such data and information can
be modeled in networks; this specifically extends to multi-layer networks [1–4], which
allow for modeling complex relationships on multiple levels or layers. Identifying and
detecting anomalies in such complex networks is an important research problem that is
relevant in various contexts, e.g., for the extended (behavioral) analysis of social interac-
tion networks [5,6]. Further applications concern the analysis of (financial) transaction
networks, cyber-physical systems, or trade networks. Here, the respective interactions
can be analyzed, e.g., for detecting new knowledge about deviating (social/economical)
behavior [7,8]. Specifically, the identification and analysis of sets of anomalous nodes is
of particular interest, relating to the group anomaly detection problem. A further aspect
is given by human-centered approaches, enabling computational sensemaking on the
complex data and the detected anomalies, respectively.

In this paper—a substantially adapted and extended revision of [9]—we aim to iden-
tify and analyze potential anomalies in complex networks using many-objective opti-
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mization. We specifically focus on a specific class of networks, i.e., multiplex/multi-layer
networks [2,10]. For multi-layer networks, each node is not only part of a single (layered)
network but also part of multiple layers of a complex network. Here, a low/high centrality
of a node in one layer of the network might not imply a low/high node centrality in an-
other layer of the network. Multiplex networks are a special case of multilayer ones, being
restricted to the same set of nodes in the layers and having according connections between
layers [2]. Compared to our work in [9], we have both adapted/extended the presentation,
the related work, the contextualization and description of the method, the discussion of the
human-centered anomaly detection process, as well as the experimentation: Specifically,
we present and discuss new experiments on three additional real-world datasets in our
results and discussion.

In general, optimizing more than three objective function simultaneously can be cate-
gorized as many-objective optimization, yielding the Pareto Front in the multi-layer space.
It is easy to see that different layers as different objective functions can be complementary.
This means that, for example, minimizing the centrality of one layer could also imply
minimizing the centrality of another layer as well. In contrast, the layers could also be
contrary (conflicting) to the others. This then means that the structure of centrality is very
different among the layers. Thus, our proposed method first estimates the centrality of all
nodes in each layer of the multi-layer network, by applying many-objective optimization
with full enumeration based on minimization and obtains the Pareto Front. The objective
functions to be optimized simultaneously are the centralities of each layer in the network;
thus, the number of objective function are given by the number of existing layers of a
multi-layer network. Given the Pareto Front, we consider the contained set of nodes as a
basis for identifying a candidate set of suspected anomaly nodes. For this, we apply the
proposed novel ACE score for ranking the nodes. The ACE score is estimated using the
centrality of the nodes relative to each layer, also taking the density of those layers into
account. A high ACE score then indicates candidate anomalous nodes.

We evaluated our proposed approach on a multi-layer synthetic network as well as
real-world complex networks, demonstrating its efficacy. Specifically, for the synthetic
network, we applied data generated via Erdős-Rényi random graphs with a set of different
link probability (p) configuration settings in order to generate structurally different network
layers. In addition, we applied four real-world multi-layer networks, including social
interaction, trade, and social media networks. A key feature of our proposed approach is
its interpretability and explainability, since we can directly assess anomalous nodes with
respect to the network topology; for this, we present a human-centered process model for
anomaly detection, enabling computational sensemaking [11] on complex network data.

Our contributions are summarized as follows:

1. This paper presents a novel approach for identifying a set of anomalous nodes using
many-objective optimization on multi-layer networks. Optimization is based on
minimizing network centrality, to find a set of less important nodes in the network.

2. We present a novel measure, i.e., the ACE score, for ranking and identifying anomaly
candidates balancing the criteria of connectedness, centrality, and density.

3. In our experiments, we evaluated the proposed method using one synthetic and
four real-world networks: Thus, we generated simple to interpret network data and
demonstrated the effectiveness of our approach on this synthetic data as well as on
real-world multi-layer network data.

4. One particularly appealing feature of our proposed approach is its interpretability
and explainability: the results of many-objective optimization and the presented
ACE score can directly be assessed in a human-centered process for computational
sensemaking. For this, we can use simple and intuitive topological network features
as well as layered visualizations; we show some examples in our case studies.

The rest of this article is structured as follows: Section 2 discusses related work.
Next, Section 3 describes our proposed method. After that, we discuss the experiments,
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case studies, and results in Section 4. Finally, Section 5 concludes with a summary and
interesting directions for future work.

2. Related Work

Below, we outline and discuss related work on social interaction networks, anomaly
detection, and many-objective optimization in the context of our presented approach.

2.1. Social Interaction Networks

Social network analysis [12,13] has the concept of a social network at its core: Following
Wassermann and Faust [13], a social network is a social structure consisting of a set of actors
(such as individuals or organizations); it includes a set of dyadic ties, i.e., relationships
between these actors, e.g., induced by friendship, kinship, or organizational position.
Usually, these relationships are modeled as a graph, with the actors as nodes and the
ties as edges connecting the nodes. The analysis of social network data has received
significant attention; enabling sophisticated modeling this can facilitate understanding and
computational sensemaking, as well as making use of the collected data, e.g., [5,11,14–16].

Following [5], in this work, we focus on social interaction networks. These can
be regarded as user-related social networks in social media capturing social relations
inherent in social contexts. This includes social interactions, social activities, and other
social phenomena. These, respectively, then act as proxies for social user-relatedness. In
particular, according to Wassermann and Faust [13] (p. 37 ff.), social interaction networks
focus on interaction relations between people as the corresponding actors, whereas this
can also be extended towards other types of relationships and actors. User-generated
ubiquitous and social interaction data represented as networks or graphs is observed in
many different contexts, for example, in social media, Web 2.0, ubiquitous applications,
sensor networks, or complex interaction processes, e.g., [17–19]. Specifically, we can also
consider social relations implemented using specific resources, according to the principle
of object-centric sociality, see [20]: Here, objects of a specific actor, e.g., resources, mediate
connections to other actors such that traces of user interactions are captured. These basically
form implicit interactions, e.g., if one actor visits a webpage of the other actor or clicks on a
respective link in such a context.

2.2. Multi-Layer Networks

As outlined in [4], multi-layer networks enable advanced modeling options as an
extension of simple social networks. In particular, multilayer networks enable sophisti-
cated analysis approaches regarding complex real-world networks and according systems.
Mining and analyzing multi-layer networks can enable a fine-grained perspective on the
respective modeled characteristics and dynamics on multi-layer networks. Ultimately, this
can then lead to an in-depth understanding of the respective node relationships and their in-
teractions, c.f., [4]. As already discussed above in the context of social interaction networks,
multi-layer networks feature advanced modeling options regarding different interaction
contexts, which are considered on different interaction layers in the multi-layer setup.

As an example, ubiquitous and social interactions of an actor can occur directly, e.g., if
she buys a certain product at an online store, sends a message in an online social network,
or has a face-to-face conversation that is detected by special sensors. As another example,
physical devices, e.g., mobile phones or RFID devices, can link relations in the digital
domain to those in physical space, e.g., [17–19], corresponding to the idea of object-centric
sociality discussed above. However, it is important to note that each of these interactions
are performed by the same actor but in a different context; thus, this creates different
interaction contexts that can then be used in modeling multi-layer networks. The emerging
data is thus typically multi-relational and heterogeneous and usually includes several layers
of interdependent abstractions. The collected data in such contexts can be conveniently
modeled in the form of networks on multiple layers (and can be intuitively represented
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as graphs). In the form of a multi-layer network, this complex network structure then
includes the respective multiple relationships between the actors on the respective layers.

2.3. Many-Objective Optimization

Optimizing many-objective functions (≥3) simultaneously is called many-objective op-
timization, e.g., [21–23]. It is applied to tackle a wide range of problems not only in science
and engineering, e.g., [24,25], but also in the social sciences. Here, different approaches
have been developed, such as reducing the complexity, e.g., [7,26]. Other approaches
apply multi- and many-objective optimization for network analysis such as [27], in order
to identify key players in large social networks; [8] utilized modularity maximization
in multiplex networks using many-objective optimization; [28] performed community
detection from signed social networks using a multi-objective evolutionary algorithm; and
finally, [29] presented an approach for many-objective optimization using eigenvector
centrality in multiplex networks.

In this paper, we adapt and extend the approaches proposed by Maulana et al. [8,9,29].
The first step of the approach starts by measuring the centrality of all nodes on all layers
of multi-layer network. This is followed by applying many-objective optimization with
full enumeration of all layers based on a maximization problem to find the Pareto Front.
In contrast to this approach, we utilize the Pareto Front as a non-dominated solution
generated by many-objective optimization for minimization as a basis to extract a set of
anomaly candidates, i.e., a set of suspected anomalous nodes from the network.

2.4. Anomaly Detection

Anomaly detection (or outlier detection) is an important research field with broad
application directions, c.f., [30,31]. In general, it targets the identification and detection
of irregular or exceptional points and/or structures, while there exist different defini-
tions. According to the classical definition of [32], “an outlier is an observation that
differs so much from other observations as to arouse suspicion that it was generated by
a different mechanism”. Here, there exists a variety of techniques, e.g., using subspace
clustering [33,34], tensor factorization [35], community detection [36], adapting deep learn-
ing (classification/condition monitoring) techniques [37–39], or graph/signal processing
methods [40,41]. Identifying anomalies in network data is a prominent novel research area.
It features many important applications, such as identifying new and/or emerging user
behavior, as well as the identification of detrimental or malicious activities, c.f., [42–47].

The general graph anomaly detection problem can be defined as follows: “Given a [. . . ]
graph database, find the graph objects [. . . ] that are rare and that differ significantly from
the majority of the reference objects in the graph” [48]. Thus, for complex networks, we can
focus on different types of graph objects. We can consider individual nodes, the respective
links/edges between nodes, or more complex substructures of nodes and/or links. In
our context, this extends to multi-layer networks naturally. Currently, in the literature,
there are mainly approaches for handling individual point anomalies corresponding to
detecting individual nodes, as discussed in [48]. Additionally, in graph anomaly detection
scenarios [49–51], typically, static plain graphs are considered. However, in real-world
networks, the situation is typically more complex than only considering point anomalies
and static graphs: for these, it is difficult to capture the multi-relations of the complex
heterogeneous networks. Therefore, we extend our focus from point anomalies to groups
and more complex structures, i.e., towards multi-layer networks; in particular, this also
covers multiplex networks if we consider the same set of nodes in each layer. Regarding
group anomaly detection, for example, the authors of [52] defined the general group
anomaly detection problem as follows: “We are interested in finding the groups which
exhibit a pattern that does not conform to the majority of other groups”. Then, for example,
groups can be detected based on mixture models [53] or graphical models, e.g., [52]. In
this paper, we focus on the group anomaly detection problem, applying multi-objective
optimization using centrality measures as well as applying a scoring method, which is
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implemented in a human-centered approach—in contrast to methods relying on purely
automatic methods. With this human-in-the-loop approach, we also enable computational
sensemaking, e.g., [11,54].

3. Method

Our proposed approach is built upon different modeling and analysis techniques from
the fields of network science and optimization—including multi-layer networks, network
statistics and centrality, edge density, many-objective optimization. Below, we first present
an overview of our approach before we discuss those specific approaches in detail.

3.1. Algorithmic Overview

In this paper, our objective is to detect the anomalous behavior of a set of nodes in
multi-layer networks. For this, we start by identifying a set of nodes that exhibit some
unusual behavior in terms of their interaction with other nodes. In summary, we focus
on the network structure and target nodes with little connectivity or a deviating network
structure, i.e., nodes having a low centrality in the network and its respective layers.
This is formalized in the novel ACE score. Utilizing many-objective optimization and
statistical network analysis methods using the ACE score, we apply the following steps for
identifying the anomalous behavior of a set of candidate nodes in the multi-layer network.

1. First, we obtain general network statistics: We estimate the centrality of all nodes in
each layer of the multiplex network as well as the network density of each layer.

2. Second, we apply our many-objective optimization approach: we identify a set
of less important nodes through minimization using node centrality as a criterion;
the number of layers becomes the number of objective functions to be optimized
simultaneously for obtaining the Pareto Front.

3. Finally, we apply a semiautomatic human-centered approach: we start with the Pareto
Front, where we select a candidate node from that Pareto Front, guided by the ACE
score, if

(a) it is weakly connected, i.e., with no connection in at least one network layer;
(b) it has a very low centrality in a rather dense layer – assessed by the ACE score;

or
(c) its centrality is almost zero.

After that, we interactively inspect the further ranked levels in order to determine
other candidate nodes in a human-in-the-loop approach. In this way, we directly
utilize the ranking provided by the proposed many-objective optimization approach.

Figure 1 depicts the presented approach. It is important to note that, during the
semiautomatic step, different candidate nodes are proposed in close collaboration with
the human-in-the-loop. Furthermore, during inspection and selection, all previous steps
are transparently available in order to enable, e.g., “drill-down”, “zoom and filter”, and
“details on demand” techniques, as proposed in the visual information seeking mantra by
Shneiderman [55]. For this, specific visualizations of the different layers can also be utilized,
as also discussed in our case studies. In this way, the candidate nodes as well as their
embedding in the network and the respective layers can be transparently assessed.
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For All Layers: 
Estimate Centrality

& Density

Many-Objective
Optimization

è Pareto Front

Semi-Automatic & 
Human-in-the-loop

Node Selection

Figure 1. Overview on the procedural steps of the proposed approach: first, centralities and densities
are estimated before many-objective optimization is applied in order to obtain the Pareto Front, i.e.,
the set of less important nodes. Finally, these are assessed in a human-in-the-loop approach.

3.2. Multi-Layer Networks

A multi-layer network (with a multiplex network as a special case) consists of multiple
layers, modeling multiple relations. More formally, it can be defined as a graph G =
(V, El), l = 1 . . . m composed of n = |V| nodes and m different link sets for those nodes,
which we call layers; accordingly, the set of nodes is denoted by V and the sets of links are
modeled by El , l ∈ {1...m}. Furthermore, distinguishing between the different layers and
modeling them as separate graphs, a multiplex network then can be represented formally
as G = (G1, G2, . . . , Gl , . . . , Gm), where Gi = (Vi, Ei), with Vi ⊆ V and Ei models the edges
of the ith layer. For a multiplex network, it holds that Vi = Vj for i 6= j. A visual depiction
of the network with different layers is shown in Figure 2.

Each network Gl is represented by an adjacency matrix Al with entries al
ij = W l

ij > 0

if there is a positive weight of the link between nodes vil , vjl ∈ El in layer l and al
ij = 0

otherwise. We use this representation to simplify the formalization of weighted multiplex
networks by only considering edges with an integer weight larger or equal to zero between
any pair of nodes vil and vjl in a layer l.

Figure 2. Depiction sketch of a multi-layer network consisting of ten nodes, with two types of different links. The different
sets of links in this network are illustrated by different colors (of the respective links/edges).

3.3. Network Centrality

To find the most influential node in a network, we can utilize the notion of network
centrality. This is formalized using different network centrality metrics. In everyday life,
for example, we perceive a person or some people to be very important in a community or
in an organization if in some way those have a certain influence on others or can generate
important decision for a community. Identifying important person or organizations can
then be considered as identifying key players in a community.
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Network centrality methods enable the identification of such key players or most influ-
ential nodes in a social setting [56,57]. They include, e.g., the following centrality measures:

• closeness centrality, measuring the distance from a specific node to all other
nodes [58];

• betweenness centrality, taking into account the number of shortest paths past the
certain nodes in the network [59];

• eigenvector centrality, considering the number of links from other nodes, their impor-
tance, and to how many these nodes themselves point to, c.f., [60]; and

• degree centrality, centering on the number of connected peers for a node [61,62].

For our proposed approach, we consider eigenvector centrality which is computed
for each layer of the network. We applied eigenvector centrality, since this precisely
corresponds to our intuition for estimating the notion of connections to important nodes
and/or parts of the network, which is relevant for anomaly detection. However, our
method can potentially also be adapted to other centrality measures, e.g., see those above.

The eigenvector centrality can be defined as follows: For a given graph G := (V, E)
with |V| denoting the number of nodes, let A = (av,t), v ∈ {1, ..., |V|}, t ∈ {1, ..., |V|} be
the adjacency matrix, i.e., av,t = 1 if vertex v is linked to vertex t, and av,t = 0 otherwise.

The relative centrality score of vertex v is defined as

xv =
1
λ ∑

t∈M(v)
xt =

1
λ

|V|

∑
t=1

at,vxt ,

where M(v) is a set of the neighbors of v and λ is a constant.
Furthermore, the eigenvector centrality in vector notation can be written as follows:

Ax = λx . It is clearly defined that x is an eigenvector of A. Since there could be many
eigenvectors of A, by convention, the eigenvector that corresponds to the largest eigenvalue
is considered. There are two important factors that influence the eigenvector centrality
of each node: (1) the number of neighbors that point to the node and (2) the weight of
neighbors that point to the node.

Furthermore, there is also a possibility that nodes with a larger number of neighbors
have a lower eigenvector centrality compared to nodes with fewer neighbors. This situation
can occur, for example, when the neighbors of the less connected node have higher weights.

3.4. Centrality-Based Many-Objective Optimization Approach

For many-objective optimization of the network centrality, we define one objective
function for each layer; per layer, our method is applied to minimize the eigenvector
centrality of that layer, while overall, all layers are obviously taken into account by our
proposed many-objective optimization approach. Using this method, for a multiplex
network G with layers G1, ..., Gm, m is thus defined as the number of objective functions.

Obviously, each node in each layer of the network can have a different centrality—
either high or low and dominated or non-dominated. The node centrality is said to be
non-dominated if there is no other point better than or equal to the centralities in different
layers and better in at least one criterion or in one layer. For computing the non-dominated
subset from a finite set of n solutions, the algorithm by Kung, Luccio, and Preparata is the
fastest known approach [63]. It accomplishes this task with a time complexity in O(n log n)
for m = 2, 3 and O

(
n(log n)m−2) for m > 3. For our proposed approach, we compute the

Pareto Front using many-objective optimization (by minimizing eigenvector centrality) to
find the set of non-dominated solutions, i.e., the set of nodes with very low importance
in the multi-layer network. The set of nodes in the resulting Pareto Front, i.e., the set of
non-dominated solutions, is then the basis to select suspected anomalous nodes.
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3.5. Statistical Analysis Based on Edge-Density

For statistical analysis of the nodes, we apply the nodes’ mean centrality and standard
deviation for a respective layer to derive a specific score, as discussed below. We summarize
basic notions according to the standard formalizations in the following.

In terms of arithmetics, the mean or average is usually denoted by x̄ or µ, considering
the sum of the sample values divided by the number of items in the sample, i.e.,

µ =
1
n

(
n

∑
i=1

xi

)
=

x1 + x2 + · · ·+ xn

n
,

as the sum of the sampled values xi divided by the number of items n in the sample.
The standard deviation

σ =

√
1

n− 1

n

∑
i=1

(xi − µ)2 ,

measures the spread of the sample compared to the mean. Thus, it can be interpreted as
how the measurements for a group are spread out from the average (mean) or expected
value. A low standard deviation means that most of the numbers are close to the average.
A high standard deviation means that the numbers are more spread out. Furthermore, we
include another parameter, i.e., the edge density, which measures the fraction of present to
possible edges. In a dense graph, the number of edges is close to the maximal number of
edges. In contrast, a graph with only a few edges is then a sparse graph. For undirected
simple graphs, the (graph) density is defined as D = 2|E|

|V| (|V|−1) . For a directed graph, this
graph density is divided by two in order to take the directionality of edges into account.

3.6. Assessing Anomalous Nodes

For the final step in identifying a set of nodes that have no connection or have very
low centrality in a high density layer, it is necessary to consider the density of the layer
and to take the less important nodes, which are far from the mean in that layer, into
account. In the following, we describe a special score to be applied, which we propose for
indicating a node as an anomaly, the so-called ACE score (Anomaly candidate based on
Centrality Evaluation).

The ACE score considers the mean and standard deviation of the centrality of all
nodes in a specific layer (of the multiplex network), e.g., one which has very high edge
density compared to other layers. Using the ACE score for the set of nodes on the Pareto
Front, we chose those with the highest ACE score or those that are very close to this
score and are far from the mean µ in each layer. Then, these nodes were indicated as
anomalous candidate nodes. These candidates can then be further assessed and inspected in
the described human-centered approach. More formally, the ACE score for node v in layer
l is defined as follows:

ACE(v, l) =
(

µl − xvl
σl

)
Dl ,

where µl is the mean nodal centrality in layer l, xvl is the centrality of each node/vertex v
in layer l, σl is the standard deviation, and Dl denotes the edge density of layer l.

4. Results

For our evaluation, we discuss the experimentation performed in four experiments
and case studies using a synthetic as well as several real-world networks. Those include
(face-to-face) social interactions, a trade interaction network, as well as social media in-
duced networks. It is important to note that, in this paper, we focus on the task of group
anomaly detection, specifically with a semiautomatic human-in-the-loop approach. To
the best of the authors’ knowledge, this is a novel methodological focus, lacking standard
methods for comparison. Therefore, in our experimentation and discussion, we focus on
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the evaluation of our proposed method, analyzing and discussing our results in detail,
including qualitative results and insights in the context of several case studies on real-world
datasets. We first provide an overview on the different network datasets before we provide
our analysis results, discussing them in detail in context.

4.1. Datasets—Networks

For the synthetically generated network, we applied the Erdős and Rényi models since
these are standard network generation models that are also simple to interpret. For the
real-world networks, we utilized a range of datasets with different sizes and characteristics,
also covering different domains. We applied the following datasets, as summarized in
Table 1, which are also publicly available:

1. a standard multiplex network dataset from Aarhus university [64,65],
2. the Kapferer Tailor Shop multiplex network [66,67],
3. a multi-layer network modeling world trade [8,29,68], and
4. a multi-layer social network induced by social media (FriendFeed, Twitter,

Youtube) [1,3,69].

Table 1. Summary: statistical overview on the applied networks, describing the overall number of
nodes, the number of layers, and the overall number of edges of the respective multiplex networks.

Network Type Number of Nodes Number of Layers Number of Edges

Synthetic 100 5 8158

CS-Aarhus 61 5 620

Kapferer-Tailor 39 4 552

Social Media 6407 3 74,862

Trade Network 207 11 148,727

4.2. Case Study I: Synthetic Multi-Layer Networks

In our first case study for evaluating our approach, we focus on synthetically generated
networks. These are generated via a random graph according to the Erdős and Rényi model.
In this complete graph model, each edge has a probability of 1− p to be removed from
the network. By varying the probability and number of nodes, we can generate different
networks and layers, respectively.

We generated networks with a specific number of nodes (n = 100) and link prob-
abilities ranging from p = 0.03 to p = 0.3; for the number of layers, we chose l = 5
layers. We denote the layers with g1 to g5. Table 2 provides an overview on the respective
network statistics. Figure 3 shows the applied synthetic network based on Erdős-Rényi
graph generation. Each layer corresponds to one synthetic network with different link
probabilities p ∈ {0.03, 0.05, 0.20, 0.25, 0.30}. We performed a round of experiments, and
take this specific instantiation as an example to demonstrate the methodological approach.
Other instantiations, e.g., varying the number of layers, showed similar results.

For our example case, as a result of the estimation of eigenvector centrality and the
application of many-objective optimization for synthetics networks, we detected 38 nodes
in the Pareto Front, c.f., Table 3. Applying our selection methodology described in Section 3,
we started with those nodes in the Pareto Front in order to identify candidate nodes as
sets of anomalous nodes. Therefore, starting with these 38 nodes, we observe a set of
nodes with very high ACE score values or some nodes that are very close to these and
show a large deviation from the respective centrality mean µ. In particular, we took those
nodes with very high ACE score in specific consideration, where we observe them being
contained in the layers that have high density D. In our case, these are the layers g3, g4,
and g5. As a result, we can identify six nodes (35, 39, 48, 68, and node 99), which were then
categorized as anomalous nodes.
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Figure 3. Synthetic network generated by an Erdős Rényi random graph generation strategy. Each
layer consists of 100 nodes. For the different layers (1–5), layer 1 top left, layer 2 top right, etc. to
bottom layer 5, we applied different link probabilities p for generation, thus each layer has a different
edge-density.

As can be observed in Tables 3 and 4 and Figure 3, in this way, we selected the
nodes with the highest ACE score that are also in the Pareto Front, focusing on the denser
layers, while the low-density layers are neglected since these also feature quite low ACE
scores. Intuitively, this makes sense since a node with a low connectivity and/or high
eigenvector centrality on a layer with higher density then gets a higher chance to be
proposed as an anomalous node. It is important to note that layers g1 and g2 feature
some unconnected nodes, which can then be indicated as anomaly candidates for these
layers based on a connectivity criterion as well. Such a (simple) criterion can of course
be implemented complementing the Pareto-front-based selection. However, in our many-
objective optimization approach, we consider all layers at the same time to first find initial
candidates on the Pareto Front by minimizing eigenvector centrality, which are then refined
using further criteria such as density and connectivity, which are formalized in the novel
ACE score.
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Overall, it is important to note that all of the steps of this process occur transparently,
i.e., the initial candidates can be inspected and validated by the human-in-the-loop and
guided by visualizations such as those given in Figure 3. This is an important and relevant
feature of our approach regarding interpretability and explainability, as also discussed in
the process model in Section 3.

Table 2. Statistical characterization: synthetic multiplex network generated via an Erdős-Rényi graph
generation process. Each layer of the network corresponds to one synthetic network with the link
probability p ∈ {0.03, 0.05, 0.20, 0.25, 0.30}.

Layer µ σ D

L1 (p = 0.03) 0.194114 0.1911789 0.028889

L2 (p = 0.05) 0.34386 0.1979547 0.056566

L3 (p = 0.20) 0.674128 0.1472402 0.198384

L4 (p = 0.25) 0.651931 0.1232115 0.235556

L5 (p = 0.30) 0.726498 0.1220831 0.29899

4.3. Case Study II: Aarhus Real-World Multi-Layer Network

In our second experiment, we consider the analysis of a first real-world multiplex
network. The network application context relates to the scope of social interactions, i.e.,
interactions in a departmental context between people working at that department [64,65].
Here, we observed slightly different patterns compared to the synthetic network data,
which we discuss in detail below.

The applied network data consist of five layers modeling online and offline relation-
ships (Facebook, Leisure, Work, Co-authorship, and Lunch) between the employees of the
Computer Science department at Aarhus University. The network includes 61 nodes, repre-
senting the respective members at the department. Figure 4 depicts the individual layers
of the multiplex network, representing the individual relationships. We observe a rather
relative dense structure in layer 5 compared to the other layers, this is also summarized in
Table 5 where we present a statistical overview on the network and its layers, respectively.

Figure 5 shows a detailed view on layer 5, i.e., the densest layer. Here, we can
already observe some interesting findings regarding the connection structure, i.e., regarding
relatively loosely connected nodes and one unconnected node. This will be useful when
interpreting our results, which we will discuss in the following.

As result of estimating the centrality for all nodes in all layers and applying many-
objective optimization through minimization, we found a Pareto Front that consists of six
nodes. As shown in Figure 6, these are the nodes 1, 8, 12, 14, 37, and 60. For determining
the nodes to be categorized as anomalous nodes, we considered the high density D layers
as a basis to find nodes with the highest ACE score. Additionally, we considered the ones
closest to the highest ACE score and far from the mean µ, being contained in the Pareto
Front. In Figure 6, we show a visualization of the different layers and the Pareto Front.
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Table 3. Synthetic network with 100 nodes consisting of five layers, with 38 nodes in the Pareto Front.

L1 L2 L3 L4 L5 Node ID Level

1 0.238847 0.278869 0.586341 0.642287 0.924788 1 1

2 0.191164 0.174877 0.687559 0.675231 0.75411 2 1

3 1.25E-17 0.416006 0.75482 0.474529 0.757621 3 1

4 1.25E-17 0.401982 0.551425 0.662649 0.79923 4 1

5 1.25E-17 0.213736 0.7307 0.617663 0.897725 9 1

6 1.25E-17 0.125957 0.790128 0.567224 0.633085 11 1

7 0.262506 0.191137 0.51756 0.589189 0.7169 13 1

8 0 0.476025 0.784085 0.658702 0.609807 15 1

9 0 0.613012 0.550916 0.764643 0.708011 20 1

10 1.25E-17 0.336907 0.520273 0.761882 0.922795 24 1

11 0 0.148321 0.698593 0.703381 0.876309 26 1

12 0.957554 0.045396 0.676144 0.46505 0.723078 27 1

13 1.25E-17 0.130615 0.490935 0.73268 0.893768 28 1

14 1.25E-17 0.085199 0.617385 0.567831 0.848255 31 1

15 1.25E-17 0.241517 0.453056 0.851897 0.617858 32 1

16 0 0.727116 0.410735 0.713941 0.911162 33 1

17 0 0.634736 0.848863 0.712245 0.491106 35 1

18 1.25E-17 0.382777 0.500778 0.688717 0.72154 38 1

19 0.48938 0.398631 0.45282 0.44327 0.752472 39 1

20 1.25E-17 0.133565 0.626805 0.62483 0.912015 44 1

21 0.48938 0.915795 0.637746 1 0.730629 46 1

22 0.199638 0.115416 0.588351 0.522453 0.499154 48 1

23 0.199638 1 0.616606 0.736292 0.885649 51 1

24 0 0.502089 0.69011 0.70434 0.66845 56 1

25 0.468608 0.201663 0.858988 0.452652 0.66817 60 1

26 0.515027 0.205772 0.948334 0.664673 0.786612 61 1

27 1.25E-17 0.174322 0.840323 0.598745 0.637779 63 1

28 1.25E-17 0.439402 0.381991 0.710902 0.693444 68 1

29 1.25E-17 0.671161 0.779929 0.687363 0.80535 69 1

30 0.128465 0 0.69584 0.702146 0.915057 70 1

31 0 0.164657 0.578598 0.813264 0.685314 73 1

32 1.25E-17 0.1548 0.582233 0.578118 0.894428 79 1

33 0.052406 0.35037 0.547268 0.739041 0.81452 83 1

34 0 0.912872 0.592001 0.73704 0.904102 88 1

35 0 0.21671 0.774421 0.797105 1 89 1

36 1.25E-17 0.067691 0.575705 0.601373 0.643516 92 1

37 1 0.178088 0.40133 0.739926 0.676465 99 1

38 0 0.558778 0.494943 0.764686 0.827497 100 1
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Table 4. ACE score of the synthetic/artificial network with 100 nodes consisting of five layers.

No L1 L2 L3 L4 L5

ACE score Node ACE score Node ACE score Node ACE score Node ACE score Node

1 0.003489 7 0.029332 22 0.39361 68 0.520676 40 0.576491 35

2 0.003489 12 0.029332 70 0.37581 66 0.398917 39 0.556781 48

3 0.003489 15 0.028154 57 0.367554 99 0.38098 60 0.512226 49

4 0.003489 19 0.026904 41 0.36481 77 0.373612 85 0.49261 71

5 0.003489 20 0.025192 49 0.363811 71 0.357277 27 0.364353 75

6 0.003489 21 0.024367 96 0.362636 78 0.339156 3 0.332967 14

7 0.003489 22 0.024012 21 0.354883 33 0.290516 93 0.327641 64

8 0.003489 26 0.023848 50 0.300521 8 0.278613 78 0.323315 43

9 0.003489 33 0.023426 87 0.298178 39 0.270124 47 0.303674 30

10 0.003489 35 0.023066 78 0.297861 32 0.26853 18 0.301767 98

11 0.003489 36 0.022582 14 0.249337 50 0.265734 30 0.287986 66

Figure 4. Aarhus multiplex network. Here, we show the individual layers of the network, where the different sets of edges
of each layer are also illustrated via different colors for the connected edges.
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Figure 5. Visualization of the Aarhus network, i.e., layer 5. Here, we observe clearly how the nodes
connect to others with many connections, few connections, or even without a single connection.

Table 5. Statistical characterization: Aarhus multiplex network.

Layer µ σ D

Layer 1 0.257986 0.291311 0.1054645

Layer 2 0.273081 0.331148 0.06775956

Layer 3 0.073182 0.240734 0.01147541

Layer 4 0.176249 0.22261 0.04808743

Layer 5 0.266831 0.20674 0.1060109

From those nodes in the Pareto Front shown in Table 6, we assessed those with the
highest ACE score in each layer—these are summarized in Table 7. As we can see in the
table, in layer 1, the highest score is achieved by node 60, while in layer 2, there are nodes
1 and 14; in layer 3, there are nodes 4, 8, 12, and 14; in layer 4, there are nodes 1, 14, and
60; and finally, in layer 5, there is node 1. Since layer 3 exhibits a very low density D, we
did not consider this layer as a high indicator in consideration in order to find anomalous
nodes. Additionally, as can be seen from the scores and the different layers, we can actually
focus on those nodes that occur in more than two layers as interesting candidates, which
also supports our intuitions. Therefore, in this way, we can actually collect “evidence” in
this network towards designating nodes as anomalous from several layers of the network.

As a consequence, we can identify four nodes out of six nodes in the Pareto Front to
be selected as candidate anomalous nodes in our semiautomatic human-centered process,
as we have discussed above. As an outcome, the designated final set of anomalous nodes
is given by nodes 1, 12, 14, and 60. In the social context, this then indicates, for example,
that node 1, node 12, node 14, and node 60 are not very active in the interaction with their
colleague in terms of special interactions (layer1 = Facebook, layer 2 = Leisure, layer 3 =
Work, layer 4 = Co-authorship, and layer 5 = Lunch): node 60 and node 12 are very rare in
interactions with their colleagues on Facebook, and node 1 and node 14 are not very active
in communication with their colleague related to leisure and co-authorship. Additionally,
node 1 shows little interaction in leisure and co-authorship and is less active in interacting
with his colleagues regarding lunch. The analysis process described above provides for
a human-centered interpretable and explainable approach since simple network metrics
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and topological indicators can be easily inspected in context on the multiplex network,
making use of the visualization of different layers and contextual inspection of their
parameters [55,70].

Table 6. Pareto Front—many-objective centrality optimization on the Aarhus multiplex network.

Aarhus Pareto Front

No L1 L2 L3 L4 L5 Node Label Level

1 0.0205957 0 8.12E-17 0 1.56E-17 1 U102 1

2 0.0092203 0.3276641 0 0.1228 0.4873511 8 U1 1

3 0.0087273 0.2510376 0 0.1232 0.1325338 12 U29 1

4 0.0199306 0 0 0 0.0877403 14 U41 1

5 0.0027204 0.385105 0 0.1907 0.2563836 37 U10 1

6 3.06E-17 0 8.12E-17 0 0.1415063 60 U140 1

7 0.0493792 0.2837498 0 0 0.2205827 4 U106 2

8 0.021995 0 0 0 0.4590027 6 U118 2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

47 0.0092 0 8.12E-17 0.29 0.23918 20 U17 4

48 0.13002 0 0.36603 0.396 0.14978 48 U138 4

49 0.27625 0.73729 8.12E-17 0 1 7 U123 5

50 0.29799 0.82106 8.12E-17 0.333 0.2724 19 U124 5

51 0.23158 0.30094 8.12E-17 0.417 0.13512 17 U59 5

52 1 0.50403 8.12E-17 0.4 0.11494 24 U109 5

53 0.71836 0.59922 8.12E-17 0.218 0.12304 29 U3 5

54 0.90271 0 8.12E-17 0.653 0.25754 35 U90 5

55 0.86681 0.74213 0 0.414 0.24717 33 U76 5

56 0.41465 0.9133 8.12E-17 0.017 0.70072 44 U4 5

57 0.33325 0.7789 8.12E-17 0.1 0.65743 51 U67 5

58 0.98973 1 8.12E-17 0.456 0.48118 34 U79 6

59 0.23158 0.85764 1 1 0.18967 23 U91 6

60 0.87278 0.76229 8.12E-17 0.665 0.34929 31 U54 6

61 0.23263 0.65021 1 0.589 0.53389 46 U110 6

4.4. Case Study III: Real-World Multi-Layer Network—Kapferer Tailor Shop

The third experiment concerns another well-known social network dataset in a multi-
relational context [66,67]. This well-known social network dataset was collected by Bruce
Kapferer himself in Zambia (June to August 1965), c.f., [66]. The dataset involves in-
teractions among workers in a tailor shop. An interaction is defined by Kapferer as
“continuous uninterrupted social activity involving the participation of at least two persons”
(p. 163, [66]); only transactions that were relatively frequent are recorded. All of the inter-
actions in this particular dataset are “sociational”, as opposed to “instrumental”. Kapferer
explained the difference (p. 164, [66]) as follows: “I have classed as transactions which
were sociational in content those where the activity was markedly convivial such as general
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conversation, the sharing of gossip and the enjoyment of a drink together. Examples of
instrumental transactions are the lending or giving of money, assistance at times of personal
crisis and help at work.” [66].

Figure 6. Pareto Front chart for the Aarhus multiplex network and the different layers (L1− L5): it
depicts the Pareto Front (PF) based on minimization of the nodes’ centrality on the right side of the
picture; the PF for the minimization is shown in the lower part of the vertical PF line.

Table 7. ACE scores for the Aarhus multiplex network.

No Aarhus L1 Aarhus L2 Aarhus L3 Aarhus L4 Aarhus L5

ACE score Node ACE score Node ACE score Node ACE score Node ACE score Node

1 0.0933996 60 0.05587783 1 0.0034885 4 0.03807 1 0.13682 1

2 0.0925381 2 0.05587783 2 0.0034885 6 0.03807 2 0.10696 22

3 0.0924148 37 0.05587783 3 0.0034885 8 0.03807 3 0.10384 43

4 0.0918969 41 0.05587783 6 0.0034885 10 0.03807 4 0.10052 49

5 0.0916538 42 0.05587783 10 0.0034885 11 0.03807 6 0.09659 53

6 0.0909673 5 0.05587783 11 0.0034885 12 0.03807 7 0.09659 61

7 0.0902401 12 0.05587783 14 0.0034885 13 0.03807 14 0.09568 59

8 0.0901458 45 0.05587783 18 0.0034885 14 0.03807 18 0.09313 56

9 0.090068 20 0.05587783 20 0.0034885 26 0.03807 21 0.09183 14

10 0.0900616 8 0.05587783 22 0.0034885 27 0.03807 22 0.09141 54

11 0.0897165 40 0.05587783 25 0.0034885 28 0.03807 26 0.08707 50

12 0.0861841 14 0.05587783 32 0.0034885 30 0.03807 27 0.08495 55

13 0.0861841 16 0.05587783 35 0.0034885 33 0.03807 53 0.07799 9

14 0.0859433 1 0.05587783 36 0.0034885 36 0.03807 54 0.07789 24

15 0.0854367 6 0.05587783 38 0.0034885 37 0.03807 57 0.07567 38

16 0.0854367 10 0.05587783 40 0.0034885 38 0.03807 59 0.07373 29

17 0.0854367 11 0.05587783 41 0.0034885 39 0.03807 60 0.07278 25

18 0.0810578 22 0.05587783 42 0.0034885 54 0.03774 61 0.06886 12

19 0.0788396 13 0.05587783 43 0.0034885 55 0.03607 55 0.06754 17

20 0.0755227 4 0.05587783 45 0.0034885 1 0.03488 10 0.06678 58
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Kapferer also observed and recorded instrumental transactions, many of which are
unilateral (directed) rather than reciprocal (undirected), though those transactions are not
recorded here. In addition, there was a second period of data collection, from September
1965 to January 1966, but these data are also not recorded here. All data are given in
Kapferer’s 1972 book [66] on pp. 176–179. Kapferer observed different types of interac-
tions in two different time intervals, which were seven months apart. Each layer of the
network denotes a different type of interaction at the shop, i.e., sociational (friendship and
socioemotional) and instrumental (work- and assistance-related).

Our applied dataset was taken from the well-known Kapferer multi-layer network
data. The network data includes 39 individuals who are represented as nodes in the
network. Table 8 provides a statistical characterization of the network and its layers.
Figure 7 shows a visualization of the different layers and the Pareto Front using a Parallel
Coordinates plot. Here, we can clearly identify the anomaly candidates (on the right)
obtained by our approach.

Table 8. Statistical characterization: Kapferer Tailor Shop multiplex network.

Layer µ σ D

Layer 1 0.3854688 0.2125424 0.4264507

Layer 2 0.4899419 0.2459141 0.6018893

Layer 3 0.260266 0.2709372 0.1470985

Layer 4 0.2506608 0.2362966 0.1983806

Figure 7. Pareto Front chart for the Kapferer multiplex network and the different layers (L1− L4): it
depicts the Pareto Front (PF) based on minimization of the nodes’ centrality on the right side of the
picture; the PF for the minimization is shown in the lower part of the vertical PF line.

From our experimentation utilizing many-objective optimization, we detected eight
nodes in the Pareto Front. These are Donald, Mateo, Chipalo, Paulos, Sign, Zakeyo, Adrian
and Kallundwe; see Table 9 for details. By calculating and identifying the highest ACE
score in each layer except in the layer with the lowest of the density, we finally obtained the
following nodes: Sign, Donald, Zakeyo, and Chipalo have the highest ACE-Score in layers
1, 2, and 4 respectively; here, we neglect layer 3 as it is the one with the lowest network
density. Therefore, Sign, Donald, Zakeyo, and Chipalo are finally selected as anomalous
nodes in the network. For a detailed view on the statistics, we refer to Table 10.
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Table 9. Pareto Front and network centralities of the Kapferer Tailor Shop multiplex network.

No L1 L2 L3 L4 Node Label Level

1 0.397101 0.076899 0.227271 4.36E-19 6 DONALD 1

2 0.17709 0.255465 1.57E-17 0.075394 8 MATEO 1

3 0.059998 0.341019 1.57E-17 0.255959 10 CHIPALO 1

4 0.297021 0.373386 1.57E-17 0.034534 18 PAULOS 1

5 0.013455 0.084826 0.028562 0.160698 20 SIGN 1

6 0.022149 0.259987 0.006686 0.078514 22 ZAKEYO 1

7 0.154452 0.480842 1.57E-17 2.47E-18 26 ADRIAN 1

8 0.143018 0.172989 0.020164 2.47E-18 27 KALUNDWE 1

9 0.481191 0.104547 0.228507 0.050905 4 SEAMS 2

10 0.141911 0.352355 0.122665 0.147189 17 ENOCH 2

11 0.237573 0.803971 0.105287 0.141186 25 MESHAK 2

12 0.235435 0.23692 0.158304 0.012102 23 BEN 2

13 0.372248 0.28798 0.045572 0.081653 35 CHRISTIAN 2

14 0.446693 0.310456 0.060973 0.077575 38 CHILUFYA 2

15 0.250912 0.241652 0.07816 1.14E-17 39 MABANGE 2

16 0.201821 0.607807 0.23093 0.353406 1 KAMWEFU 3

17 0.241237 0.655692 0.203435 0.623016 5 CHIPATA 3

18 0.276116 0.307887 0.302346 0.038746 15 NYIRENDA 3

19 0.307472 0.335643 0.180225 0.252708 28 MPUNDU 3

20 0.351199 0.284229 0.344007 0.224243 37 ANGEL 3

21 0.417402 0.403791 0.084483 3.21E-17 33 CHOBE 3

22 0.40163 0.475965 0.604055 0.304077 9 CHILWA 4

23 0.318112 0.617183 0.282275 0.255397 2 NKUMBULA 4

24 0.373917 0.571605 0.240467 0.491226 14 LWANGA 4

25 0.430833 0.481783 0.172491 0.237627 29 JOHN 4

26 0.438643 0.721808 0.09152 0.188956 21 KALAMBA 4

27 0.495024 0.405638 0.093042 0.025297 31 WILLIAM 4

28 0.467563 0.418168 0.129541 0.092453 36 KALONGA 4

29 0.637761 0.658291 0.77509 0.411734 12 ZULU 5

30 0.333699 0.666146 0.432999 0.649743 7 NKOLOYA 5

31 0.508462 0.881521 0.277381 0.506618 24 IBRAHIM 5

32 0.510248 0.730396 0.252753 0.268102 30 JOSEPH 5

33 0.64177 0.543767 0.299718 0.303266 32 HENRY 5

34 0.666847 0.649858 0.134423 0.455691 34 MUBANGA 5

35 0.677078 0.792611 1 1 11 LYASHI 6

36 0.514091 0.810266 0.433572 0.390044 13 HASTINGS 6

37 1 0.877987 0.92856 0.431482 16 CHISOKONE 7

38 0.585384 0.826399 0.900669 0.744139 3 ABRAHAM 7

39 0.806727 1 0.674242 0.412089 19 MUKUBWA 7
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Table 10. Anomalous nodes of the Kapferer Tailor Shop multiplex network that are extracted from the Pareto Front based
on the ACE score.

No Kapferer L1 Kapferer L2 Kapferer L3 Kapferer L4

ACE L1 Node ID ACE L2 Node ID ACE L3 Node ID ACE L4 Node ID

1 0.746419 SIGN 1.010946 DONALD 0.141305 MATEO 0.21044 DONALD

2 0.728975 ZAKEYO 0.991545 SIGN 0.141305 CHIPALO 0.21044 ADRIAN

3 0.653032 CHIPALO 0.943277 SEAMS 0.141305 PAULOS 0.21044 KALUNDWE

4 0.488681 ENOCH 0.775762 KALUNDWE 0.141305 ADRIAN 0.21044 MABANGE

5 0.48646 KALUNDWE 0.619287 BEN 0.137675 ZAKEYO 0.21044 CHOBE

6 0.463518 ADRIAN 0.607705 MABANGE 0.130357 KALUNDWE 0.20028 BEN

7 0.418096 MATEO 0.573896 MATEO 0.125798 SIGN 0.189202 WILLIAM

8 0.368476 KAMWEFU 0.562828 ZAKEYO 0.116563 CHRISTIAN 0.181447 PAULOS

9 0.301032 BEN 0.503495 ANGEL 0.108201 CHILUFYA 0.177911 NYIRENDA

10 0.296742 MESHAK 0.494314 CHRISTIAN 0.09887 MABANGE 0.167703 SEAMS

11 0.289391 CHIPATA 0.445591 NYIRENDA 0.095437 CHOBE 0.147144 MATEO

12 0.269979 MABANGE 0.439303 CHILUFYA 0.091617 KALAMBA 0.145312 CHILUFYA

13 0.219408 NYIRENDA 0.377656 MPUNDU 0.09079 WILLIAM 0.144524 ZAKEYO

14 0.177464 PAULOS 0.364497 CHIPALO 0.084142 MESHAK 0.141889 CHRISTIAN

15 0.156495 MPUNDU 0.336752 ENOCH 0.074707 ENOCH 0.132822 KALONGA

16 0.135147 NKUMBULA 0.285278 PAULOS 0.070974 KALONGA 0.091908 MESHAK

17 0.103872 NKOLOYA 0.210859 CHOBE 0.068323 MUBANGA 0.086868 ENOCH

18 0.068759 ANGEL 0.206339 WILLIAM 0.055357 BEN 0.075528 SIGN

19 0.026526 CHRISTIAN 0.175672 KALONGA 0.047655 JOHN 0.051804 KALAMBA

20 0.023177 LWANGA 0.03421 CHILWA 0.043456 MPUNDU 0.022179 ANGEL

21 −0.02334 DONALD 0.022272 ADRIAN 0.030855 CHIPATA 0.010942 JOHN

22 −0.03243 CHILWA 0.01997 JOHN 0.017914 DONALD −0.00172 MPUNDU

23 −0.06407 CHOBE -0.13174 HENRY 0.017243 SEAMS −0.00398 NKUMBULA

24 −0.09102 JOHN -0.19988 LWANGA 0.015927 KAMWEFU −0.00445 CHIPALO

25 −0.10669 KALAMBA -0.28848 KAMWEFU 0.010749 LWANGA −0.01464 JOSEPH

26 −0.12284 CHILUFYA -0.31143 NKUMBULA 0.004079 JOSEPH −0.04416 HENRY

27 −0.16472 KALONGA -0.3914 MUBANGA −0.00929 IBRAHIM −0.04485 CHILWA

28 −0.19206 SEAMS -0.40568 CHIPATA −0.01195 NKUMBULA −0.08626 KAMWEFU

29 −0.21981 WILLIAM −0.41204 ZULU −0.02142 HENRY −0.11702 HASTINGS

30 −0.24678 IBRAHIM −0.43127 NKOLOYA −0.02285 NYIRENDA −0.13523 ZULU

31 −0.25036 JOSEPH −0.56751 KALAMBA −0.04547 ANGEL −0.13553 MUKUBWA

32 −0.25807 HASTINGS −0.58853 JOSEPH −0.09378 NKOLOYA −0.15181 CHISOKONE

33 −0.40111 ABRAHAM −0.7408 LYASHI −0.09409 HASTINGS −0.17213 MUBANGA

34 −0.50621 ZULU −0.76861 MESHAK −0.18665 CHILWA −0.20196 LWANGA

35 −0.51425 HENRY −0.78401 HASTINGS −0.22476 MUKUBWA −0.21489 IBRAHIM

36 −0.56457 MUBANGA −0.8235 ABRAHAM −0.27951 ZULU −0.31261 CHIPATA

37 −0.58509 LYASHI −0.94976 CHISOKONE −0.34769 ABRAHAM −0.33505 NKOLOYA

38 −0.84522 MUKUBWA −0.95841 IBRAHIM −0.36283 CHISOKONE −0.41429 ABRAHAM

39 −1.23301 CHISOKONE −1.2484 MUKUBWA −0.40162 LYASHI −0.6291 LYASHI
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4.5. Case Study IV: Real-World Multi-Layer Network of World Trade Network

In our fourth experiment, we consider a multi-layer network modeling world trade
relationships. These data originate from import–export interactions on commodities be-
tween some countries of the world in 2011, c.f., [8,29,68], disaggregated for different traded
commodities. This network can be defined as a multiplex network composed of many
layers, where each layer is given by a different commodity. Figure 8 shows the first layer
of the network. The nodes are given by the 207 countries contained. A link between two
countries in a layer is given if there is trade between them in the respective commodity. The
data are presented in matrix form: rows and columns represent countries, and the entries
of the matrices are the volumes of trade. It is therefore a weighted multiplex network.
The general classification is based on 96 different commodities. The classification was per-
formed by grouping together similar commodities; this procedure leads to 11 aggregated
‘super-commodities’.

Figure 8. Visualization of world trading network on layer 1. Here, can be seen how the nodes (representing the countries)
connect to the others, From the picture we can see that Ant (Antilles) node has no single connection in this layer.

In our experiment, we applied anomaly detection using the method explained above.
Our results indicate a special outcome compared to other dataset—we can observe a
specific special case here. Having obtained the Pareto Front and after having computed
the respective ACE scores, we observe that, as a result, only one single node in the Pareto
Front is provided, c.f., Table 11. Therefore, assessing a set of nodes using the ACE score
cannot be performed–since we only have one candidate, which is already our final result.
To this end, we conclude that, for our specific case, if we found a single node in the Pareto
Front, then this node has quite different characteristics compared to all other nodes. For
further (but weaker) candidates, we could resort to the nodes at the second rank of the
dominated solution from the Pareto Front, using the ACE score for assessment as well.
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Table 11. Pareto Front of many-objective optimization regarding multiplex network centrality of the trading network.

No L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 Label Level

1 1E-18 1E-18 4E-19 9E-19 4E-19 9E-19 3E-18 2E-18 4E-19 1E-18 2E-18 ‘ANT’ 1

2 3E-02 3E-02 2E-02 6E-02 5E-02 5E-02 6E-03 6E-02 6E-02 1E-01 6E-02 ‘CXR’ 2

3 6E-03 1E-18 4E-19 5E-03 5E-03 9E-19 7E-03 1E-02 2E-02 4E-02 2E-02 ‘ESH’ 2

4 2E-02 3E-02 8E-02 1E-01 1E-01 8E-02 6E-02 1E-01 1E-01 2E-01 9E-02 ‘TKL’ 3

5 1E-02 4E-02 3E-02 4E-02 6E-02 5E-02 2E-02 4E-02 7E-02 9E-02 7E-02 ‘NFK’ 3

6 6E-02 2E-02 5E-02 3E-02 3E-02 4E-02 1E-02 4E-02 5E-02 9E-02 4E-02 ‘SPM’ 3

7 3E-02 4E-02 3E-02 2E-02 4E-02 3E-02 4E-02 3E-02 5E-02 1E-01 5E-02 ‘NIU’ 3

8 5E-02 1E-02 5E-02 4E-02 4E-02 3E-02 3E-02 2E-02 5E-02 8E-02 6E-02 ‘TUV’ 3

9 2E-02 2E-02 8E-03 2E-02 3E-02 2E-02 9E-03 2E-02 5E-02 7E-02 4E-02 ‘PCN’ 3

10 1E-01 2E-02 3E-02 6E-02 5E-02 3E-02 4E-02 4E-02 6E-02 1E-01 5E-02 ‘FLK’ 4

11 3E-02 2E-02 5E-02 6E-02 7E-02 5E-02 2E-02 5E-02 8E-02 1E-01 9E-02 ‘NRU’ 4

12 4E-02 4E-02 6E-02 6E-02 5E-02 7E-02 1E-02 8E-02 8E-02 1E-01 9E-02 ‘MNP’ 4

13 3E-02 2E-02 1E-01 9E-02 7E-02 9E-02 1E-02 6E-02 1E-01 2E-01 1E-01 ‘AIA’ 4

14 3E-02 3E-02 2E-02 5E-02 6E-02 3E-02 2E-02 5E-02 8E-02 1E-01 6E-02 ‘CCK’ 4

15 5E-02 2E-02 6E-02 6E-02 4E-02 4E-02 3E-02 4E-02 5E-02 9E-02 6E-02 ‘PLW’ 4

16 3E-02 3E-02 5E-02 5E-02 6E-02 5E-02 4E-02 4E-02 5E-02 8E-02 6E-02 ‘WLF’ 4

17 6E-02 3E-02 2E-01 2E-01 2E-01 2E-01 6E-02 1E-01 2E-01 3E-01 2E-01 ‘GIB’ 5

18 5E-02 5E-02 2E-01 1E-01 1E-01 1E-01 5E-02 1E-01 2E-01 2E-01 1E-01 ‘TCA’ 5

19 7E-02 8E-02 2E-01 1E-01 1E-01 7E-02 2E-02 8E-02 2E-01 3E-01 1E-01 ‘STP’ 5

20 5E-02 5E-02 8E-02 8E-02 7E-02 6E-02 3E-02 7E-02 9E-02 2E-01 8E-02 ‘MSR’ 5

21 8E-02 3E-02 5E-02 8E-02 6E-02 5E-02 2E-02 6E-02 9E-02 2E-01 9E-02 ‘SHN’ 5

22 1E-01 8E-02 1E-01 9E-02 6E-02 8E-02 5E-02 7E-02 8E-02 1E-01 1E-01 ‘KIR’ 5

23 9E-02 3E-02 8E-02 9E-02 8E-02 7E-02 3E-02 1E-01 1E-01 2E-01 7E-02 ‘COK’ 5

24 9E-02 5E-02 8E-02 6E-02 9E-02 5E-02 5E-02 7E-02 7E-02 1E-01 7E-02 ‘FSM’ 5

25 8E-02 9E-02 2E-01 2E-01 2E-01 2E-01 7E-02 1E-01 2E-01 3E-01 2E-01 ‘LCA’ 6

26 8E-02 8E-02 3E-01 2E-01 2E-01 2E-01 5E-02 3E-01 2E-01 3E-01 2E-01 ‘BMU’ 6

27 5E-02 1E-01 1E-01 2E-01 2E-01 1E-01 1E-01 1E-01 2E-01 2E-01 2E-01 ‘ERI’ 6

28 9E-02 2E-01 9E-02 1E-01 1E-01 9E-02 4E-02 1E-01 2E-01 2E-01 2E-01 ‘TMP’ 6

29 6E-02 9E-02 2E-01 2E-01 2E-01 2E-01 4E-02 2E-01 2E-01 3E-01 2E-01 ‘CYM’ 6

4.6. Case Study V: Real-World Multi-Layer Social Media Network—FriendFeed, Twitter,
Youtube (FFTWYT)

For the experiments in this final case study, we focused on a multi-layer network in
the context of social media—considering networks on FriendFeed, Twitter, and Youtube
(FFTWYT). The respective anonymized dataset [1,3,69] was obtained starting from Friend-
Feed, i.e., a social media aggregator. In the following, we summarize the data collection
and aggregation according to [1,3,69]: In the FriendFeed system, the users can directly
post messages and comment on other messages; in addition, they can also register their
accounts on other systems. For constructing the dataset, the FriendFeed social media
aggregator was used to align users also registered on the respective other platforms
(http://multilayer.it.uu.se/datasets.html; last accessed, 17 November 2020).

http://multilayer.it.uu.se/datasets.html
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Using the FriendFeed information about users who registered exactly one Twitter
account that was associated to exactly one FriendFeed account, two layers can be inferred
(ff-tw); in addition, an additional YouTube layer (ff-tw-yt) could be constructed using the
respective links to YouTube, c.f., [1,3,69]. This results in three layers in total. The real
network data applied features a total number of 6407 nodes and 74,862 edges. Table 12
shows a statistical characterization and network metrics of the different layers.

Table 12. Statistical characterization: social media multiplex network (ff-tw-yt). µ is the mean
centrality of the layer, σ is the standard deviation of the centrality, and D is the density of the layer.

Layer µ σ D

Layer 1 for Facebook 0.005483732 0.0327055 0.0007777407

Layer 2 for Twitter 0.01483255 0.05158178 0.001031278

Layer 3 for YouTube 0.001921569 0.03622121 1.499258E-05

From the Pareto Front of the social media network data, we obtained 7 nodes, i.e.,
nodes 143, 1101, 1102, 2551, 3418, 4391, and 4497, as shown in Table 13. While the many-
objective optimization approach works fine on the dataset, it is easy to see that layer 1
(Youtube) does not contribute much regarding the findings, since the centralities are mostly
zero due to the sparseness (low density) of the network. Therefore, we consider the ACE
score only with the layer of high edge density edge, i.e., focusing on the FriendFeed and
Twitter layers (layer 2 and layer 3). Due to the very large number of nodes, we show a
summary of the detailed results in Table 14. As the result, from layer 2, we can observe that
nodes in the Pareto Front with high ACE scores are nodes 143, 1101, and 1102. In addition,
when we compute the ACE score in layer 3, we can see that the nodes in the Pareto Front
with high ACE score are the nodes 1101, 1102, and 2551. Therefore, taking both these layers
into account, we determined the final set of anomalous candidate nodes from this social
media multiplex network as the nodes 143, 1101, 1102, and 2551, in total.

Table 13. Pareto Front of many-objective optimization regarding multiplex network centrality for the
social media multiplex network.

NO L1:Youtube L2:FriendFeed L3:Twitter Node Level

1 0 3.15E-19 1.77E-06 143 1

2 6.28E-06 3.53E-19 5.61E-19 1101 1

3 0 3.19E-19 6.93E-19 1102 1

4 0 3.32E-19 6.67E-19 2551 1

5 0 3.87E-19 0 3418 1

6 0 3.02E-19 0.0005862 4391 1

7 0 3.76E-19 5.64E-19 4497 1

8 0 3.35E-19 4.96E-08 2468 2

9 0 4.29E-19 2.59E-19 1306 2

10 0 4.14E-19 6.14E-19 2218 2

11 0 4.22E-19 5.79E-19 2219 2

12 0 4.43E-19 0 2995 2

13 0 3.19E-19 5.30E-05 4208 2

14 0 3.82E-19 6.43E-19 2919 2

15 0 3.35E-19 6.93E-19 5915 2
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Table 13. Cont.

NO L1:Youtube L2:FriendFeed L3:Twitter Node Level

16 0 3.41E-19 4.85E-05 1095 3

17 0 3.43E-19 3.20E-06 1915 3

18 0 3.40E-19 0.0003068 2543 3

19 0 3.42E-19 2.96E-05 3089 3

20 0 4.29E-19 3.00E-19 1302 3

21 0 9.03E-19 0 2307 3

22 0 4.08E-19 6.50E-19 149 3

23 0 3.85E-19 6.53E-19 2973 3

24 0 3.47E-19 6.93E-19 6173 3

25 0 3.46E-19 0.0005896 796 4

26 0 4.29E-19 4.05E-19 164 4

27 0 4.60E-19 3.97E-19 3392 4

28 0 1.19E-18 0 2922 4

29 0 4.15E-19 6.52E-19 2226 4

Table 14. ACE score of multiplex network centrality for the social media network, only considering
high-density layers L2 and L3.

ACE Score with High Density Network Only L2 and L3

L2:FriendFeed L3:Twitter

ACE Score Node ACE Score Node

0.000130404 143 0.00029655 270

0.0001304 1101 0.000296548 1101

0.0001304 1102 0.000296548 1102

0.0001304 2019 0.000297 2551

5. Conclusions

In this paper, we proposed a novel approach for centrality-based anomaly detection
on multi-layer networks using many-objective optimization. In summary, the presented
approach identifies anomaly candidates based on a new method to obtain a Pareto Front of
potential anomalous nodes via minimizing eigenvector centrality. Given these candidates,
we applied a statistical network metrics criterion—formalized in the novel ACE score—
which balances the connectivity and eigenvector centrality of a node in relation to density
relative to the containing layer.

For our evaluation, we conducted experiments using synthetic as well as real-world
multi-layer network data. Specifically, we utilized a synthetic dataset generated by an
Erdős Rényi random graph generation approach. Furthermore, we applied four different
real-world multiplex networks capturing different (social) relations.

From our results and the analysis in detecting anomalous nodes in the synthetic
network generated by an Erdős Rényi generator, we could clearly identify the anomalous
nodes given the different layer structure on the synthetic data. Regarding the real-world
networks, such as the Aarhus, Kapferer, trade, and social media networks, we could also
apply our proposed approach well, identifying some special cases such as singular anoma-
lies and anomalies supported by layers with different densities. In this respect, our results
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were quite clear in identifying the sets of anomalous nodes. Finally, by measuring the mean
µ, standard deviation σ, and edge-density D, from the population of nodes centrality in
each layer, the ACE score of each layer can be directly calculated. Then, the nodes with the
highest ACE scores, which imply potentially anomaly nodes, can be easily identified and
assessed. Overall, our results thus indicate that we can identify anomalous nodes quite
well based on the criteria of connectivity and importance (as estimated by the eigenvector
centrality), always relative to the density of the containing network/layer. Additionally, a
specific advantage of the proposed method is its interpretability and explainability, refer-
ring to the network structure and topological features, which can be intuitively assessed in
a human-centered approach, c.f. [70].

In future work, we aim to extend the analysis towards further real-world complex
networks in order to capture and investigate further real-world phenomena about potential
anomalies, e.g., in feature-rich networks [4] as well as taking temporal relations into
account [4,41]. In addition, we plan to analyze other centrality measures in order to compare
those results with eigenvector centrality in terms of detection performance. Furthermore,
we aim to investigate interactive explanation methods for anomaly detection, also including
declarative approaches, e.g., [71].
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