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Abstract: The evaluation of the variety suitability regarding each appellation’s specificities should be
a strategy for maximizing the varieties’ oenological potential while contributing to the sustainable
production of quality wines, keeping their typicity and rationalizing winemaking costs. Thus,
the combination of several grape physicochemical attributes, modulated by climate and vineyard
characteristics, providing knowledge for each grape variety’s oenological potential, is a relevant and
reliable support for winemakers’ decisions. To prove this hypothesis, six mature grape varieties from
three harvests, each one from three vineyard parcels with different topographical conditions from
Bairrada Appellation (Portugal), were studied using analysis of variance–simultaneous components
analysis (ASCA). The effects of harvest year and parcel on grape berry weight, pH, titratable acidity,
total sugars, total phenolics, antiradical activity, and volatile composition in free and glycosidically-
linked forms were analyzed. The compositional plasticity of autochthonous varieties (white Arinto
and Bical and red Baga, Castelão, and Touriga Nacional) was observed. Sauvignon Blanc grape
composition was significantly modulated by harvest. This study represents an important contribution
for the maintenance of varieties’ biodiversity while contributing to establishing their peculiarities.
Autochthonous varieties, if accurately exploited, can provide higher characteristic diversity than
worldwide used varieties, an aspect to be more objectively taken into consideration by winemakers.

Keywords: grape variety suitability; vineyard parcels; harvest conditions; physicochemical parame-
ters; volatile profile; chemometric tools; metabolic plasticity

1. Introduction

Sustainable viticulture has appeared as a breakthrough approach that globally aims
to promote an integrated and efficient use of non-renewable natural resources, such as
grape varieties, for quality wine production while keeping their typicity and safety and
promoting economically viable production. Thus, the detailed knowledge of each grape
variety’s suitability regarding the natural specificities of each appellation is crucial for
sustainability in the viticulture sector [1,2]. Grape constitutes the raw material for produc-
ing wines. Its quality traits reflect the outcome of complex physiological and biochemical
interactions between the grape variety and its environmental conditions (vineyard soil
type and topography and climate, among others) [1], known to influence the expression of
grape characteristics [3,4], and thus impacting wine quality [5]. This capacity of a grape
variety to be modulated under variable environmental conditions is referred to as metabolic
plasticity [6]. Climate elements, such as temperature, sunlight exposure, and precipita-
tion, can affect grapes’ growth and ripening and, therefore, mature berry composition,
influencing the levels of sugars, acids, and secondary metabolites of major oenological
significance, such as phenolics and volatiles [7,8]. Grape composition is also modulated

Appl. Sci. 2021, 11, 4003. https://doi.org/10.3390/app11094003 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7531-9724
https://orcid.org/0000-0002-7963-3892
https://orcid.org/0000-0001-8898-6342
https://orcid.org/0000-0002-0396-3019
https://doi.org/10.3390/app11094003
https://doi.org/10.3390/app11094003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11094003
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11094003?type=check_update&version=2


Appl. Sci. 2021, 11, 4003 2 of 27

by a vineyard characteristic, namely soil type, that can act as a regulator of the climate
elements, due to its water-retaining (affecting water and nutrient availability to the plant),
heat-retaining, and light-reflecting capacities (affecting microclimate) and penetrability
(affecting the root growth) [9,10]. Additionally, vineyard topographical factors, such as
altitude and slope, modulate grape composition, influencing grapevine vigor and grape
ripening, and are directly associated with the vineyards’ resulting humidity, surrounding
vegetation, sunlight exposure and shadow, orientation, and trellising [1,9].

To understand the grape variety’s oenological potential under the uncontrollable har-
vest climatic conditions and vineyard’s characteristics, the application of chemometric tools
to obtain fast and reliable information that can help the winemakers’ decision is crucial.
Robust multivariate analysis of the long-term data series may represent a key tool to reduce
the environmental impact on wine quality by assisting in the implementation of adequate
winemaking practices and technologies, while contributing to reducing wine production
costs. Over many years, research has been aimed at developing a simple model or method
that could define and/or predict grape and wine quality. In fact, different models con-
structed by the application of multivariate methods have already been developed [11–15].
For instance, a Pearson’s correlation model was developed to predict Sauvignon Blanc
wine quality, correlating microclimatic data (temperature and radiation) with volatile
concentration and wine sensory parameters [11]. Geo-spatial modelling and partial least
squares (PLS) were also used to assess the spatial behavior of three grape varieties (Caber-
net Sauvignon, Syrah, and Merlot) according to quality zone delineation [12]. Although
contributing to the understanding of the relationships that may occur between factors, such
as climate, viticulture techniques, vineyard ecosystems, and grape composition, this kind
of model is restricted in space and in the number of parameters evaluated, thus limiting its
prediction power.

Analysis of variance–simultaneous component analysis (ASCA) was revealed to be
particularly helpful for the analysis of the effects in complex data sets, where large number
of variables have been measured. ASCA has been already applied to evaluate the effects of
pressure (250–650 MPa) and pressure holding time (15–120 min) on the phenolic content of
Nero D’avola Syrah red wine [16] to evaluate the effects of age and variety on the electronic
tongue response and wine composition with respect to the organic acids, phenolics, and
furanic derivatives, using HPLC data [17] to evaluate how storage temperature and time
(as well as their interaction) influence cheddar cheese ripening, combining Raman and
Mid-InfraRed (MIR) spectroscopy data [18], and to investigate the effects of CO2 and
soil–water levels on 1H NMR-based metabolic fingerprints of Arabica coffee beans [19].
ASCA is a merging of analysis of variance (ANOVA) and principal component analysis
(PCA) that allows the overcoming of the drawbacks of using both methods individually.
ANOVA fails in cases when the number of the variables exceeds the number of samples
or when dependent variables are correlated. On the other hand, PCA does not consider
the experimental design, which means that the different contributions to the variation
caused by the experimental design are confounded in the model [20,21]. The ASCA method
consists of partitioning the original data matrix into a set of matrices corresponding to the
different factors of the experimental design and, subsequently, subjecting each one of these
matrices to a PCA. The ANOVA-like model is constructed from the PCA models of all
effects and interactions. Since loadings are calculated for each sub-model independently, the
contribution of the variables to every source of variation can be identified. The significance
of each factor can be assessed using a permutation test that consists of randomly changing
the order of the rows in the data set [22–24].

The present research study aims to evaluate the reliability of a multivariate statistical
tool (ASCA) to combine grape physicochemical attributes (berry weight, pH, titratable
acidity, total sugars, total phenolics, antiradical activity, and free and glycosidically linked
volatile composition) to evaluate the impact of harvest year conditions and vineyard parcel
characteristics on grapes’ oenological potential. For this, mature grapes belonging to five
Vitis vinifera autochthonous varieties (Arinto, Bical, Baga, Castelão, and Touriga Nacional)
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and a worldwide cultivated one (Sauvignon Blanc) from Bairrada Appellation (Portugal)
were selected as a case study. Each variety was collected in three consecutive harvests and
in three vineyard parcels with different topographical characteristics.

2. Materials and Methods
2.1. Samples, Vineyards and Harvests Characteristics, and Sampling
2.1.1. Samples

Healthy-state Vitis vinifera L. cv. Arinto, Bical, Sauvignon Blanc (white varieties) and
Baga, Castelão, and Touriga Nacional (red varieties) grapes, from three consecutive harvests
(2010–2012), were collected, at technological maturity, in São Mateus (SM) (110 ha; 40◦26’56” N;
8◦29’20” W) and in Vale de Azar (VA) vineyards (60 ha; 40◦25’50” N; 8◦26’54” W), located at
Manuel dos Santos Campolargo, Herdeiros company, in Bairrada Appellation (Portugal),
each one from three vineyard parcels (Figure 1).
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Figure 1. Representative scheme of the location of the vineyards of (a) São Mateus (SM) and (b) Vale de Azar (VA) at Manuel
dos Santos Campolargo, Herdeiros company, in Bairrada Appellation (Portugal), highlighting the varieties (Vitis vinifera L
cv. Arinto (AR), Bical (BI), Sauvignon Blanc (SB), Baga (BA), Castelão (CA), and Touriga Nacional (TN)), altitude (ca. 50 to
90 m), and vineyard parcels (SM1 to SM3 and VA1 and VA2) under study.

To help defining the technological maturity state of each variety on the different
conditions under study, grapes were collected weekly from half-véraison (when 50% of the
grapes were in turning color in red varieties or with a translucent skin in white ones) to
maturity and, if grapes were available, also to the post-maturity state (Figure S1). Although
sugar content and titratable acidity were commonly used to define grapes’ maturity state
(sugar content tends to increase while acidity tends to decrease, and then both stabilize
when maturity is reached) [25], the berry weight and pH where also considered as indicators
of berry development and to assess changes occurred in the berry, such as dehydration or
microbiological contamination, respectively (Figures S2–S7).

2.1.2. Vineyard Parcels Characteristics

Table 1 summarizes the main characteristics of the vineyard parcels under study, such
as soil type (defined based on its texture), row orientation, the presence or not of pine trees
(which influences vineyards sunlight, shadow, and wind exposures), and altitude (determined
with a global positioning system (GPS) apparatus). All these vineyard parcel conditions were
defined and selected by Manuel dos Santos Campolargo, Herdeiros company.

Although grape quality also depends on agricultural practices [1], in this, the same
agricultural conditions were observed: parcels were not irrigated, thinning was not per-
formed, no kinds of mulches were added to the soil, and the bilateral cordon trellising
system was used in all vineyard parcels.
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2.1.3. Harvest Weather Conditions

The harvest year weather information (mean precipitation and mean temperature)
for a ten-year period (2010–2020) was obtained from the local meteorological station (type:
EMA II climatologic station, number 705), from IPMA (Instituto Português do Mar e
da Atmosfera, IP, https://www.ipma.pt/pt/ (accessed on 1 April 2021)), located in the
municipality of Anadia (Portugal).

Table 1. Main characteristics of the vineyard parcels where the six Vitis vinifera varieties were collected.

Vineyard Parcels Characteristics 1

Grape Varieties Designation Soil Type Altitude (m) Environment Orientation Sunlight
Exposure

White

Arinto (AR)
AR-VA1 clayey 50 open space North–South West
AR-VA2 clay–sandy 70 near to pine trees North–South West
AR-SM1 clay–calcareous 50 open space East–West South and West

Bical (BI)
BI-VA1 clayey 70 near to pine trees North–South West
BI-VA2 clay–calcareous 70 open space North–South West
BI-SM1 clay–sandy 90 open space East–West South and West

Sauvignon Blanc (SB)
SB-SM1 clayey 70 open space North–South South and West
SB-SM2 clay–calcareous 50 open space North–South South and West
SB-SM3 clay–sandy 70 open space North–South South and West

Red

Baga (BA)
BA-VA1 clayey 70 near to pine trees North–South South and West
BA-VA2 clay–calcareous 50 open space North–South South and West
BA-SM1 clay–sandy 50 open space North–South South and West

Castelão (CA)
CA-SM1 clay–calcareous 70 open space North–South South and West
CA-SM2 clayey 60 open space North–South South and West
CA-SM3 clay–sandy 60 open space North–South South and West

Touriga Nacional (TN)
TN-SM1 clayey 50 open space North–South South and West
TN-SM2 clay–calcareous 70 open space North–South South and West
TN-SM3 clay–sandy 50 open space North–South South and West

1 Grapes from two vineyards, at Bairrada Appellation, were considered: São Mateus (SM) and Vale de Azar (VA). A total of three vineyard
parcels (numbers 1 to 3) were considered for each variety.

As can be observed in Figure 2a, the weather conditions of Bairrada Appellation
have not changed significantly in the last decade. Looking for the weather conditions
of 2010, 2011, and 2012 (Figure 2b), the harvests object of this study, the precipitation
amount of this appellation is irregular throughout the year, attaining its maximum in
November/December. Although the occurrence of moderate precipitation in spring is
common, in 2012, an unusual precipitation amount was observed, contrasting with its
also rare dry winter season (Figure 2b). Moreover, the 2010 harvest was considered an
equilibrated year, with moderate temperatures during spring and a moderate precipitation
amount, which were considered suitable for the maturation process by the winemaker
involved in this work. On the other hand, except in July and August, 2011 exhibited an
unusual hot spring (only similar to the one observed in 2015), while 2012 exhibited lower
temperatures throughout the year (except in March and September), thus being fresher and
rainier (Figure 2b), which contributed to accelerating or delaying the grapes’ maturation
process, respectively (Figure S1).

2.1.4. Sampling

For each variety and condition under study, ca. 1000 g of grape berries was picked
randomly throughout the vineyard parcels, following a z-shaped pattern to avoid edge
and center effects, considering the number of berries per bunch and the balance between
shadow and sun exposure. To obtain random samples and avoid piking samples from other
vineyard environments, every vine in the vineyards was previously marked, contributing
to the understanding of the intrinsic and natural variability of the fruit and allowing the
validation of the data obtained. Samples were transported immediately under refrigeration
(ca. 4 ◦C) to the laboratory where the grapes’ classical physicochemical parameters were

https://www.ipma.pt/pt/
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promptly determined. The remaining grapes were stored at −20 ◦C for a maximum period
of six months until the remaining characterization analyses.
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Figure 2. Meteorological data available for Bairrada Appellation, expressed as mean precipitation (blue colors) and
temperature (orange colors): (a) data from the last decade (2010–2020) and (b) zoom of the three harvests under study
(2010–2012). * Precipitation data were not available at the meteorological station from October to December of 2012 harvest.

2.2. Grapes Physicochemical Parameters Determination
2.2.1. Classical Physicochemical Parameters

Two hundred grape berries from each variety and condition under study were ran-
domly selected. After determining their weight, the grape berries were crushed, and the
juice was obtained by filtration. The pH was measured using a pH meter (micropH 2002,
Crison, Barcelona, Spain). Sugar content was established through the determination of
alcoholic degree using a refractometer (Fabre réfractomètres, Sarl Germain, France). The
titratable acidity was measured by titrimetry using NaOH 0.1 M (Panreac, Barcelona, Spain)
and bromothymol blue as the indicator. All measurements were made in triplicate, each
one corresponding to a different aliquot.

2.2.2. Total Phenolic Content

Briefly, 0.125 mL of grape juice (diluted five times) was mixed with 0.5 mL of distilled
water and 0.125 mL of Folin–Ciocalteu reagent (react for 5 min). Then, 1.250 mL of Na2CO3
(75 g L−1) and 1.0 mL of distilled water were added (vortex, 90 min, room temperature).
The absorbance was measured at 760 nm in a spectrophotometer (6405 Jenway UV–vis spec-
trophotometer, UK). The calibration curve of gallic acid (10.0–200.0 mg L−1) was obtained
as described for the samples. The total phenolic content was expressed as milligrams of
gallic acid equivalents per liter (mg GAE L−1). All measurements were made in triplicate,
each one corresponding to a different aliquot. Analytical grade reagents and high-purity
standards were used.
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2.2.3. Antiradical Activity

Briefly, 0.1 mL of grape juice was added to 3.9 mL of 60 µM DPPH• methanol solution.
The absorbance was read after 30 min, at 515 nm, on the UV–visible light spectrophotometer
(6405 Jenway UV–vis spectrophotometer, UK) against blank (distilled water), at room
temperature. The percentage of the remaining DPPH• (% DPPHrem) was calculated as:

% DPPHrem =
Asample × % DPPHrem of the blank

Ablank

where Asample and Ablank are the absorbance of each sample and blank, respectively, and
the % DPPHrem of the blank was considered to be 100%.

The analyses were made in three independent replicates (n = 3) and analytical grade
reagents and high-purity standards were used.

2.3. Grapes Volatile Composition Determination
2.3.1. Determination of Grapes Free Volatile Profiles–HS-SPME Procedure

The HS-SPME experimental parameters were adopted from a methodology previously
developed [26]. Briefly, 4 g of each grape sample was crushed and inserted into a 20 mL
glass vial with 5 mL of ultra-pure water, 2 g of sodium chloride, and stirring (400 rpm). The
vial was capped with a PTFE septum and an aluminum cap (Chromacol, Hertfordshire,
UK) and placed in a thermostated bath (60 ± 0.1 ◦C, 5 min). The 1 cm DVB/CAR/PDMS
SPME fiber (50/30 µm divinylbenzene-carboxen-polydimethylsiloxane, Supelco, Aldrich,
Bellefonte, PA, USA) was inserted into the vial headspace for 20 min. Prior to use, the
SPME fiber was conditioned according to the manufacturer’s recommendations. Three
independent replicates for each assayed sample were made.

2.3.2. Determination of Grapes’ Glycosidically Linked Profiles—SPE Procedure

The experimental procedure for determination of glycosidically linked volatiles was
adopted from a methodology previously developed [27]. Briefly, 350 g of grape berries from
each sample were crushed and centrifuged (3000 rpm, 25 min, 4 ◦C). Then, each supernatant
(75 mL) was submitted to solid-phase extraction (SPE) using Amberlite XAD-2 column
resin (20–60 mesh, Supelco, Inc., Bellefont, PA), where the volatile compounds were eluted
with ethyl acetate (50 mL). Ultra-pure water (15 mL) was used to remove water-soluble
compounds, and the retained glycosidically linked fraction was eluted with methanol
(75 mL). This methanolic extract was evaporated under vacuum until dryness and then
dissolved in phosphate–citrate buffer (0.1 M, 10 mL) in ultra-pure water (250 mL, pH 5.0).
To release the aglycones from the glycosidically linked compounds, a commercial enzyme
mixture (ProZym® Aroma M, Proenol) was used (100 mg L−1, 42 h, 35 ◦C). Then, generated
free volatiles were extracted with ethyl acetate (75 mL), and 3-octanol (8.72 µg L−1) was
used as the internal standard. The extracts were cooled to −20 ◦C and dried over anhydrous
sodium sulphate. The excess of low-boiling solvent was removed using a liquid nitrogen
trap. The obtained concentrate (ca. 1 mL) was stored in a glass screw-top vial at −20 ◦C
until analysis. Three independent replicates (n = 3) were done for each assayed sample. All
solvents were analytical grade with high purity (≥99%).

2.3.3. GC×GC-ToFMS Analysis

The analysis of free and glycosidically linked volatile fractions was carried out based
on a previous work using LECO Pegasus 4D (LECO, St. Joseph, MI, USA) GC×GC-ToFMS
system [26]. For free volatile compounds, the SPME coating fiber was manually introduced
into the GC×GC–ToFMS injection port at 250 ◦C for 3 min. For glycosidically linked
volatile compounds, 0.5 µL of extract was injected into GC×GC–ToFMS injection port
(250 ◦C), turning the detector off during 150 s. More details were given in the Supplemen-
tary Materials.

Contour plots were used to evaluate the general separation quality and for manual
peak identification. For identification purposes, the mass spectrum of each compound was



Appl. Sci. 2021, 11, 4003 7 of 27

compared to those in mass spectral libraries, including an in-house library of standards and
two commercial databases (Wiley 275 and US National Institute of Science and Technology
(NIST) V.2.0—Mainlib and Replib). Additionally, the experimentally determined retention
index (RI) values were compared, when available, with RI values reported in the literature
for chromatographic columns like those used in this work [28–44]. The RI values were
determined using a C8-C20 n-alkanes series and calculated according to the van den Dool
and Kratz equation [45]. The majority (>85%) of the identified compounds presented
similarity matches ≥850 (850/1000). Due to matrix complexity, the GC×GC peak areas
data of free volatile compounds were used as an approach to estimate the relative content
of each component and for glycosidically linked compounds, the data were expressed as
µg L−1 of 3-octanol equivalents.

2.4. Data Processing

ASCA was applied to the data set (a total of six varieties, each one from three vineyard
parcels, three harvests (2010–2012), a total of 137 parameters, and three independent
replicates) and calculated for each grape variety including two main effects, harvest year
and vineyard parcel, and their interaction. The significance of the effects was assessed using
a permutation test using 2000 permutation and the percentage of the variance explained
by each sub-model in the total model as a quality-of-fit criterion [22,23]. ASCA and a
permutation test were implemented in MATLAB R2020b using the algorithms already
described [20,23].

Principal component analysis (PCA) was performed using MetaboAnalyst 5.0 (web
interface—https://www.metaboanalyst.ca/ (accessed on 1 April 2021)), displaying pair-
wise scores’ plot for the top three PCs, joining the data for the six grape varieties and
conditions under study.

3. Results and Discussion
3.1. Grapes Physicochemical Composition Evaluation

Berry weight (an indicator of berry development or dehydration), pH and titratable
acidity (to estimate wine acidity and indirectly taste and microbial stability) [46,47], and
sugar content (to estimate wine alcohol content) [47], were used to evaluate the oenological
potential of the six grape varieties under study, considering the three harvests (2010–2012)
and the set of vineyard parcels (Table 2).

Considering all the assayed samples, berry weight ranged from 1.0 to 2.1 g, tending to
be higher in red varieties (1.6–2.1 g), except for BA-VA1 grapes from 2010 harvest, than
in the white ones (1.0–1.7 g), also except for BI-SM1 (2012) and SB-SM2 (2011 and 2012)
grapes. Although within a tiny range (ca. 1.5–1.6 g) compared to the one determined in this
work (1.3–2.1 g) (Table 2), similar values were already reported for Baga variety [25]. The
pH values were very similar among the studied V. vinifera varieties, harvests, and vineyard
parcel conditions (2.7–3.3) (Table 2). However, for Sauvignon Blanc (3.0–3.2) (Table 2), these
were like the ones reported for this white variety (3.06–3.14) collected in a similar period
(2011–2013) in New Zealand [48].

For all assayed samples, the titratable acidity ranged from 4.1 to 7.9 g tartaric acid L−1,
and the sugar content ranged from 163.8 to 254.2 g L−1 (Table 2). These parameters were
very variable among the six varieties, harvests, and parcel conditions. Globally, Sauvignon
Blanc and Castelão grape varieties (5.2–7.6 and 5.2–7.5 g tartaric acid L−1, respectively)
exhibited the higher acidity values, while Touriga Nacional exhibited the lower ones
(4.2–5.8 g tartaric acid L−1). Additionally, Sauvignon Blanc and Touriga Nacional had
higher sugar content (201.7–247.6 and 184.7–254.2 g L−1, respectively), while the lower one
was determined for Baga (163.8–214.8 g L−1) (Table 2). The lower sugar content of Baga
grapes from Bairrada Appellation was already reported [25].

The phenolic content and antiradical activity were also considered indicators of the
wines’ color and astringency and the bioactive potential [49] of the grape varieties under
study. The phenolic content ranged from 197.5 to 1341.3 mg GAE L−1, being higher in red

https://www.metaboanalyst.ca/
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varieties (494.1–1341.3 mg GAE L−1) than in the white ones (197.5–467.6 mg GAE L−1).
Phenolic compounds are well known for their antiradical properties [49]; thus, as expected,
higher activity was determined in red varieties (51.9% to 89.6 % DPPHrem) when compared
to the white ones (62.7% to 89.9 % DPPHrem). Moreover, Touriga Nacional, which is
characterized by high phenolic content (501.6–1341.3 mg GAE L−1), was already reported
as a source of phenolics, such as anthocyanins and proanthocyanidins, which contribute to
the color, astringency, and bitterness of the resulting wines [50,51].

Table 2. Synoptic table of the physicochemical and glycosidically linked content of V. vinifera cv. Arinto (AR), Bical (BI),
Sauvignon Blanc (SB), Baga (BA), Castelão (CA), and Touriga Nacional (TN) grapes, each one from three harvests and three
vineyard parcels.

Vineyard Parcels 1

Parameters 2010 2011 2012 2010 2011 2012 2010 2011 2012

AR-VA1 AR-VA2 AR-SM1
Berry weight (g) 1.3 (5) 3 1.5 (4) 1.5 (3) 1.1 (5) 1.4 (3) 1.5 (3) 1.0 (7) 1.5 (3) 1.4 (3)
pH 2.7 (2) 3.2 (1) 3.2 (0) 2.9 (1) 3.2 (0) 3.1 (1) 2.7 (1) 2.9 (1) 3.1 (0)
Acidity (g tartaric acid L−1) 7.6 (1) 6.5 (2) 6.6 (3) 7.8 (1) 5.7 (2) 6.5 (3) 7.4 (2) 7.9 (2) 6.3 (4)
Sugar content (g L−1) 214.8 (1) 219.3 (1) 197.8 (3) 221.0 (1) 226.1 (2) 206.3 (3) 210.0 (1) 172.3 (1) 187.0 (4)
Phenolic content (mg GAE L−1) 319.1 (7) 230.5 (7) 251.5 (4) 366.1 (2) 321.0 (4) 332.8 (1) 374.4 (1) 276.7 (9) 291.6 (2)
Antiradical activity (% DPPHrem) 85.2 (1) 84.8 (2) 88.2 (1) 68.6 (1) 70.1 (2) 80.0 (1) 70.0 (3) 73.8 (2) 82.8 (3)
Glycosidically linked content (µg L−1) 2 78.1 (11) 35.6 (12) 41.9 (10) 138.0 (10) 56.7 (14) 63.7 (10) 111.3 (10) 43.9 (13) 52.9 (12)

BI-VA1 BI-VA2 BI-SM1
Berry weight (g) 1.4 (1.0) 1.4 (1) 1.6 (1) 1.2 (2) 1.3 (4) 1.6 (3) 1.4 (3) 1.7 (3) 1.8 (3)
pH 2.9 (2) 3.2 (1) 3.2 (1) 2.9 (0) 3.1 (0) 3.2 (1) 3.2 (0) 3.0 (1) 3.1 (1)
Acidity (g tartaric acid L−1) 5.7 (1) 7.1 (1) 5.8 (2) 6.1 (1) 5.9 (1) 5.5 (3) 4.2 (1) 6.8 (2) 5.6 (1)
Sugar content (g L−1) 173.4 (1) 215.3 (1) 208.5 (1) 170.0 (1) 214.8 (1) 209.7 (1) 187.0 (1) 207.4 (1) 193.2 (1)
Phenolic content (mg GAE L−1) 294.1 (3) 197.5 (2) 214.1 (3) 304.4 (3) 283.5 (4) 262.0 (2) 333.9 (2) 248.7 (2) 268.8 (5)
Antiradical activity (% DPPHrem) 81.5 (3) 89.9 (3) 89.7 (2) 84.4 (2) 81.1 (3) 86.1 (2) 71.7 (1) 81.6 (3) 83.3 (1)

Glycosidically linked content (µg L−1) 118.3 (11) 69.3 (10) 73.1 (13) 158.3 (10) 97.6 (12) 102.1 (13) 185.5 (10) 108.6
(10) 114.1 (13)

SB-SM1 SB-SM2 SB-SM3
Berry weight (g) 1.3 (6) 1.4 (7) 1.6 (3) 1.6 (2) 1.8 (3) 1.9 (2) 1.5 (2) 1.5 (3) 1.7 (3)
pH 3.2 (0) 3.1 (1) 3.0 (0) 3.2 (0) 3.0 (1) 3.0 (1) 3.1 (0) 3.0 (1) 3.0 (1)
Acidity (g tartaric acid L−1) 6.6 (1) 7.6 (2) 7.1 (2) 5.2 (1) 7.1 (4) 6.9 (1) 6.9 (2) 7.6 (2) 7.2 (3)
Sugar content (g L−1) 243.1 (1) 247.6 (1) 208.5 (3) 204.6 (0) 241.4 (1) 201.7 (2) 226.7 (1) 247.6 (1) 213.6 (2)
Phenolic content (mg GAE L−1) 255.9 (4) 236.9 (9) 276.0 (7) 403.6 (6) 283.5 (6) 315.1 (6) 467.6 (3) 357.4 (6) 365.1 (8)
Antiradical activity (% DPPHrem) 72.6 (2) 79.9 (2) 83.1 (2) 68.9 (1) 73.5 (3) 77.6 (1) 62.7 (2) 66.4 (2) 74.2 (2)

Glycosidically linked content (µg L−1) 155.5 (10) 91.2 (11) 109.1
(11) 227.9 (10) 98.9 (10) 117.7 (11) 278.6 (12) 107.1 (8) 127.5 (10)

BA-VA1 BA-VA2 BA-SM1
Berry weight (g) 1.3 (4) 1.9 (1) 1.7 (4) 1.7 (3) 1.9 (4) 2.0 (3) 2.1 (4) 1.9 (4) 1.8 (4)
pH 3.1 (0) 3.2 (0) 3.1 (0) 3.1 (1) 3.1 (2) 2.9 (1) 3.2 (2) 3.2 (1) 3.1 (1)
Acidity (g tartaric acid L−1) 5.2 (2) 6.3 (2) 5.8 (3) 4.1 (3) 6.4 (2) 5.3 (6) 5.3 (1) 7.0 (3) 5.6 (5)
Sugar content (g L−1) 189.8 (2) 196.6 (1) 176.8 (3) 214.8 (2) 202.3 (1) 163.8 (2) 176.8 (1) 190.4 (2) 175.7 (3)

Phenolic content (mg GAE L−1) 811.0 (3) 631.4 (17) 594.8
(15) 1270.1 (15) 869.3

(11) 726.1 (8) 686.0 (12) 517.0
(20) 494.1 (11)

Antiradical activity (% DPPHrem) 80.9 (2) 85.6 (2) 82.0 (4) 53.5 (2) 70.3 (3) 73.8 (1) 81.0 (3) 88.6 (2) 89.6 (2)
Glycosidically linked content (µg L−1) 51.1 (12) 35.0 (12) 33.6 (12) 61.4 (11) 40.9 (12) 40.5 (11) 25.0 (11) 22.3 (14) 22.9 (11)

CA-SM1 CA-SM2 CA-SM3
Berry weight (g) 1.8 (3) 2.0 (1) 2.0 (2) 1.9 (4) 1.8 (6) 1.8 (4) 1.9 (3) 1.9 (4) 1.9 (3)
pH 3.3 (1) 3.2 (1) 3.1 (1) 3.2 (0) 3.1 (1) 3.1 (0) 3.3 (1) 3.2 (0) 3.2 (2)
Acidity (g tartaric acid L−1) 6.0 (2) 7.2 (2) 7.5 (3) 5.2 (2) 5.8 (2) 6.3 (4) 5.5 (1) 5.7 (3) 7.1 (1)
Sugar content (g L−1) 221.0 (2) 196.1 (1) 181.9 (4) 241.4 (1) 218.7 (1) 186.4 (4) 218.2 (2) 193.2 (1) 170.0 (4)

Phenolic content (mg GAE L−1) 1053.4 (4) 704.9 (13) 694.1
(14) 864.0 (4) 621.6

(20) 627.5 (16) 826.1 (5) 635.2
(16) 522.0 (12)

Antiradical activity (% DPPHrem) 64.3 (3) 69.9 (1) 70.2 (2) 68.7 (2) 72.0 (1) 75.9 (3) 77.4 (2) 81.9 (3) 89.4 (4)
Glycosidically linked content (µg L−1) 56.3 (10) 37.6 (11) 43.0 (10) 48.8 (13) 31.7 (11) 35.1 (13) 40.9 (7) 24.2 (10) 24.4 (16)

TN-SM1 TN-SM2 TN-SM3
Berry weight (g) 1.9 (2) 1.7 (3) 2.0 (3) 1.6 (6) 1.6 (3) 1.7 (5) 1.9 (1) n.a. 4 2.0 (5)
pH 3.2 (0) 3.2 (0) 3.2 (1) 3.3 (2) 3.3 (1) 3.3 (1) 3.3 (1) n.a. 3.3 (0)
Acidity (g tartaric acid L−1) 4.4 (3) 5.7 (2) 5.8 (2) 4.2 (3) 5.5 (3) 5.3 (6) 4.3 (2) n.a. 6.1 (7)
Sugar content (g L−1) 200.1 (2) 193.8 (1) 187.6 (3) 254.2 (6) 205.1 (2) 201.2 (4) 199.4 (3) n.a. 184.7 (2)

Phenolic content (mg GAE L−1) 747.3 (2) 948.9 (13) 646.5
(13) 1341.3 (2) 1339.8

(9) 1121.4 (9) 852.0 (11) n.a. 501.6 (14)

Antiradical activity (% DPPHrem) 78.3 (3) 85.0 (1) 81.2 (1) 51.9 (1) 58.4 (2) 66.9 (1) 70.0 (3) n.a. 86.3 (1)
Glycosidically linked content (µg L−1) 50.8 (13) 38.2 (12) 40.4 (10) 67.8 (12) 43.3 (15) 46.6 (13) 34.6 (13) n.a. 29.1 (11)

1 Grapes from two vineyards, at Bairrada Appellation, were considered: São Mateus (SM) and Vale de Azar (VA). A total of three vineyard
parcels (numbers 1 to 3) were considered for each variety. 2 Glycosidically linked volatile composition expressed as µg L−1 of 3-octanol
equivalents. 3 Relative standard deviation (RSD, % in parentheses). Detailed information is given in Supplementary Tables S1–S12. 4 n.a:
grapes not available; grapes in an advanced rotting stage.
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3.2. Grapes’ Volatile Profile Evaluation

Mature grapes contain free and glycosidically linked forms of volatiles, which are
accumulated in the berries during maturation. Free forms are volatile compounds directly
involved in aroma, playing a key role in the quality and peculiar aroma of wines. Addi-
tionally, glycosidically linked forms, non-volatile and odorless, can be released during
the winemaking process through the action of β-glucosidases [52], giving rise to odor-
ant compounds that play a role in the final wine aroma. Based on this, both forms of
volatiles, determined by GC×GC-ToFMS, were considered in this study for the assayed
grape varieties. An example of the obtained chromatograms was shown in Figure 3.

A total of 95 free volatile compounds, including varietal and pre-fermentative ones,
grouped by chemical families, have been determined in the six grape varieties obtained
from the three harvest years and from different parcels of São Mateus and Vale de Azar
vineyards (Table 3): seven C6 compounds (alcohols and aldehydes), three aromatic alcohols,
17 norisoprenoids (1 C9 and 16 C13 norisoprenoids), and 69 terpenic compounds (47 mono-,
21 sesqui-, and one diterpenic compounds). Varietal volatile composition offers a means of
evaluating the aroma potential of each variety, and herbaceous notes of C6 alcohols and
aldehydes are appreciated in some wines by the consumers [53]. Likewise, in the glycosidi-
cally linked fractions, mono- and sesquiterpenic compounds and C13 norisoprenoids were
the selected chemical families due to their considerable significance to the varietal aroma
of V. vinifera varieties [54]. In these fractions, a total of 36 terpenic compounds (25 mono-
and seven sesquiterpenic ones) and four C13 norisoprenoids were determined (Table 3).
Detailed information related to the volatile compounds of each grape variety is shown in
Supplementary Tables S1–S12.

The varietal volatile compounds present in higher number, such as free or glycosidi-
cally linked forms, were the terpenic compounds (mono- followed by sesquiterpenic ones).
Their sensory thresholds are rather low (a few hundred micrograms per liter); thus, even in
small amounts, they contribute significantly to the aroma potential of the varieties with
characteristic fruity, citric, and floral notes [55]. However, the term ‘varietal’ did not imply
that each variety has specific and exclusive varietal volatile compounds. In fact, the same
volatile compounds were found in different varieties (Table 3). This discloses that the
individual aroma potential of these grape varieties is related to the infinite combinations,
concentrations, and/or synergetic effects of the various volatile compounds [55], which are
modulated by environmental characteristics.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 28 
 

 

Figure 3. Blow-up of a GC×GC-ToFMS chromatogram contour plot obtained in full-scan mode for 

AR-VA2 grapes collected in 2010. The chromatographic spaces corresponding to C6 alcohols and 

aldehydes, aromatic alcohols, mono (C10) and sesquiterpenic (C15) compounds, and C13 norisopre-

noids were highlighted. 

A total of 95 free volatile compounds, including varietal and pre-fermentative ones, 

grouped by chemical families, have been determined in the six grape varieties obtained 

from the three harvest years and from different parcels of São Mateus and Vale de Azar 

vineyards (Table 3): seven C6 compounds (alcohols and aldehydes), three aromatic alco-

hols, 17 norisoprenoids (1 C9 and 16 C13 norisoprenoids), and 69 terpenic compounds (47 

mono-, 21 sesqui-, and one diterpenic compounds). Varietal volatile composition offers a 

means of evaluating the aroma potential of each variety, and herbaceous notes of C6 alco-

hols and aldehydes are appreciated in some wines by the consumers [53]. Likewise, in the 

glycosidically linked fractions, mono- and sesquiterpenic compounds and C13 norisopre-

noids were the selected chemical families due to their considerable significance to the va-

rietal aroma of V. vinifera varieties [54]. In these fractions, a total of 36 terpenic compounds 

(25 mono- and seven sesquiterpenic ones) and four C13 norisoprenoids were determined 

(Table 3). Detailed information related to the volatile compounds of each grape variety is 

shown in Supplementary Tables S1–S12. 

Table 3. Volatile components (free and glycosidically linked ones) determined at technological maturity for Vitis vinifera 

cv. Arinto (AR), Bical (BI), Sauvignon Blanc (SB), Baga (BA), Castelão (CA), and Touriga Nacional, for the three consecutive 

harvests and three vineyard parcels under study. 

       Grape Varieties 
1Dtr(s), 2Dtr(s) 1 Compound CAS Number Formula RIcalc. 2 RIlit. 3 Ref. RIlit. 4 AR BI SB BA CA TN 

C6 compounds            

194, 0.640 Hexanal 66-25-1 C6H12O 801 801 [28] F ** F F F F F 

206, 0.630 3-Hexenal 6789-80-6 C6H10O 805 807 [28] F F F F F F 

230, 0.651 2-Hexenal 6728-26-3 C6H10O 851 855 [29] F F F F F F 

242, 0.630 3-Hexen-1-ol 928-96-1 C6H12O 858 861 [28] F F F F F F 

248, 1.076 2-Hexen-1-ol 928-95-0 C6H12O 864 861 [29] F F F F F F 

266, 0.903 1-Hexanol 111-27-3 C6H14O 876 877 [29] F F F F F F 

296, 0.930 2,4-Hexadienal 142-83-6 C6H8O 914 914 [30] F F F F F F 

Aromatic alcohols            

420, 3.014 Benzyl Alcohol 100-51-6 C7H8O 1048 1044 [31] F F F F F F 

446, 1.426 α,α-Dimethyl Benzyl alcohol 617-94-7 C9H12O 1089 1091 [28] F F F F F F 

470, 1.960 2-Phenylethanol 60-12-8 C8H10O 1115 1120 [28] F F F F F F 

C9 Norisoprenoid            

506, 0.761 Norinone 38651-65-9 C9H14O 1142 1183 [32]    F F F 

Monoterpenic compounds            

314, 0.440 α-Pinene 80-56-8 C10H16 938 941 [33] F, G F, G F, G F, G F, G F 

338, 0.480 m/z 91, 119, 77, 185 (hydrocarbon) - - 972 - - F    F F 

2
n

d
D

im
en

si
o

n
 (

s)

Hydrocarbons

0
.2

  
  
  

  
  

  
  
  

  
  
  

  
  
1

.2
  
  

  
  
  

  
  
  

  
  
  

  
  
2

.2
  
  

  
  

180 380 580 780 980

1st Dimension (s)

C10 C13                            C15

C10 C13

C6 Alcohols 

and aldehydes

Aromatic 

alcohols 

C15 Oxygen-containing 

Figure 3. Blow-up of a GC×GC-ToFMS chromatogram contour plot obtained in full-scan mode for AR-VA2 grapes collected
in 2010. The chromatographic spaces corresponding to C6 alcohols and aldehydes, aromatic alcohols, mono (C10) and
sesquiterpenic (C15) compounds, and C13 norisoprenoids were highlighted.
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Table 3. Volatile components (free and glycosidically linked ones) determined at technological maturity for Vitis vinifera cv. Arinto (AR), Bical (BI), Sauvignon Blanc (SB), Baga (BA),
Castelão (CA), and Touriga Nacional, for the three consecutive harvests and three vineyard parcels under study.

Grape Varieties
1Dtr(s), 2Dtr(s) 1 Compound CAS Number Formula RIcalc.

2 RIlit.
3 Ref. RIlit.

4 AR BI SB BA CA TN

C6 compounds
194, 0.640 Hexanal 66-25-1 C6H12O 801 801 [28] F ** F F F F F
206, 0.630 3-Hexenal 6789-80-6 C6H10O 805 807 [28] F F F F F F
230, 0.651 2-Hexenal 6728-26-3 C6H10O 851 855 [29] F F F F F F
242, 0.630 3-Hexen-1-ol 928-96-1 C6H12O 858 861 [28] F F F F F F
248, 1.076 2-Hexen-1-ol 928-95-0 C6H12O 864 861 [29] F F F F F F
266, 0.903 1-Hexanol 111-27-3 C6H14O 876 877 [29] F F F F F F
296, 0.930 2,4-Hexadienal 142-83-6 C6H8O 914 914 [30] F F F F F F

Aromatic alcohols
420, 3.014 Benzyl Alcohol 100-51-6 C7H8O 1048 1044 [31] F F F F F F
446, 1.426 α,α-Dimethyl Benzyl alcohol 617-94-7 C9H12O 1089 1091 [28] F F F F F F
470, 1.960 2-Phenylethanol 60-12-8 C8H10O 1115 1120 [28] F F F F F F

C9 Norisoprenoid
506, 0.761 Norinone 38651-65-9 C9H14O 1142 1183 [32] F F F

Monoterpenic compounds
314, 0.440 α-Pinene 80-56-8 C10H16 938 941 [33] F, G F, G F, G F, G F, G F
338, 0.480 m/z 91, 119, 77, 185 (hydrocarbon) - - 972 - - F F F
344, 0.457 β-Pinene * 18172-67-3 C10H16 988 987 [33] F, G F, G F F, G F, G F
356, 0.570 β-Myrcene 123-35-3 C10H16 1001 1008 [33] F F F F, G G
362, 0.520 3-Carene 13466-78-9 C10H16 1007 1020 [33] G F F, G F
368, 0.790 α-Phellandrene 99-83-2 C10H16 1013 1010 [34] F
392, 0.405 m-Cymene 535-77-3 C10H14 1025 1027 [33] F F, G F F F
398, 0.476 Limonene * 138-86-3 C10H16 1028 1035 [33] F, G F, G F, G F F F, G
404, 0.476 1,8-Cineole 470-82-6 C10H18O 1034 1039 [33] F, G F, G F, G F F F
416, 0.560 β-Ocimene 3779-61-1 C10H16 1045 1043 [33] F F F F
428, 0.678 Linalool oxide (isomer 1) - C10H18O2 1071 1078 [33] F, G F, G F, G F F F
434, 0.727 Dihydromyrcenol 53219-21-9 C10H20O 1073 1076 [32] F F F F F F
440, 0.560 α-Terpinolene 586-62-9 C10H16 1076 1097 [33] F G F F F F
440, 0.790 Linalool oxide (isomer 2) - C10H18O2 1076 1097 [33] G F F F
446, 0.700 Dihydrolinalool 78-69-3 C10H22O 1088 1101 [28] F F F F F F
452, 0.746 Linalool * 78-70-6 C10H18O 1096 1108 [33] F, G F, G F, G F F F, G
464, 0.600 Rose oxide (isomer 1) - C10H18O 1107 1117 [33] F F F F F
464, 0.844 Fenchol 22627-95-8 C10H18O 1108 1118 [33] F F F F F
470, 0.646 Hotrienol 53834-70-1 C10H16O 1113 1122 [33] F F, G F F F F
470, 0.780 Camphenal 4501-58-0 C10H14O 1114 1130 [33] F F F
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Table 3. Cont.

Grape Varieties
1Dtr(s), 2Dtr(s) 1 Compound CAS Number Formula RIcalc.

2 RIlit.
3 Ref. RIlit.

4 AR BI SB BA CA TN

476, 0.770 Rose oxide (isomer 2) - C10H18O 1118 1130 [33] F
482, 0.890 1-Terpineol 586-82-3 C10H18O 1120 1127 [35] F F
488, 0.690 Cosmene 460-01-5 C10H14 1122 1134 [36] F F
494, 1.050 Pinocarveol 547-61-5 C10H16O 1130 1142 [33] F F
500, 0.970 β-Terpineol 138-87-4 C10H18O 1136 1150 [33] F F
506, 1.190 Pinocarvone 34-41-3 C10H14O 1140 1164 [33] F
512, 0.635 Nerol oxide 1786-08-9 C10H16O 1151 1172 [33] F F F F F F
518, 0.834 Ocimenol 5986-38-9 C10H18O 1166 1179 [33] F F F F
518, 1.200 m/z 68, 94, 79, 109 (alcohol) - - 1167 - - F F F
524, 0.860 Borneol 507-70-0 C10H18O 1169 1172 [33] F F F, G F F F
530, 0.884 p-Mentha-1,5-dien-8-ol 1686-20-0 C10H16O 1171 1172 [33] F F
530, 0.984 Menthol * 1490-04-6 C10H20O 1175 1170 [37] F F F F F F
536, 0.715 Terpinen-4-ol 562-74-3 C10H18O 1183 1181 [33] F F, G F, G F F F
536, 1.269 p-Cymen-8-ol 1197-01-9 C10H14O 1184 1203 [33] F F F F F F
542, 0.835 α-Terpineol * 98-55-5 C10H18O 1195 1206 [33] F F, G F, G F F F
548, 0.850 Dihydrocarvone 7764-50-3 C10H16O 1197 1211 [33] G G F
554, 0.900 Safranal 116-26-7 C10H14O 1199 1201 [30] F
560, 0.850 Verbenone 80-57-9 C10H14O 1214 1214 [33] F F, G F, G F F F
566, 0.703 p-Menth-1-en-9-al 29548-14-9 C10H16O 1217 1219 [33] F F, G F F F F
572, 1.340 2-Hydroxycineole 92999-78-5 C10H18O2 1219 1237 [38] F F
578, 0.700 m/z 93, 121, 119, 136 (alcohol) - - 1224 - - G F
584, 0.873 Geraniol (isomer 1) * - C10H18O 1235 1235 [33] F F F, G F F F
584, 0.943 β-Citronellol * 106-22-9 C10H20O 1237 1237 [33] F F F, G F F F
590, 0.737 Geraniol (isomer 2) * - C10H18O 1244 1242 [33] F F, G F, G F F F
596, 0.976 Citral (isomer 1) - C10H16O 1247 1245 [33] F F, G F, G F F F
602, 0.815 Carvone * 99-49-0 C10H14O 1251 1245 [33] F F F, G F F F
626, 0.775 Citral (isomer 2) - C10H16O 1274 1287 [32] F, G F, G F, G F F F

C13 Norisoprenoids
566, 0.532 m/z 159, 91, 131 (hydrocarbon) - - 1216 - - F, G F F F F
602, 0.660 α-Ionene 475-03-6 C13H19 1250 1261 [31] F
620, 0.595 Vitispirane 65416-59-3 C13H20O 1286 1287 [31] F F F F F F
632, 0.517 Theaspirane (isomer 1) - C13H22O 1302 1305 [31] F F F F F
644, 0.528 Theaspirane (isomer 2) - C13H22O 1323 1322 [31] F F F F F F
668, 0.790 TDN(1,2-dihydro-1,1,6-trimethyl-naphthalene) 30364-38-6 C13H16 1357 1361 [31] F F
674, 0.681 β-Damascenone (isomer 1) - C13H18O 1369 1364 [31] F F F F F F
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Table 3. Cont.

Grape Varieties
1Dtr(s), 2Dtr(s) 1 Compound CAS Number Formula RIcalc.

2 RIlit.
3 Ref. RIlit.

4 AR BI SB BA CA TN

680, 0.840 m/z 142, 157, 115 (ketone) - - 1371 - - F F F
700, 0.702 β-Damascenone (isomer 2) - C13H18O 1383 1385 [31] F F F F F F
724, 0.750 Hydroxydihydroedulan - C13H22O2 1446 1446 [39] F F
736, 0.648 Geranylacetone * 3796-70-1 C13H22O 1455 1454 [29] F, G F, G F F, G F, G F, G
742, 0.850 5,6-Epoxy-β-ionone 23267-57-4 C13H20O2 1463 1460 [30] F F F F F F
760, 0.868 3,4-Dehydro-β-ionone 1203-08-3 C13H18O 1474 1483 [31] F F F F F
778, 0.635 α-Iso-methyl ionone 127-51-5 C14H22O 1485 1471 [40] F F F F F F
784, 0.717 β-Ionone * 79-77-6 C13H20O 1488 1494 [41] F F, G F F F F
900, 0.894 Methyl dihydrojasmonate 24851-98-7 C13H22O3 1661 1650 [40] F, G F, G F, G F, G F, G F, G

Sesquiterpenic compounds
650, 0.521 δ-Elemene 20307-84-0 C15H24 1329 1330 [42] F F F
656, 0.583 α-Longipinene 5989-08-2 C15H24 1337 1359 [42] F F F
680, 0.469 α-Copaene 3856-25-5 C15H24 1371 1375 [42] F F F F
686, 0.510 β-Bourbonene 5208-59-3 C15H24 1379 1379 [42] F F
712, 0.508 Longifolene 475-20-7 C15H24 1414 1395 [42] F F F
718, 0.481 β-Caryophyllene 87-44-5 C15H24 1418 1417 [42] F
724, 0.541 α-Humulene 6753-98-6 C15H24 1445 1450 [42] F F
756, 0.630 Aromadendrene 489-39-4 C15H24 1477 1478 [38] F F F F F F
762, 0.450 α-Muurolene 31983-22-9 C15H24 1485 1490 [42] F F
790, 0.660 α-Farnesene 502-61-4 C15H24 1501 1505 [43] F, G F, G F F, G F, G
796, 0.525 γ-Cadinene 39029-41-9 C15H24 1504 1511 [42] F F, G
808, 0.630 Calamenene 483-77-2 C15H22 1514 1520 [42] F F F F F
826, 0.629 α-Calacorene 21391-99-1 C15H20 1555 1554 [42] F F F, G F F
832, 0.880 Nerolidol 7212-44-4 C15H26O 1560 1568 [42] F F F F F F
844, 0.810 Epiglobulol 88728-58-9 C15H26O 1579 1582 [44] F
850, 0.751 Globulol 489-41-8 C15H26O 1594 1592 [38] F G F
862, 0.726 Caryophyllene oxide 1139-30-6 C15H24O 1605 1601 [42] F F F
886, 0.690 β-Eudesmol 77-53-2 C15H26O 1642 1642 [42] F F F F F F
912, 0.654 m/z 119, 91, 191, 109 (alcohol) - - 1675 - - F F, G F, G G F, G F, G
942, 0.820 Farnesal 502-67-0 C15H24O 1731 1724 [42] G F, G G
1036, 0.671 Ledene oxide - C15H24O 1873 1867 [42] G G G G G

Diterpenoid
1116, 0.929 Phytol 596-84-9 C20H34O 2021 2022 [38] F F F
1 1Dtr (s), 2Dtr(s): first- and second-dimension retention times (in seconds) of each compound determined. 2 RIcalc: retention index obtained through the modulated chromatogram. 3 RIlit: retention index
reported in the literature for 5% phenyl polysilphenylene-siloxane GC column or equivalents, reported for GC×GC (bold numbers refer to RI reported to 1D-GC). 4 Ref. RIlit: references found in the literature for
5% phenyl polysilphenylene-siloxane GC column or equivalents, reported for GC×GC. * Compounds identified based on the comparison between the obtained mass spectra and mass spectra of high purity
chemical standards. ** For each variety, the letters F and G refer to the free volatile profile and glycosidically linked one, respectively, indicating that the compound was determined in the corresponding variety.
Detailed data related to the volatile components (free and glycosidically linked ones) determined for each grape variety under study, at technological maturity, for the three vineyard parcels and three consecutive
harvests, were given in Supplementary Tables S1–S12.



Appl. Sci. 2021, 11, 4003 13 of 27

Similar to terpenic compounds, C13 norisoprenoids (Table 3) have very low sensory
thresholds (e.g., 0.05 µg L−1 for β-damascenone, a compound determined in all samples),
contributing to floral, fruity, and sweet grape aroma notes [55]. Moreover, three aromatic
alcohols were determined in the assayed grape samples (Table 3). Although they are
mainly produced during the yeast fermentation process, aromatic alcohols are an important
chemical family that contribute floral and sweet notes to the wines [56,57]. Additionally, pre-
fermentative compounds, such as six-carbon alcohols and aldehydes, were also determined
(Table 3). These compounds can result from mechanical and/or technological operations
(transport, crushing, maceration, and clarification) performed before the beginning of the
fermentation process, being associated to herbaceous notes that, although deleterious,
consumers appreciate in some wines [53].

Based on the volatile data (Tables S1–S12), differences can be noticed in relation to the
volatile composition of each grape variety. Globally, the relative total free volatiles amount
ranged from 12,656.8 to 33,529.7 × 104 (a.u.), of which from 1958.6 to 12,815.1 × 104 (a.u.)
were varietal ones. In particular, the total varietal content was higher in the Sauvignon
Blanc white variety (3196.8 to 12,815.1 × 104) and the Touriga Nacional red one (4073.2 to
7038.4 × 104) and lower in Bical (1958.6 to 6232.2 × 104) and Baga (2779.9 to 5855.5 × 104), a
white and a red variety, respectively. Geraniol isomers (1 and 2) and linalool were the major
monoterpenols determined in grapes from Sauvignon Blanc and Touriga Nacional varieties,
respectively, accounting for 18–35% and 20–27% of the total monoterpenic GC×GC peak
areas, respectively (Tables S5 and S11). These compounds have low sensory perception lim-
its, being important to the general enhancement of the fruity, floral, and citric aromas of the
resulting wines [58]. Moreover, previous studies also identified linalool as a major monoter-
penic compound determined in Touriga Nacional wines, being considered an important
varietal compound in the aroma of its wines [59]. However, the potential contribution of
each grape volatile component to the aroma properties of the final wines is a combination
of free and glycosidically linked forms. Highly variable amounts of the varietal glyco-
sidically linked fractions were determined in the assayed varieties, being higher in white
varieties (35.6–278.6 µg L−1), mainly in Sauvignon Blanc (91.2–278.6 µg L−1) followed by
Bical (69.3–185.5 µg L−1), than in red ones (22.3–67.8 µg L−1), whose amount was quite
similar among Baga and Castelão and a little higher in Touriga Nacional (34.6–67.8 µg L−1)
(Table 2). The different volatile composition herein determined may result in different
aroma sensory attributes of each variety, following the trend already described for the
aroma of wines produced from these set of Bairrada grape varieties [60].

3.3. Statistic Tools to Evaluate Each Variety Oenological Potential

Following the individual parameters characterization previously described, the overall
profiles were analyzed by applying a comprehensive approach that allowed the simultane-
ously verification of the potential effects of harvest and vineyard parcel characteristics on
the oenological potential of the six assayed grape varieties. This was achieved by ASCA
and applied for each variety to the set of parameters measured at technological maturity.
The significance of these factors (harvest, parcel, and their interaction) was assessed using
a permutation test (2000 permutations), and the resulting p-values are shown in Table 4.

According to Table 4, the harvest year effect was significant for all varieties under
study (p-value < 0.0005), explaining ca. 54–68% of the total data set variance. Except for
the Sauvignon Blanc variety, the vineyard parcel effect was also significant for the varieties
under study (p-value < 0.05), explaining ca. 15–19% of the total data set variance, while the
interaction effect was not statistically significant (p > 0.05; data not shown).

The harvest year and its weather conditions represent the largest source of the data
variability (Table 4). As can be seen in Figure 2, the weather conditions of Bairrada
Appellation have not changed significantly from 2010–2012 when compared to the last
10 years (2010–2020), which reinforces this finding. This was already expected, since the
weather conditions of each harvest year were similar among the vineyard parcels present
in the same area. Additionally, it was already shown that the formation of phenolic and
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volatile compounds, an object of study in this research work, result from a plant secondary
metabolism in response to stress conditions caused by harvest weather changes [1].

Table 4. Significance testing of factors harvest and parcel, for V. vinifera cv. Arinto, Bical, Sauvignon
Blanc, Baga, Castelão, and Touriga Nacional varieties, determined at technological maturity.

Variety Factors p-Value
(2000 Permutations) Explained Variance (%)

Arinto Harvest year <0.0005 62.2
Vineyard parcel 0.0390 14.9

Bical Harvest year <0.0005 53.8
Vineyard parcel 0.0135 17.1

Sauvignon Blanc Harvest year <0.0005 68.2
Vineyard parcel >0.05 * 11.9

Baga Harvest year <0.0005 61.4
Vineyard parcel 0.040 14.8

Castelão Harvest year <0.0005 66.7
Vineyard parcel 0.041 15.5

Touriga Nacional Harvest year <0.0005 59.3
Vineyard parcel 0.0105 18.8

* p-value > 0.05 (no significance).

• Arinto

For Arinto grapes, the effect of the harvest year accounted for 62.2% of total data set
variance (Table 4). The first component of the scores plot separates the 2010 harvest (placed
in PC1 positive) from the others (placed in PC1 negative), while the second component
separates the 2011 (PC2 negative) and 2012 (PC2 positive) harvests (Figure 4a).

According to the separation along PC1, 2010 grapes had lower berry weight and
pH and higher phenolic content and higher diversity and number of volatiles (Figure 4c).
The latter comprised mono- and sesquiterpenic oxygen-containing compounds, such as
dihydromyrcenol, dihydrolinalool, nerolidol, and β-eudesmol, and C13 norisoprenoids,
mainly TDN and β-damascenone (isomer 2). Additionally, the separation along PC2 of
grapes from 2011 and 2012 harvests was mostly due to the higher content of six monoter-
penic compounds (limonene, 1,8-cineole, linalool oxide, fenchol, borneol, and menthol)
in grapes from 2012, while α-terpinolene and rose oxide (isomer 1) were higher in 2011
grapes. Varietal compounds are secondary plant metabolites modulated by the temperature
and precipitation amount [61]. These results revealed that 2010 weather conditions seem
to favor the Arinto varietal compound formation, suggesting that grapes from the 2010
harvest have higher aroma potential compared to the other two harvests. Additionally,
three C6 aldehydes (hexanal, 2-hexenal, and 2,4-hexadienal) were determined in higher
amounts in grapes from 2010, while higher content of two C6 alcohols (2- and 3-hexen-1-ol)
was determined in grapes from 2012. The formation of C6 aldehydes and their reduction to
the corresponding alcohols depends on the content of unsaturated lipids present in grapes
and on the activities of lipoxygenase and alcohol dehydrogenase enzymes [61]. All these
observations suggested that both the dry and warm conditions of 2011 and the fresher and
rainier ones observed in 2012 (Figure 2) diminished Arinto grapes’ content of phenolics and
volatiles. Previous works showed that high temperatures promoted significant reductions
of the phenolic content of Cabernet-Sauvignon [62] and Merlot [63] grape varieties, as
well as aroma quality losses [55], while higher precipitation promotes a decrease in the
concentration of phenolics [64] and volatiles [9].

The effect of parcel characteristics on Arinto grapes accounted for 14.9% of the total
data set variance (Table 4). Scores and loading plots are shown in Figure 4b,d, respectively.
PC1 distinguishes AR-VA2, placed on the positive side of PC1, from the other two parcels,
placed on the negative side of PC1 (AR-VA1) or near to the origin (AR-SM1) (Figure 4b).
The same number of volatile compounds was found in grapes from all parcels (a total of
66 individual compounds); thus, the separation observed in the loadings plot (Figure 4d)
was due to the different amounts determined for most of the varietal volatile compounds,
in particular, monoterpenic ones, including free and glycosidically linked fractions, as well
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as total phenolic content and antiradical activity: Arinto grapes from AR-VA2 with higher
contents were placed in PC1 positive, and grapes from AR-VA1, with lower ones, were
placed in PC1 negative. Additionally, sugar content also allowed the distinguishing of
grapes from AR-SM1 from the other two parcels, these grapes having lower sugar content.
According to the main parcel characteristics (Table 1), the observed differences may be
related to parcels’ soil type: soils with lower (clay–sandy soil: AR-VA2) and middle (clay–
calcareous soil: AR-SM1) water-holding seem to favor formation of phenolics, varietal
volatile compounds, and antiradical activity (Table 2, Tables S1 and S2). It was already
shown that clay–calcareous and sandy soils increased the varietal content of Bairrada
Fernão-Pires sparkling wines [3].
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Figure 4. ASCA scores plot for (a) harvest and (b) parcel factors, and the corresponding variable loadings plot (c,d),
respectively, obtained for Arinto, at technological maturity (significance test reported on Table 4). Each variable is normalized
separately by dividing by its standard deviation value.

As the oenological potential of Arinto variety was different from one parcel to another,
it is expected that Arinto grapes from AR-VA2 may have higher aroma potential, while
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AR-VA1 grapes may have the lowest one and AR-SM1 grapes with lower sugar content
may produce wines with lower alcohol content. This revealed the metabolites’ plasticity of
this autochthonous variety, which should be considered and exploited to produce a higher
diversity of Arinto wines.

• Bical

The harvest effect on Bical grapes composition accounted for 53.8% of total data set
variance (Table 4). According to the scores plot, all three harvests can be distinguished: the
2010 harvest was placed in PC1 positive, and the other two harvests were placed in PC1
negative (2011), near to the origin (2012) (Figure 5a).
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Figure 5. ASCA scores plot for (a) harvest and (b) parcel factors, and the corresponding variable loadings plot (c,d),
respectively, obtained for Bical, at technological maturity (significance test reported on Table 4). Each variable is normalized
separately by dividing by its standard deviation value.

According to the loadings plot (Figure 5c), the separation of grapes from the 2010
harvest (PC1 positive) was mainly related to the lower sugar content, higher total phenolic
content, and higher contents of mono- and sesquiterpenic compounds determined in the
free fraction and to the monoterpenic compounds determined in the glycosidically linked
fraction. On the other hand, lower amounts of these compounds were observed for grapes
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from 2011 harvest, which explains their position in PC1 negative. Additionally, higher
sugar content was determined in grapes from the 2011 harvest and higher berry weight
in grapes from 2012. The Bical variety was demonstrated to be very sensitive to different
weather conditions; thus. higher aroma potential was expected for 2010 grapes and the
opposite for 2011 grapes. Additionally, higher alcohol content was expected for grapes
from 2011.

The scores plot obtained for the parcel factor accounting for 17.1% of variance (Table 4)
is shown in Figure 5b, where parcels were distributed along the PC1 with BI-SM1 in
PC1 positive and BI-VA1 in PC1 negative, and BI-VA2 was near to origin. Analysis of
loadings (Figure 5d) showed that this distribution along PC1 was related to the content
of monoterpenic compounds determined in free and glycosidically linked fractions and
aromatic alcohols, and phenolic compounds and antiradical activity: higher amounts
were determined for grapes from BI-SM1, while the opposite was observed for grapes
from BI-VA1. Grapes from BI-SM1 not only exhibited higher content of free volatile
monoterpenic compounds, which are very important for grape aroma and quality, but also
higher amounts of these compounds in the glycosidically linked fraction. This suggests
higher aroma potential for grapes from this parcel. The distribution observed along PC2
allowed distinguishing BI-VA2 (PC2 positive) from BI-VA1 (PC2 negative) (Figure 5b).
According to the loadings plot (Figure 5d), this distinction was mainly due to the lower
berry weight and higher amounts of hotrienol, terpinene-4-ol, aromadendrene, and α-
farnesene in BI-VA2 grapes, while BI-VA1 exhibited higher amounts of ocimenol and
geraniol (isomer 1).

Grapes from BI-SM1 and BI-VA2 parcels exhibited higher phenolic and volatile con-
tents, as well as higher antiradical activity. Similarly to Arinto, the observed differences
between vineyards may be related to the soil type: clay–sandy (BI-SM1) and clay–calcareous
(BI-VA2) soils seem to favor the formation of varietal volatile and phenolic compounds
and antiradical activity of Bical grapes. Additionally, the presence of pine trees at the
East side of BI-VA1 parcel (Table 1) may reduce the sunlight exposure of grapes in the
first hours of the morning, modulating BI-VA1 grapes phenolics and volatiles, affecting
these grapes’ oenological potential mainly in terms of astringency and aroma properties.
Lower sun exposure inhibits the synthesis and accumulation of terpenic compounds and
C13 norisoprenoids in berries [65,66], while higher sunlight exposure leads to the higher
levels of total phenolics [67]. This comprehensive approach demonstrated that Bical grapes
exhibit a degree of plasticity with respect to their secondary metabolites and respond
physiologically to the soil type and sunlight.

• Sauvignon Blanc

The comprehensive approach performed for Sauvignon Blanc grapes revealed that
harvest and parcel factors explained ca. 68% and 12% of the total data set variance,
respectively. However, only the effect of harvest was found to be significant (p-value
< 0.0005), (Table 4, Figure 6). A recent study performed with New Zealand Sauvignon
Blanc juices and wines also demonstrated that harvest year variations were more effectual
than vineyard conditions [48], thus corroborating lesser compositional plasticity of this
worldwide variety regarding vineyard parcel characteristics.

According to the scores plot (Figure 6a), samples were distributed along PC1: the
2010 harvest was placed in PC1 positive, and the 2011 and 2012 harvests were placed in
PC1 negative and near to origin, respectively. According to the loadings plot (Figure 6b),
practically all measured parameters contributed to the sample separation along the PC1:
2010 grapes had the highest content of volatile compounds, while 2011 grapes had higher
titratable acidity and lower volatile content, principally varietal one.

• Baga

The effect of the harvest year accounted for 61.4% of total data set variance (Table 4).
The first component of scores plot separates the 2010 harvest (PC1 positive) from the others
(PC1 negative), while the second component separates 2011 and 2012 harvests (Figure 7a).
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The loadings plot (Figure 7c) showed that 2010 was differentiated by the higher content of
monoterpenic compounds. From these, β-ocimene, α-terpinolene, rose oxide, 1-terpineol,
nerol oxide, digydrocarvone, menth-1-en-9-al, and carvone were detected only in 2010
grapes. The higher content of C13 norisoprenoids and sesquiterpenic compounds was
responsible for the separation of the 2012 harvest from 2011 along the PC2. Additionally,
grapes from 2011 (PC2 negative) also exhibited higher titratable acidity and sugar content
compared to the other harvests. The obtained results highlighted the sensitivity of Baga
grapes to weather conditions, which affect their oenological potential, mainly in terms of
the final wines’ alcohol content, astringency, and aroma profile.
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Figure 6. ASCA scores plot for (a) harvest factor and (b) parcel factors, and the corresponding variable loadings plot (c,d),
respectively, obtained for Sauvignon Blanc, at technological maturity (significance test reported on Table 4). Each variable is
normalized separately by dividing by its standard deviation value.

The effect of parcels on Baga grapes accounted for 14.8% of total data set variance
(Table 4). Scores and loading plots are shown in Figure 7b,d, respectively. PC1 distinguishes
BA-VA1, placed on the positive side of PC1, from BA-SM1 placed in PC1 negative, while
BA-VA2 was near to the origin, but in PC1 positive. The corresponding loadings plot
(Figure 7d) showed that this separation was due to the higher sugar and phenolic contents
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and antiradical activity, as well as higher varietal grapes components determined on the
glycosidically linked fraction of BA-VA2 grapes compared to BA-SM1 grapes, suggesting
higher aroma potential of BA-VA2 [61].
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Figure 7. ASCA scores plot for (a) harvest and (b) parcel factors, and the corresponding variable loadings plot (c,d),
respectively, obtained for Baga, at technological maturity (significance test reported on Table 4). Each variable is normalized
separately by dividing by its standard deviation value.

Moreover, PC2 allowed distinguishing BA-VA1 (PC2 negative) from BA-VA2 (near
to origin) (Figure 7b). The loadings plot (Figure 7d) showed that this differentiation
along the PC2 was mainly related to the higher BA-VA1 monoterpenic content, including
α-pinene, limonene, linalool oxide, and β-citronellol. These compounds can contribute
characteristic notes: α-pinene has fresh and citrus notes; limonene has lemon, orange, and
sweet notes; linalool has fruity, floral, and rosy notes; and β-citronellol exhibits rose and
lemon notes [58].

Considering the characteristics of Baga parcels (Table 1), soil type is the main factor that
influences Baga grapes’ composition, which is strongly associated with the water status [9]:
clay–calcareous (BA-VA2) and clayey (BA-VA1) soils seem to favor the formation of the
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varietal volatile and phenolic compounds and also the increase of the antiradical activity. It
was already shown that soils with higher water-holding capacity than sand-based ones
increased Baga sparkling wines volatiles [3] and Agiorgitiko oenological potential by
increasing the concentration of anthocyanins and total phenolics in the berries [68].

Taken together, these data provide evidence that Baga variety exhibits a degree of
plasticity within its secondary metabolites and responds physiologically to the soil type by
modulating metabolites with potential aroma, color, astringency, and antioxidant properties.

• Castelão

The effect of the harvest year on Castelão grape composition accounted for 66.7% of
the total data set variance (Table 4). According to the scores plot (Figure 8), first PC allowed
distinguishing the 2010 harvest, placed in PC1 positive, from the other two harvests (PC1
negative). The corresponding loadings plot (Figure 8c) showed that the separation of 2010
grapes was related to the higher pH and phenolic content of these grapes and, principally,
with the higher volatile content, especially the monoterpenic ones, which represented ca.
20% of the total volatiles, while in 2011 and 2012, this chemical family represented ca. 10%
and 13%, respectively. Furthermore, PC2 allowed distinguishing 2012 (PC2 positive) from
2011 (PC2 negative) (Figure 8a). The loadings plot (Figure 8c) showed that the projection
of 2011 in PC2 negative was mainly related to the lower values of almost all determined
parameters compared to 2012, essentially oxygen-containing monoterpenic compounds
(both free and glycosidically linked fractions). Additionally, 2012 grapes (PC2 positive)
exhibited higher titratable acidity and lower sugar content. These results revealed the high
sensitivity of the Castelão variety to the different weather conditions of each year: 2010
moderate weather conditions (Figure 2) seem to be proper for Castelão development, thus
potentiating aroma and astringency to the final wines. The opposite was observed for
2011 grapes.

The scores plot for the factor parcel accounted for 15.5% of the total data set variance
(Table 4, Figure 8b). The different parcels were distributed along the PC1 with CA-SM1
situated in PC1 positive and CA-SM3 in PC1 negative. Analysis of loadings (Figure 8d)
showed that this distribution along PC1 was related to the higher titratable acidity, anti-
radical activity, and higher content of some oxygen-containing monoterpenic compounds
(dihydromyrcenol, hotrienol, and nerol oxide) and varietal glycosidically linked com-
pounds of CA-SM1 grapes compared to CA-SM3 grapes. Additionally, along PC2, it
was possible to distinguish CA-SM2 from the other parcels (PC2 negative), which were
characterized by lower berry weight and pH; a higher amount of sugar, C6 alcohols, and
aldehydes; and some varietal compounds such as linalool oxide, hotrienol, α-terpineol,
vitispirane, and β-damascenone.

The differences between Castelão grapes’ composition were related to the parcels’ soil
type (Table 1): clay–calcareous (CA-SM1) and clayey (CA-SM2) soils seem to favor the
formation of the higher primary and secondary metabolites of Castelão grapes, revealing
their high compositional sensitivity when exposed to different vineyard soils.

• Touriga Nacional

For Touriga Nacional variety, harvest year accounted for 59.3% of the total data set
variance (Table 4). The PC1 of the scores plot allowed the separation of the 2010 harvest
(PC1 positive) from the 2012 and 2011 harvests placed in PC1 negative side and near to the
origin, respectively (Figure 9a).

The loadings plot (Figure 9c) showed that essentially aromatic alcohols, C13 noriso-
prenoids and monoterpenic compounds both in the free and glycosidically linked forms,
contributed to the harvest differentiation along PC1. Grapes from the 2010 harvest had
higher content of aromatic alcohols accounting for ca. 4% of the total GC×GC areas, but
only for ca. 2.5% in grapes from 2011 and 2012. Higher amounts of two isomers of β-
damascenone and geranylacetone were also found in 2010 grapes. Additionally, β-ocimene
and dihydrolinalool were only determined in this harvest. In contrast, higher titratable
acidity and lower amounts of monoterpenic compounds were determined in grapes from
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the 2012 harvest. Touriga Nacional has a late maturation (Figure S1) requiring good sun-
light exposure for a long period to mature and develop its volatile characteristics. As 2012
was fresh and rainy, this may explain the lower volatile content and higher titratable acidity
determined in 2012 grapes (Table 2, Tables S11 and S12). It was already shown that higher
precipitation amounts may decrease malic acid respiration, resulting in higher acidity of
the berries [69,70].
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Figure 8. ASCA scores plot for (a) harvest and (b) parcel factors, and the corresponding variable loadings plot (c,d),
respectively, obtained for Castelão, at technological maturity (significance test reported on Table 4). Each variable is
normalized separately by dividing by its standard deviation value.

The effect of the parcel on Touriga Nacional grapes accounted for 18.8% of the total
data set variance (Table 4). According to the scores plot, PC1 distinguishes TN-SM2 (PC1
positive) from the other two parcels, TN-SM1 and TN-SM3, both placed in PC1 negative
(Figure 9a). The corresponding loadings plot (Figure 9c) showed that grapes from TN-
SM2 (PC1 positive) had lower berry weight and higher content of sugars, phenolic and
monoterpenic compounds, mainly the oxygen-containing ones, and higher antiradical
activity. Additionally, PC2 distinguishes TN-SM1 (PC2 negative) from TN-SM3, which was
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characterized by higher content of varietal compounds, including mono- and sesquiter-
penic compounds, and C13 norisoprenoids. Linalool, the major monoterpenic compound
determined in all parcels, accounted for ca. 27% and 25% of the total monoterpenic GC×GC
peak areas in grapes from TN-SM2 and TN-SM1, respectively, and only for ca. 14% in
TN-SM3 grapes. According to the characteristics of these parcels (Table 1), higher altitude
(ca. 70 m) and clay–calcareous soil of the TN-SM2 parcel seem to be beneficial for the higher
varietal aroma potential of the Touriga Nacional red variety, as well as higher phenolic
content and antiradical activity.
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Figure 9. ASCA scores plot for (a) harvest and (b) parcel factors, and the corresponding variable loadings plot (c,d),
respectively, obtained for Touriga Nacional, at technological maturity (significance test reported on Table 4). Each variable is
normalized separately by dividing by its standard deviation value.

Despite the relevance of the ASCA analyses to evaluate each variety’s oenological po-
tential under different weather and vineyard environmental conditions, to easily compare
the varieties compositional behavior and biodiversity, a PCA was built displaying pairwise
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scores plot for the top three PCs joining the data of the six grape varieties and conditions
under study (Figure 10a). Considering the parameters under study, Figure 10a shows that
the Sauvignon Blanc variety is distinct from the five Bairrada Appellation autochthonous
varieties, also revealing a higher similarity between the last ones. This comprehensive
analysis also reveals that the compositional variability of Sauvignon Blanc grapes was
more modulated by the harvest weather conditions than by the vineyards environment,
corroborating the ASCA results (Figure 6).
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Figure 10. Pairwise scores plot for the top three PCs for joined data of (a) the six varieties under study and (b) for the
five autochthonous Bairrada Appellation. Each grape variety was identified with a different color and the color gradient
code corresponds to the different harvests under study. For each vineyard parcel, a different shape code was automatically
displayed by the MetaboAnalyst software.

Considering the pairwise scores plot only for the autochthonous varieties (Figure 10b),
a distinction, among the first three PCs, were observed for the five varieties under study due
to their different compositional profiles, which contributed to highlighting the peculiarities
and typicity of each variety. This comprehensive analysis also confirms the results observed
for the ASCA data processing of each variety, revealing the impact of the harvest on the
variety composition, and the fact that samples collected in 2010 are more distinct, with
those from 2011 and 2012 being more similar to each other.

4. Conclusions

The comprehensive approach herein used provides an overview of the oenological po-
tential of different grape varieties based on their metabolic responses to different Bairrada
environmental conditions. The composition of each autochthonous variety is dependent
on the effect of the climatic conditions related to the harvest, as well as of vineyard char-
acteristics. The composition of grapes from Sauvignon Blanc, a worldwide cultivated
variety, seems to be mainly modulated by harvest year. Therefore, ASCA was revealed to
be a valuable tool to underlie edaphoclimatic-dependent quality traits in different grape
varieties, improving the interpretation of compositional plasticity of autochthonous grape
ones. In this context, this research contributes to the understanding of the different varieties’
interaction with the environmental conditions and effects of the latter on the development
of primary (sugars and organic acids) and secondary (phenolic and volatile compounds)
grapes metabolites. This knowledge represents an important contribution for the mainte-
nance of biodiversity and sustainability of the grape varieties, while helping to establish the
typicity of autochthonous varieties. Additionally, the information generated under this re-
search study can assist in the development of strategies to better exploit the autochthonous
varieties in the production of a wide range of wines with different characteristics that can
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be produced from the same variety, which represent a step forward for the sustainability in
the viticulture sector that should be extended to other wine regions worldwide.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11094003/s1: Figure S1: Sampling period performed for the six varieties under study,
during maturation. For each variety, the sampling period was organized for each parcel (SM1 to
SM3, VA1 and VA2) where the three harvest years (2010 to 2012) were represented. The first point
for each variety, indicate grapes collection at half-véraison and * refers to technological maturity
state. Figure S2: Berry weight, pH, sugar content, and titratable acidity of V. vinifera cv. Arinto,
obtained during maturation, on the three parcels and three consecutive harvests. Technological
maturity is indicated with a dash line. Figure S3: Berry weight, pH, sugar content, and titratable
acidity of V. vinifera cv. Bical, obtained during maturation, on the three parcels and three consecutive
harvests. Technological maturity is indicated with a dash line. Figure S4: Berry weight, pH, sugar
content, and titratable acidity of V. vinifera cv. Sauvignon Blanc, obtained during maturation, on the
three parcels and three consecutive harvests. Technological maturity is indicated with a dash line.
Figure S5: Berry weight, pH, sugar content, and titratable acidity of V. vinifera cv. Baga, obtained
during maturation, on the three parcels and three consecutive harvests. Technological maturity is
indicated with a dash line. Figure S6: Berry weight, pH, sugar content, and titratable acidity of V.
vinifera cv. Castelão, obtained during maturation, on the three parcels and three consecutive harvests.
Maturity is indicated with a dash line. Figure S7. Berry weight, pH, sugar content, and titratable
acidity of V. vinifera cv. Touriga Nacional, obtained during maturation, on the three parcels and
three consecutive harvests. Technological maturity is indicated with a dash line. ** Overripe grapes.
Table S1: Volatile components determined for Vitis vinifera L. cv. Arinto variety obtained from three
vineyard parcels, at Bairrada Appellation, and from three years of harvest, at technological maturity.
Table S2: Volatile components determined in the glycosidically linked fraction of mature grapes of
Vitis vinifera L. cv. Arinto variety obtained from three vineyard parcels and three harvests under
study, grouped by chemical classes. Table S3: Volatile components determined for Vitis vinifera L. cv.
Bical variety obtained from three vineyard parcels, at Bairrada Appellation, and from three years of
harvest, at technological maturity. Table S4: Volatile components determined in the glycosidically
linked fraction of mature grapes of Vitis vinifera L. cv. Bical variety obtained from three vineyard
parcels and three harvests under study, grouped by chemical classes. Table S5: Volatile components
determined for Vitis vinifera L. cv. Sauvignon Blanc variety obtained from three vineyard parcels, at
Bairrada Appellation, and from three years of harvest, at technological maturity. Table S6: Volatile
components determined in the glycosidically linked fraction of mature grapes of Vitis vinifera L.
cv. Sauvignon Blanc variety obtained from three vineyard parcels and three harvests under study,
grouped by chemical classes. Table S7: Volatile components determined for Vitis vinifera L. cv. Baga
variety obtained from three vineyard parcels, at Bairrada Appellation, and from three years of harvest,
at technological maturity. Table S8: Volatile components determined in the glycosidically linked
fraction of mature grapes of Vitis vinifera L. cv. Baga variety obtained from three vineyard parcels and
three harvests under study, grouped by chemical classes. Table S9: Volatile components determined
for Vitis vinifera L. cv. Castelão variety obtained from three vineyard parcels, at Bairrada Appellation,
and from three years of harvest, at technological maturity. Table S10: Volatile components determined
in the glycosidically linked fraction of mature grapes of Vitis vinifera L. cv. Castelão variety obtained
from three vineyard parcels and three harvests under study, grouped by chemical classes. Table S11:
Volatile components determined for Vitis vinifera L. cv. Touriga Nacional variety obtained from three
vineyard parcels, at Bairrada Appellation, and from three years of harvest, at technological maturity.
Table S12: Volatile components determined in the glycosidically linked fraction of mature grapes of
Vitis vinifera L. cv. Touriga Nacional variety obtained from three vineyard parcels and three harvests
under study, grouped by chemical classes.
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