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Abstract: The air quality prediction is a very important and challenging task, especially PM2.5

(particles with diameter less than 2.5 µm) concentration prediction. To improve the accuracy of
the PM2.5 concentration prediction, an improved integrated deep neural network method based on
attention mechanism is proposed in this paper. Firstly, the influence of exogenous series of other sites
on the central site is considered to determine the best relevant site. Secondly, the data of all relevant
sites are input into the improved dual-stage two-phase (DSTP) model, then the PM2.5 prediction
result of each site is obtained. Finally, with the PM2.5 prediction result of each site, the attention-based
layer predicts the PM2.5 concentration at the central site. The experimental results show that the
proposed model is superior to most of the latest models.

Keywords: PM2.5 concentration prediction; deep neural network; attention mechanism; long short
term memory; machine learning

1. Introduction

With the development of the economy, air pollution has become more and more
serious, and has caused great harm to the health of urban residents [1]. Air quality
prediction is a very important task in air pollution control. The existing research methods
of air prediction are mainly divided into two kinds—deterministic methods and statistical
methods. The deterministic method predicts air quality by building a simulation model
of the diffusion and transport of atmospheric chemicals, such as the community multi-
scale air quality model (CMAQ) [2–4] and the nested air quality prediction model system
(NAQPMS) [5–7]. This kind of theory model needs a lot of prior knowledge and a large
number of accurate data. There are many parameters in these theory models, which are
difficult to set. Statistical prediction methods can overcome the limitations of deterministic
methods by a large amount of data, such as linear regression [8,9] and multiple linear
regression (MLR) [10–12]. However, the early linear models mentioned above assume
that the relationship between variables and target labels is linear and is not applicable to
nonlinear and unstable air quality prediction problems. In addition, traditional regression
prediction models often fail to integrate and analyze multi-source heterogeneous data [13].

To solve the problems of the traditional air quality prediction models, more and more
artificial intelligence models are proposed, which are based on machine learning. For exam-
ple, Wang et al. [14] proposed a hybrid support vector machine (SVM) based prediction sys-
tem, which is applied to the historical data of meteorological variables. Alimissis et al. [15]
used an artificial neural network (ANN) to simulate the spatial variability of air pollution,
which is better than MLR model in air pollution prediction. Zhu et al. [16] proposed two
hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) to predict air quality data.
These models have obtained some good results in air quality prediction. However, these
models are all shallow neural networks. The computational units of the models are few, and
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the ability to express complex functions is limited. The generalization ability for complex
prediction problems is limited.

Recently, a deep learning method has been widely used for air quality prediction
and many research results have been presented [17,18]. For example, Kim et al. [19] used
a recurrent neural network (RNN) model to predict the concentration of air pollutants
on subway platforms. Zhao et al. [20] used the long short-term memory-fully connected
(LSTM-FC) neural network to extract spatio-temporal characteristics from historical air
quality and meteorological data of the target and neighboring sites, where only the fully
connected layer is used as the spatial combinator, ignoring the PM2.5 concentration correla-
tion between neighboring sites and the central site. Qin et al. [21] presented a combined
prediction scheme based on convolutional neural network (CNN) and long short-term
memory (LSTM), where CNN is used to compress input data to eliminate redundancy, the
spatial correlation between data is determined, and the temporal dependence between
pollutants is studied by LSTM. In this scheme, the accuracy of the model will be negatively
affected by unrelated sites when data from all neighboring sites are entered into the model,
and all input features are treated equally and cannot focus on the important features. Qin
et al. [22] proposed a dual-stage attention-based recurrent neural network (DA-RNN),
where the attention mechanism is not only in the input stage of the decoder, but also in the
encoder stage so that the most relevant input features can be adaptively selected. However,
in this method, a single-layer attention module is used in the encoder stage, and the weight
learned is decentralized, which means this method is not effective for long term prediction.
To deal with the shortcomings of the method in [22], Liu et al. [23] proposed a dual-stage
two-phase attention-based recurrent neural network (DSTP-RNN), where the two-phase
attention mechanism is adopted in the encoder stage, and the stable attention weight can
be obtained. However, only one site’s data are used in this method, without considering
the impact of other sites’ data on the model.

To deal with the problems in the deep learning based models introduced above and
to further improve the effectiveness and accuracy of air quality prediction, an improved
attention-based integrated deep neural network method is proposed, which is used to
predict the PM2.5 (particles with diameter less than 2.5 µm) concentration. In this proposed
method, an exogenous series correlation method is used to compute the relationship
between the target series and the exogenous series, and the PM2.5 concentration is predicted
in the improved dual-stage two-phase (DSTP) model.

The main contributions of this paper are summarized as follows: (1) The relationships
between the target series of the central site and the exogenous series of other sites are
considered in the PM2.5 concentration prediction, by using an exogenous series correlation
method; (2) The DSTP model is improved to predict the PM2.5 concentration in the central
site and the neighboring sites; (3) An attention-based fully connected layer is used to
predict the final PM2.5 concentration of the central site. Finally, some experiments are
conducted on the datasets of the air quality sites in Beijing. In addition, the performance of
the proposed method is discussed and compared with other deep learning based methods.
The results show the efficiency of the proposed method.

This paper is organized as follows—in Section 2, the proposed integrated deep neural
network method is presented in details. Section 3 introduces the experiments of the
proposed method in the PM2.5 concentration prediction on the real datasets of Beijing.
Section 4 discusses the parameter setting and performance of the proposed method by
some further experiments. Finally, conclusions and future work are given out in Section 5.

2. Proposed Method

In order to improve the accuracy of PM2.5 concentration prediction, an improved
attention based dual-stage two-phase fully connected (DSTP-FC) model is proposed in this
paper, which is used for central site PM2.5 concentration prediction, and multi-site data are
used as an input to help more accurately predict PM2.5 concentration at a central site. The
data of twelve air quality sites in Beijing, China are used to test the proposed model, which
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will be introduced in detail in Section 3.1. The locations of these twelve air quality sites are
shown in Figure 1, where the location of the central site is represented by a red triangle in
the figure.

Figure 1. Distribution of air quality sites in Beijing.

The inputs of the model include historical air quality and meteorological data. The
data flow of the proposed method is shown in Algorithm 1.

Firstly, the spatiotemporal correlations between the central site and the neighboring
sites are analyzed, according to the correlations of the target series in two sites (that is
PM2.5 series), then the central site collection is set up. The locations of the neighboring sites
are represented by yellow triangles in Figure 1.

Secondly, the model selects one site with the highest correlation for all the sites in the
central site collection from all other sites, according to the exogenous series correlation.
Then the site pairs are obtained. The PM2.5 prediction results of each site pair can be
obtained by inputting all data of these site pairs into the improved dual-stage two-phase
model based on the attention mechanism, respectively.

Finally, the prediction results of all sites in these site pairs are input into the attention-
based layer to get the prediction results of the central site.

The framework of the proposed method is shown in Figure 2 and is described in
detail below.
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Algorithm 1 The data flow of the proposed method

Input: All sites’ data for current batch, denoted as Pn;
Output: The prediction result of the central site N0, denoted as S;

(1) Firstly, according to the target series of the central site and other sites, determine
the relevant sites of the central site N0. Here are N1, N2, N3, N4. These five sites are
called the central site collection;
(2) Secondly, according to the exogenous series of the sites in the central site collection
and other sites, the matching sites are determined by the exogenous series correlation
method. Here are Nbest0, Nbest1, Nbest2, Nbest3, Nbest4 respectively;
(3) Thirdly, the site pairs (N0, Nbest0), (N1, Nbest1), (N2, Nbest2), (N3, Nbest3), (N4, Nbest4)
are input into the model respectively to get the prediction results of the sites in the
central site collection. The site pair (Ni, Nbesti

) contains the exogenous series and target
series of these two sites.
(4) Finally, with the prediction results of each site in the central site collection, the
attention-based layer get the prediction result S of the central site;
return S;

2.1. Spatiotemporal Correlation Analysis

Air pollutants are distributed at each site. Due to the wind influence, the air pollu-
tants of one site will be affected by the neighboring sites air pollutants. Therefore, PM2.5
concentration should be predicted according to the air pollutants at the central site and the
air pollutants at neighboring sites.

In this study, the Pearson correlation coefficient [24] is used to measure the spatial
correlation of PM2.5 concentrations at all sites. Then, the autocorrelation function [25] is
used to measure the temporal correlation between PM2.5 concentration series at each site.
The calculation formulas are as follows:

r(si, sj) =
Cov(si, sj)

σ(si)σ(sj)
(1)

ρk =
Cov(y(t), y(t + k))

σy(t)σy(t+k)
, (2)

where r(·) represents Pearson correlation coefficient between sites; ρk represents autocor-
relation coefficient at t and t + k time within the same site; y(t) and y(t + k) respectively
represent the air pollutants concentration at time t and t + k; Cov(·) is the covariance; and
σ(·) is the standard deviation.
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Figure 2. The framework of the proposed DSTP-FC model.

2.2. Improved Dual-Stage Two-Phase Model Based on Attention Mechanism
2.2.1. Notation and Problem Statement

(1) Notation
Assume that there are N sites for all sites, given all sites’ data, each site contains n

exogenous series and a target series.
Within the window size T of the all sites, the k-th (k 6 n) exogenous series is repre-

sented by
xk = (xk

1, xk
2, . . ., xk

T)
T ∈ RT . (3)

All exogenous series is represented by

X = (x1, x2, . . ., xT)
T ∈ Rn×T(xk = xk). (4)

The target series is represented by

Y = (y1, y2, . . ., yT)
T ∈ RT . (5)

Then a concatenation of target series and the output of the first phase attention can be
represented by

Z = (z1, z2, . . ., zT)
T ∈ R(n+1)×T . (6)

Then, the future value of the target series can be represented by

Ŷ = (yT+1, yT+2, . . ., yT+τ)
T ∈ Rτ , (7)

where τ is the time step to be predicted.
(2) Problem statement
Given the exogenous series and target series of all sites, the exogenous series and

target series of the e-th site in all sites are

(x(e)1 , x(e)2 , . . ., x(e)T ), x(e)t ∈ Rn (8)
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and
(y(e)1 , y(e)2 , . . ., y(e)T ), y(e)t ∈ R. (9)

The model aims to predict the value of τ time steps in the future, which can be
expressed as:

yT+1, yT+2, . . ., yT+τ = F(y(e)1 , . . ., y(e)T , x(e)1 , . . ., x(e)T ), e 6 N (10)

where F(·) is the nonlinear function to be learned.

2.2.2. Models

The encoder adopts the two-phase attention mechanism, aiming to learn the spatial
correlation among the central site collection exogenous series, its matching sites’ exogenous
series and target series. Specifically, the spatial correlation of central site collection and
matching site exogenous series can be studied in the first phase attention. In the second
phase attention, the weighted features are studied again, that is, the spatial correlation
among the exogenous series of the central site collection, its target series and matching
sites’ target series. Therefore, the two-phase spatial mechanism ensures that the learned
spatial correlation is stable.

The decoder is a temporal attention mechanism, which aims to learn the temporal cor-
relation among the encoder hidden state, central site collection target series and matching
sites’ target series.

Because target and non-target have a certain influence on response selection [26], a
two-phase attention mechanism is used to learn the correlation between the target series
and the exogenous series in the paper. The flow chart of the improved dual-stage two-phase
model based on the attention mechanism is shown in Figure 3.
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(1) First phase attention
In the first phase, DSTP-RNN used the attention module to learn the spatial correla-

tions between these exogenous attributes but all of these exogenous attributes come from
the same site, the influence of exogenous series of other sites on the exogenous series of the
central site is ignored. Because of the influence of wind, air pollutants from other sites will
diffuse to the central site collection, resulting in the change of the exogenous series. To deal
with this problem, in this paper, the data of the central site’s collection and its matching
site is input into the model together, and the exogenous series relationship between them
can be studied through the model, which can improve the accuracy of predicting PM2.5
concentration for the central site.

The matching site is determined by exogenous series correlation method, and the
formulas are as follows:

corrk = r(xk, y) (11)

λk =
exp(corrk)

n
∑

j=1
exp(corrk)

(12)

f (i) =
n

∑
k=1

λkr(xk, x(i)k ) (13)

f (best) = max( f (j)), 1 6 j 6 N, (14)

where r(·) is the Pearson correlation coefficient, corrk is the Pearson correlation coefficient
of the k-th exogenous series of the site and the target series. f (i) is the correlation between
the exogenous series of the current site and the corresponding exogenous series of the i-th
site and f (best) is the best selected matching site.

Given the k-th feature xk of the central site collection at time t, the k-th feature x(best)
k

of the best matching site exogenous series. The input attention mechanism-I is used to
learn the exogenous attributes’ spatial correlation of the central site collection and the
matching site:

f k
t = vT

f tanh(W f [h
f
t−1 : s f

t−1] + U f xk + M f x(best)
k ), (15)

where [∗ : ∗] is concatenation operation, and v f ∈ RT , W f ∈ RT×2m, U f , M f ∈ RT×T are the

parameters to learn. h f
t−1 ∈ Rm and s f

t−1 ∈ Rm are the hidden state and the cell state of the
encoder LSTM0 (LSTM layer in the first attention module) unit at the previous moment,
respectively. m is the hidden size in the first attention module.

After f k
t is calculated, the Softmax function is used for normalization:

αk
t =

exp( f k
t )

n
∑

j=1
exp( f j

t )
, (16)

where attention weight αk
t is determined by h f

t−1, s f
t−1, the k-th feature xk of the current

input, and the k-th feature x(best)
k of the best matching site, which measures the importance

of the k-th feature at time t.
Compared with the input exogenous series xt, for the more important k-th feature,

it will be larger in x̃t. x̃t is the combination of all features at time t, which is defined
as follows:

x̃t = (α1
t x1

t , α2
t x2

t , . . ., αn
t xn

t )
T . (17)

Then, the hidden state h f
t−1 and x̃t are input into the LSTM0 layer, and the hidden

state h f
t at the current moment is updated. x̃t is then input into the second phase attention.
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(2) Second phase attention
In the second phase, more stable and concentrated correlations can be obtained

through the second learning of spatial correlation. The purpose of this module is to learn
the spatial correlation among the exogenous series of the central site collection, its target
series and matching site target series.

In this study, the specific approach is to combine the target series of the central site
collection with the exogenous series of the corresponding time, and the target series of the
best matching site is added. The attention weights of the input attention mechanism-II are
as follows:

sk
t = vT

s tanh(Ws[hs
t−1 : ss

t−1] + Us[x̃k : yk] + Msy(best)
k ) (18)

βk
t =

exp(sk
t )

n+1
∑

j=1
exp(sj

t)

, (19)

where vT
s ∈ RT , Ws ∈ RT×2q, Us ∈ RT×T , Ms ∈ RT are parameters to learn; hs

t−1 ∈ Rq and
ss

t−1 ∈ Rq are the hidden state and cell state of the encoder LSTM1 (LSTM layer in the
second attention module) unit at the previous time; and q is the hidden size in the second
attention module.

The corresponding target variable yk is concatenated to the k-th attribute x̃k to form a
new vector zk, that is zk = [x̃k : yk] ∈ R(n+1)×T . For each spatial attention module with a
target series, the above actions are taken independently.

Attention weight βk
t measures the importance of zk at time t, and any attribute value

at any time has its corresponding weight:

z̃t = (β1
t z1

t , β2
t z2

t , . . ., βn+1
t zn+1

t )T . (20)

Then, hs
t−1 and z̃t are input into the LSTM1 layer. The purpose is to update the hidden

state hs
t at the current moment and hs

t is input into the next stage of temporal attention.
(3) Decoder with temporal attention
The disadvantage of the traditional attention mechanism is that the context vector only

relies on the hidden state at the last moment, and cannot pay attention to the important
features. However, the decoder with temporal attention can adaptively select the encoder
hidden state most relevant to the target series by weighting the encoder hidden state.
The encoder with spatial attention outputs the hidden state, and the decoder learns the
temporal relationship of the hidden state through the attention mechanism within the
window size T.

Based on the hidden state hd
t−1 ∈ Rp and cell state sd

t−1 ∈ Rp of the decoder LSTM2
(LSTM layer in the third attention module) unit at the previous time, the attention weight
of each encoder hidden state in the second attention module at time t can be calculated.
The attention weights of the temporal attention mechanism are as follows:

di
t = vT

d tanh(Wd[hd
t−1 : sd

t−1] + Udhs
i + bd) (21)

γi
t =

exp(di
t)

T
∑

j=1
exp(dj

t)

, (22)

where vd, bd ∈ Rp, Wd ∈ Rq×2p, Ud ∈ Rp×p are parameters to learn, p is the hidden size
in the third attention module and hs

i ∈ Hs is the i-th encoder hidden state of the second
attention module. The context vector ct is defined as follows:

ct =
T

∑
j=1

γ
j
th

s
j . (23)
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The context vector represents the weighted sum of all hidden states in the second
attention module within the window size T. DSTP-RNN combined the context vector ct
with the target series Y, but the influence of the matching site target series on the decoder
hidden state is ignored. In this paper, by concatenating the target series of matching site,
the temporal relationship between all hidden states of the central site collection and the
target series of the matching site is once again learned:

ỹt−1 = W̃T [yt−1 : ct−1] + b̃ + H̃Ty(best)
t−1 , (24)

where W̃T ∈ Rq+1 and b̃, H̃T ∈ R are parameters that map concatenation to the size of
the decoder hidden state. ỹt−1 and hd

t−1 are then input into the LSTM2 layer to update
the hidden state hd

t at the current moment. The final multi-step prediction formula is
as follows:

yT+1, . . ., yT+τ = vT
y (Wy[hd

T : cT ] + by) + b′y, (25)

where Wy ∈ Rp×(p+q) and by ∈ Rp are parameters that map concatenation to the size of the
decoder hidden state. [hd

T : cT ] ∈ Rp+q represents the concatenation of the decoder hidden
state and context vector at time T. vy ∈ Rτ×p is the weight, b′y ∈ Rτ is deviation. The linear
function produces the final prediction result.

2.3. Attention-Based Layer

After getting the prediction result of each site, LSTM-FC [20] input all the results into
the fully connected layer to obtain the prediction result of the central site, ignoring the
correlations of PM2.5 concentration between neighboring sites and the central site.

In this paper, the correlation coefficients between the central site and the selected
neighboring sites are introduced as attention weights in the fully connected layer, and the
spatial correlations of different sites are dynamically studied. The correlation coefficient
set of neighboring sites and central site is

M = (m1, m2, . . ., ma+1)
a+1 ∈ Ra+1, (26)

where a is the number of selected neighboring sites, and M is normalized by the
Softmax function:

ωk =
exp(mk)

a+1
∑

j=1
exp(mj)

. (27)

The data of each site are input into the improved dual-stage two-phase model based on
the attention mechanism, and the output matrix of the model is H = (h1, h2, . . ., ha+1)

a+1 ∈
Ra+1. The attention weight of learning is as follows:

uk = vu tanh(Kuhk + bu) (28)

ηk =
exp(uk)

T
∑

j=1
exp(uj)

, (29)

where vu, bu, Ku are the parameters to learn, and s is the predicted PM2.5 concentration of
the central site. The calculation formula is as follows:

s =
a+1

∑
j=1

ω jηjhj. (30)
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3. Experimental Results
3.1. Settings

The dataset used in this paper is from the weather and air pollution index collected
by the US embassy in Beijing, China from 2013 to 2017 (see http://archive.ics.uci.edu/ml/
datasets/Beijing+Multi-Site+Air-Quality+Data, accessed on 20 September 2019) [27]. In
the experiment of this paper, only one year of data is selected randomly from the dataset,
which is from 1 April 2014 to 1 February 2015 (a total of 8760 data). It is big enough for the
PM2.5 concentration prediction. Each air quality record contains six pollutants: PM2.5, PM10,
SO2, NO2, CO and O3. Each meteorological record contains seven items—time (the interval
is one hour), temperature, pressure, dew point temperature, precipitation, wind direction
and wind speed. The average, median and standard deviation of PM2.5 concentration at
the central site are 90.07 µg/m3, 68.72 µg/m3 and 83.30 µg/m3, respectively. The standard
deviation is relatively large, indicating that the data are widely distributed.

The first 75% of the dataset is selected as the training data and the remaining 25% as the
test data. If the continuous missing values are greater than one row, IDW interpolation [25]
is used to fill the missing values according to the neighboring sites PM2.5 concentration. It is
because PM2.5 concentration data from various sites are highly correlated. If the continuous
missing values are less than two rows, the linear interpolation method is used.

To prove that the proposed method is more suitable for long-term prediction, the
1–24 h are divided into three time lags (1–6, 7–12 and 13–24 h) and a separate model is
trained to predict the average PM2.5 concentration of each time lag. Each model is set with
appropriate hyper parameters to produce the best performance. The predicted time lag of
1–6 h is 8, 7–12 h is 16, and 13–24 h is 28.

The back propagation algorithm is used to train all models. DIstortion Loss including
shApe and TimE (DILATE) loss function [28] is used in the experiment. In the training pro-
cess, the small-batch stochastic gradient descent (SGD) is combined with Adam optimizer,
the size of the random small batch is set to 128, the upper limit of the training period is
200, the learning rate is set to 0.001 and the number of neighboring sites is set to 4. A layer
of an LSTM network is used for each attention module, and the hidden state of the LSTM
network is set to the same, that is, m = p = q = 128.

In order to evaluate the effectiveness of the method, two indicators are used in the
experiment, including root mean square error (RMSE) and mean absolute error (MAE).
These indicators are defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − yi
′)2 (31)

MAE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣, (32)

where yi is the true value and yi
′ is the predicted value.

3.2. Models Comparison

The comparison results between the proposed model and other models are shown
in Table 1. In this paper, some state-of-the-art models are used to test the superiority
of the proposed model (DSTP-FC), which are introduced as follows. LSTM [29]: The
problem of RNN gradient disappearance can be avoided and the long-term dependence
in series learning can be captured. CNN-LSTM [21] used CNN to extract the actual
characteristics and spatial correlation from the input data, and used LSTM to predict the
future PM2.5 concentration. LSTM-FC [20] used the spatial combination based on fully
connected neural network to integrate the prediction results of neighboring sites, and
the final PM2.5 prediction result of the central site is given. DA-RNN [22]: Attention
mechanism is introduced not only in the input stage of decoder but also in the encoder

http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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stage. The encoder stage attention mechanism realizes the function of feature selection and
timing dependence.

Table 1. Comparison of the performance of different models.

Time Methods
1–6 h 7–12 h 13–24 h

RMSE MAE RMSE MAE RMSE MAE

LSTM 37.38 23.45 57.93 42.63 66.39 48.15
CNN-LSTM 39.37 23.87 51.37 41.93 64.03 44.82

LSTM-FC 36.97 22.97 56.70 40.23 63.79 42.57
DA-RNN 36.29 21.40 48.07 35.57 60.81 43.53

DSTP-FC (ours) 32.51 19.50 45.22 32.22 51.45 37.04

The results in Table 1 show that the comprehensive result of LSTM-FC is better than
that of LSTM, which shows that the method of using a fully connected neural network to
integrate the prediction results of neighboring sites is effective. The comprehensive results
of DA-RNN model are better than LSTM, LSTM-FC and CNN-LSTM models. It shows that
the introduction of an attention mechanism in encoder and decoder can better grasp the
timing dependence. At the same time, the comprehensive results of the proposed DSTP-FC
model in this paper are better than that of DA-RNN, which shows the effectiveness of the
proposed model.

To show the performance of the proposed method, the prediction results of PM2.5
concentration at the central site from 1 November 2014 to 30 November 2014 based on
the proposed model are shown in Figure 4, where the deviations between the prediction
of the model and ground truth increase with the increase of prediction time. The reason
to select this time frame to visualize model prediction is that the change of the PM2.5
concentration in the winter of China is very big. There are several sudden change points
of PM2.5 concentration in the figure, and it can be seen that PM2.5 concentration changes
obviously. For example, the PM2.5 concentration decreases by nearly 187 µg/m3 in one
hour, but the proposed DSTP-FC model can give out accurate prediction results. To further
show the performances of the PM2.5 concentration prediction using different methods, one
scatter plot is shown in Figure 5. Here, only the eighteenth hour prediction of the PM2.5
concentration for a total of 100 h is given out, to make the paper more readable. It is easy
to see that the performance of the proposed model is better than other methods.

3.3. Ablation Experiment

The effect of the proposed model with the improved attention mechanism on the
experimental accuracy is shown in Figure 6. It can be seen from the figure that the improved
attention mechanism greatly improves the accuracy of the model in the medium and long-
term PM2.5 concentration prediction, the reasons are as follows.

Firstly, according to the exogenous series correlation method, the data of the most
relevant sites are dynamically combined, and the influence of the relevant sites exogenous
series on the central site collection is considered. Secondly, the attention mechanism is
added to the fully connected layer, the accuracy of PM2.5 prediction at the central site can
be improved by combining the correlation coefficients between neighboring sites and the
central site. However, in the short-term prediction of 16 h, the experimental accuracy is
improved to a limited extent by the improved attention mechanism. This is because the
time step is relatively small and the dynamic combination of data from the most relevant
sites increases the redundant data. The comprehensive results verify the validity of the
proposed model.
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sudden change

sudden change
sudden change

(a) The third hour prediction and the ground truth.

sudden change
sudden change

sudden change

(b) The ninth hour prediction and the ground truth.

sudden change

sudden change

(c) The eighteenth hour prediction and the ground truth.

Figure 4. The prediction results of PM2.5 concentration at the central site from 1 November 2014 to
30 November 2014 based on the proposed DSTP-FC model.
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Figure 5. The eighteenth hour prediction using different methods for a total of 100 h.

Figure 6. Effect of the improved attention mechanism.

4. Discussions

The experiments in Section 3 show that the proposed model has better performance
than the state-of-the-art models in the PM2.5 concentration prediction. In this section, the
performances of the proposed approach are discussed on the key parts of the proposed
model, including the spatio-temporal correlation, the time steps and the loss functions.

4.1. About the Spatio-Temporal Correlation

In the spatio correlation analysis, Granger causality test [30] is often used to analyze
the causality between series of different sits. To discuss the effectiveness of the Granger
causality test based method in the PM2.5 concentration prediction, the PM2.5 concentration
of each site is analyzed in this paper. The results show that the pollution trends are highly
similar, without time delay. One example of the comparison of PM2.5 concentration between
Aotizhongxin and Dongsi sites is shown in Figure 7. The MAE and RMSE of these two sites
PM2.5 concentration are 14 and 23.2, respectively, so the PM2.5 concentration of each site
reflects the similarity rather than the causality. The result means that the Granger causality
test is not effective in the spatio correlation analysis. In this paper, Pearson correlation
coefficient is used to measure the spatial correlation of PM2.5 concentration at 12 sites. The
results show that all correlation values are higher than 0.80 (p-value < 0.05), indicating
that there is a high correlation between PM2.5 concentrations among sites, which means
the PM2.5 concentration of neighboring sites is helpful to predict the PM2.5 concentration at
the central site.
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Figure 7. Concentrations of PM2.5 in Aotizhongxin and Dongsi sites.

In the time correlation analysis, the autocorrelation function is used in this paper to
measure the time correlation between PM2.5 concentration time series at each site. It can be
seen from Figure 8 that the autocorrelation coefficient of PM2.5 concentration after 24 h is
above 0.4, and the correlation is moderate or above. Therefore, it is feasible to predict PM2.5
concentration within 24 h with historical data. In addition, the autocorrelation coefficient
of each site in the figure decreases with the increase of time lags. Earlier events have less
impact on the current state.

Figure 8. Autocorrelation coefficients at the current time and 1–24 h for all sites.

4.2. About the Time Steps

Different time steps are selected for different time lags. This is because with the
increase of time step, more unrelated variables will be input and the prediction accuracy
will be reduced. If the time lag is too small, the input information will be insufficient. Here,
an example of choosing the best time step in different time lags is illustrated. As shown in
Figure 9, the RMSE and MAE values vary with the size of the time step. Obviously, the
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lowest RMSE and MAE values are obtained in the scatter plot when the predicted time
step is 8 within 1–6 h, and a similar method can be used to determine the time steps of
other times.

� 	 
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������������
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��
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Figure 9. MAE and RMSE of DSTP-FC models with different time lags.

4.3. About the Loss Functions

The comparative results among different loss functions are shown in Table 2. The
accuracy of the MAE loss function is much lower than that of DILATE and MSE loss functions.
Experimental accuracy of DILATE loss function within 1–6 h and 13–24 h are better than MSE,
and it is slightly worse than MSE within 7–12 h. As shown in Figure 10, the DILATE and
MSE loss functions are used to predict PM2.5 concentration after 9 h. It can be seen that the
sudden change of PM2.5 concentration can be better predicted with the DILATE loss function.
Therefore, the comprehensive results of the DILATE loss function are the best.

sudden change

sudden change

sudden change

sudden change

Figure 10. Comparison of using DILATE and MSE loss functions to predict PM2.5 concentration after 9 h.
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Table 2. Comparison of prediction accuracy of PM2.5 concentration using different loss functions.

Time Methods
1–6 h 7–12 h 13–24 h

RMSE MAE RMSE MAE RMSE MAE

DSTP-FC-MAE 35.36 21.03 48.13 34.66 54.03 43.25
DSTP-FC-MSE 34.55 20.42 44.17 31.93 52.79 39.46

DSTP-FC-DILATE 32.51 19.50 45.22 32.22 51.45 37.04

4.4. About the Cross Validation

To further test the robustness of the proposed method, a 10-fold cross-validation
experiment was carried out. In this cross validation experiment, the dataset was divided
into 11 subset without changing the order. Then the first subset was used to predict the
second subset, and the first two subsets were used as the training set to predict the third
subset, and so on. The cross validation experimental results are shown in Table 3. The
results of this experiment are close to those of Section 3.2 (see Table 1), which show that the
proposed method has good robustness.

Table 3. The experimental results of the cross validation.

Time
1–6 h 7–12 h 13–24 h

RMSE MAE RMSE MAE RMSE MAE

Cross validation 33.67 22.20 42.39 32.15 49.90 38.40

5. Conclusions and Future Work

In this paper, based on historical air quality data and meteorological data, an improved
integrated deep neural network method based on an attention mechanism is proposed
to predict PM2.5 concentration within 24 h. Due to the spread of air pollution, air quality
at one site may be affected by other sites. Pearson correlation coefficient is used to learn
the spatial correlation between sites and select neighboring sites. The exogenous series
correlation method is used to learn the correlation between the exogenous series of other
sites and the central site collection. In order to evaluate the performance of DSTP-FC
model, PM2.5 concentration of Beijing central site is predicted. Compared with other
models, the proposed model provides better prediction results based on RMSE and MAE
indicators. This study can draw several useful findings: (1) compared with LSTM, LSTM-
FC and CNN-LSTM, DA-RNN and DSTP-FC models with attention mechanism show better
prediction performance; (2) Compared with the MSE loss function, sudden changes in
PM2.5 concentration can be better predicted when using the DILATE loss function; (3) The
target series of the central site is also affected by exogenous series of other sites.

In our future work: (1) More factors should be considered, such as the sudden emission
of air pollutants in the factory, so the law of PM2.5 concentration change can be better
studied and the sudden change of PM2.5 concentration can be accurately predicted; (2) The
LSTM structure is used as one of the basic units in the attention module of the model, and
other RNN structures can be tried; (3) In order to verify the universality of the proposed
model, the monitoring sites’ data of other cities should be used for experiments.
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