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Abstract: The structural deformed shape (SDS) is considered an important factor for evaluating
structural conditions owing to its direct relationship with structural stiffness. Recently, an SDS
estimation method based on displacement data from a limited number of data points was developed.
Although the method showed good performance with a sufficient number of measured data points,
application of the SDS estimation method for on-site structures has been quite limited because
collecting sufficient displacement data measured from a Global Navigation Satellite System (GNSS)
can be quite expensive. Thus, the development of an affordable SDS estimation method with a
certain level of accuracy is essential for field application of the SDS estimation technique. This paper
proposes an improved SDS estimation method using displacement data combined with additional
slope and strain data that can improve the accuracy of the SDS estimation method and reduce the
required number of GNSSs. The estimation algorithm was established based on shape superposition
with various combined response data (displacement, slope, and strain) and the least-squares method.
The proposed SDS estimation method was verified using a finite element method model. In the
validation process, three important issues that may affect the estimation accuracy were analyzed:
effect of shape function type, sensor placement method, and effectiveness of using multi-response
data. Then, the improved SDS estimation method developed in this study was compared with
existing SDS estimation methods from the literature. Consequently, it was found that the proposed
method can reduce the number of displacement data required to estimate rational SDS by using
additional slope and strain data. It is expected that cost-effective structural health monitoring (SHM)
can be established using the proposed estimation method.

Keywords: SHM; estimation method; SDS; multi-response data

1. Introduction

As bridges across the world continue aging, structural health monitoring (SHM)
systems are being established and operated in many developed countries [1–5]. In an SHM
system, measurement data such as displacement, strain, acceleration, slope, temperature,
and wind speed measured by each sensor are collected and managed. These measurement
data can be used directly and indirectly to evaluate the conditions of a bridge. However, the
use of measurement data remains ineffective because of the low development level of the
utilization method for practical purposes. Therefore, a method for utilizing measurement
data must be developed for the effective management of bridges.

For the SHM of infrastructures, various structural responses, such as displacement,
slope, and strain, are generated by an external load. Among them, displacement can
be considered as one of the representative responses and can be used to evaluate the
integrity of a bridge. It has been used for integrity evaluation by comparing it with the
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deflection limit determined through various methods such as numerical analysis and load
testing. Linear variable differential transformers (LVDTs) and laser Doppler vibrometers
(LDVs) are frequently used to measure displacement, but they have limitations, such as the
requirement of additional fixed reference points and sensitivity to the surrounding climate.
To overcome these limitations, various studies have been conducted to indirectly estimate
displacement using strain, slope, and acceleration data.

Acceleration in the response of the structure has been widely used in the study of
dynamic displacement estimation, owing to its low price and convenience. Park et al.
estimated the displacement through the double integration of acceleration [6]. To use the
double integration method, the initial conditions of displacement and velocity should be
considered. Displacement was estimated through iterative calculations, assuming that the
initial displacement and average velocity were zero. On the other hand, Lee et al. proposed
a method for estimating displacement without initial conditions in a way that minimizes
the least-squares error between the assumed acceleration and measured acceleration [7].
The assumed acceleration is expressed as the central finite difference of displacement. The
estimation method proposed in [7] was extended to increase the estimation accuracy and
combine it with measurement data for other responses [8–10]. However, because the spatial
parameter is not included in the acceleration response, there is a limitation in that only the
displacement where the sensor is installed can be estimated.

Using the slope and strain data, which include spatial parameters, can overcome this
limitation. Hou et al. estimated displacement based on the shape superposition method
using slope data [11]. The shape function consisted of the power series and coefficient
for the boundary condition, and the weight factors for each shape function were derived
using the least-squares method. The estimation method of displacement using strain data
was first proposed by [12] based on modal mapping. Modal mapping using the mode
shape as a shape function is based on the superposition method. Shin et al. applied a
theoretical mode shape composed of sine functions [13] for general use of the estimation
method proposed by [12], and its effectiveness was verified by empirical experiments on
various structures. Subsequently, a study using mode shape, derived by frequency analysis
of an finite element method (FEM) model, was conducted to improve the accuracy of the
estimated displacement [10]. It was mentioned that the mode shape derived from the FEM
model was more useful than the theoretical model shape for estimating displacement. In
addition, the modal mapping proposed by [12] was used as a basic method in various
studies for estimating displacement [14–19].

To overcome the limitations of conventional displacement sensors, various studies
have been conducted to indirectly estimate the displacement using other response mea-
surement data. However, these studies only focused on the estimation of the displacement
at a certain point. The structural deformed shape (SDS), including the global displace-
ment of a structure, is more useful for evaluating structural conditions compared to the
displacement at a certain point because it can be used as a displacement load to evaluate
the internal force of the structure through inverse analysis. Recently, as Global Navigation
Satellite Systems (GNSSs), which can compensate for the shortcomings of conventional
displacement sensors, have been developed, studies on estimating SDS using displacement
data have been conducted [20,21].

Choi et al. estimated the SDS based on the shape superposition and least-squares
method in the same way as in previous studies, but a structural shape was applied as a
shape function instead of a mode shape [20,21]. Although the mode shape derived by
frequency analysis is the dynamic response including mass and stiffness properties of the
structure, mode shape does not represent deformed shape by loading. Alternatively, the
structural shape based on the structural stiffness is derived by static analysis applying a
unit load to each node of the FEM model. The effectiveness of the estimation algorithm
was verified using an FEM model (beam, truss, and beam + truss). Although the method
showed good performance with a sufficient number of measured data points, application of
the SDS estimation method for on-site structures has been quite limited because collecting



Appl. Sci. 2021, 11, 4000 3 of 32

sufficient displacement data measured from a GNSS can be quite expensive. Thus, the
development of an affordable SDS estimation method that can reduce the required number
of GNSS is essential for the cost-effective field application of the SDS estimation technique.

Therefore, in this study, SDS estimation method using only displacement data devel-
oped by Choi et al. [20] was extended to use multi-response (displacement, slope, and
strain) data in combination. The addition of slope and strain data can reduce the required
number of GNSS and cost for estimating rational SDS, because slope and strain sensors
are generally cheaper than GNSS. An estimation algorithm was developed based on shape
superposition with various combined response data (displacement, slope, and strain) and
the least-squares method, and the structural shape was used as a shape function. The
proposed SDS estimation method was verified using an FEM model (beam, truss).

Additionally, three important issues that may affect the estimation accuracy were also
reviewed during the verification process: first, comparison of shape function type (mode
shape vs. structural shape); second, the placement method of the multi-response sensor;
and third, the effectiveness of using multi-response data for SDS estimation. Comparisons
of methodology between this study and the literature are listed in Table 1. The effective-
ness of the estimation algorithm was verified by comparing it with the existing method
presented in [20]. As a result of the comparison, the proposed method can reduce the
number of displacement data required to estimate rational SDS by using additional slope
and strain data. It is expected that cost-effective structural health monitoring (SHM) can be
established using the proposed estimation method.

Table 1. Comparison of methodologies between this study and previous studies.

Classification [7] [12] [11] [20,21] This Study

Used response
data Acceleration Strain Slope Displacement

Displacement
Slope
Strain

Estimated
response

Displacement at a
point where the

sensor is installed

Displacement at a
certain point

Displacement at a
certain point

Structural
deformed shape

Structural
deformed shape

Estimation method Least-square
Shape

Superposition
/Least-square

Shape
Superposition
/Least-square

Shape
Superposition
/Least-square

Shape
Superposition
/Least-square

Shape function - Mode shape Power series Structural shape Structural shape

Sensor placement
method - - - - EI-DPR-distance

method

2. Estimation Algorithm

A modal approach that does not include integration and differentiation processes
is mainly used to estimate SDS. The modal approach, based on the shape superposition
method, is a theory that has been used in various fields for the mechanical analysis of
structures, and [12] first applied it to the estimation of SDS. Choi et al. defined the re-
lationship between displacement and strain using a modal approach and developed an
algorithm that can estimate displacement using strain data [20]. In addition, an estimation
algorithm based on the shape-superposition method using displacement data was devel-
oped. In this study, the estimation algorithm proposed by [20] was extended based on [12]
to additionally utilize slope and strain data.

In a linear problem, each response of the structure can be expressed as the product
of the shape function Φ and weight factor α based on the shape superposition, as shown
in Equations (1)–(3). The weight factors for displacement u, slope θ, and strain ε are the
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same because the slope and strain are the first and second derivatives of displacement,
respectively. This is the basic idea of an estimation algorithm that uses multi-response data.

{u} = [Φu]{α} (1)

{θ} = [Φθ ]{α} (2)

{ε} = [Φε]{α}. (3)

The composition system and analysis process of the estimation algorithm developed
in this study are presented in Figure 1. The estimation process of the deformed shape
consists of three steps: structure shape function composition (step 1), measurement of data
(step 2), and deformed shape estimation (step 3). In step 1, an arbitrary superposed shape
matrix (ADS) is constructed by using a shape function matrix Φ that consists of a structural
shape or mode shape and weight factor. In step 2, a measurement data matrix MD is
formed by combining the measurement data of displacement, slope, and strain. In step 3,
the error function E is constructed by combining ADS and MD, and the weight factor that
can minimize E is calculated using the least-squares method. Finally, the deformed shape
can be estimated by applying the weight factor calculated in Equation (1).
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Figure 1. Analysis procedure of estimation algorithm for deformed shape.

2.1. Step 1: Structural Shape Function Composition

In this step, a system model for the target structure is constructed to derive the shape
function. The mode shape function (MSF) derived by frequency analysis and a structural
shape function (SSF) derived by static analysis applying a unit load on each node of the
system model can be used as a shape function. Due to the fact that most structures are
designed to operate within a linear range considering usability, the SSF is derived from a
linear system model. The ith shape functions Φi,u, Φi,θ , and Φi,ε for displacement, slope,
and strain are represented by Equations (4)–(6), respectively. Finally, the ith structural
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shape function Φi is derived by combining the shape function for each response, as shown
in Equation (7).

Φi,u
T =

[
ui1 ui2 ui3 ui4 · · · uiNdo f ,u

]
(4)

Φi,θ
T =

[
θi1 θi2 θi3 θi4 · · · θiNdo f ,θ

]
(5)

Φi,ε
T =

[
εi1 εi2 εi3 εi4 · · · εiNdo f ,ε

]
(6)

Φi =

 Φi,u
Φi,θ
Φi,ε

(Ndo f × 1
)

(7)

where Ndo f = Ndo f ,u + Ndo f ,θ + Ndo f ,ε is the number of degrees of freedom; Ndo f ,u,
Ndo f ,θ , and Ndo f ,ε are the numbers of degrees of freedom for each response, respectively;
and uiNdo f ,u , θiNdo f ,θ

, and εiNdo f ,ε
are the ith displacement, slope, and strain at each degree of

freedom, respectively.
An arbitrarily deformed ÃDS, as shown in Equation (8), is defined as a superposed

shape function multiplied by the weight factor for each shape function. Ns f is the number
of shape functions considered for the deformed shape estimation. Equation (8) can be
transformed into the matrix form shown in Equation (9).

ÃDS = α1Φ1 + α2Φ2 + α3Φ3 + · · ·+ αNs f ΦNs f =

Ns f

∑
i=1

αiΦi (8)

ÃDS =
[
Φ1 Φ2 Φ3 · · · ΦNs f

]


α1
α2
α3
...

αNs f


(

Ndo f × 1
)

. (9)

2.2. Step 2: Measurement Data

In this step, the measured data matrices for each response MDω, MD∅, and MDε, as
shown in Equations (10)–(12), are constructed by using on-site measured displacement data
ω, slope data ∅, and strain data ε, respectively. Owing to the limitation of the measured
point number, each response data can be obtained only at finite points. Nmd,ω, Nmd,∅, and
Nmd,ε represent the number of measured data for each response, respectively. The total
measured data matrix MD, as shown in Equation (13), is an Nmd × 1 matrix that can be
derived by combining the measured data for each response. The total number of measured
data Nmd is the sum of Nmd,ω, Nmd,∅, and Nmd,ε.

MDω
T =

[
ω1 ω2 ω3 ω4 · · · ωNmd,ω

]
(10)

MD∅
T =

[
∅1 ∅2 ∅3 ∅4 · · · ωNmd,∅

]
(11)

MDε
T =

[
ε1 ε2 ε3 ε4 · · · ωNmd,ε

]
(12)

MD =


MDω

MD∅
MDε

(Nmd × 1). (13)

2.3. Step 3: Deformed Shape Estimation

The weight factor required to estimate SDS can be calculated using MD and ÃDS.
Owing to the different MD matrix sizes of MD in Equation (13) and the ÃDS in Equation
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(9), it is necessary to adjust the matrix size of the ÃDS to construct an error function. To
adjust the matrix size, ÃDS is converted to ADS by removing the row, excluding the data
measurement point for each response. The least-squares method is adopted to calculate
the weight factor that can minimize the error between ADS and MD, and the calculation
process is shown in Equations (14)–(16). The error function E is constructed as the sum
of the square errors between ADS and MD in Equation (14). To minimize E, the partial
differential equation for the weight factor should be zero, as shown in Equation (15).
Then, Equation (16) can be derived by substituting Equation (8) into Equation (15) and
transformed into a matrix form as shown in Equation (17).

E =
Nmd

∑
j=1

(
MDj − ADSj

)2 (14)

∂E
∂αk

= 2
Nmd

∑
j=1

[(
MDj − ADSj

)(∂MDj

∂αk
−

∂ADSj

∂αk

)]
= 0 where k = 1, 2, · · · , Ns f (15)

∂E
∂αk

=
Nmd

∑
j=1

Ns f

∑
i=1

αiΦij

(Φkj

) =
Nmd

∑
j=1

[(
MDj

)(
Φkj

)]
where k = 1, 2, · · · , Ns f (16)

[Φ]TNmd×Ns f
[Φ]Nmd×Ns f

{α}Ns f×1 = [Φ]TNmd×Ns f
{MD}Nmd×1. (17)

The weight factor that minimizes the square error between ADS and MD can be
calculated from Equation (17). Foss and Haugse used MSF and proposed the calculation
of the weight factor using the inverse matrix of the [Φ]T [Φ] term [12]. However, if the
number of shape functions is larger than the number of measured data, then the inverse
matrix cannot be derived because [Φ]T [Φ] becomes a rank-deficient matrix. In general, the
amount of data that can be measured on a structure is limited owing to the cost. In the
case of using MSF, the inverse matrix can be adopted because a small number of shape
functions are used.

When using the SSF derived by applying a unit load to each node of the FEM model,
a different method is required to calculate the weight factor. To solve this problem, in this
case, the singular value decomposition (SVD) method [22] was adopted to calculate the
weight factor. The rank-deficient linear algebra problem can be solved reliably by using the
SVD method. Finally, the estimated deformed shape (EDS) can be obtained by substituting
the calculated weight factor into the displacement part of Equation (9).

3. Validation Issues and FEM Model
3.1. Validation Process and Issues

The FEM model (beam and truss) was used to verify the developed algorithm, and the
validation flow is shown in Figure 2. A real deformed shape (RDS) is assumed by applying
various static load conditions to the FEM model, and the MD matrix is constructed from
the displacement, slope, and strain values at a specific location in the RDS. Due to the fact
that the data measured from the on-site structure include measurement errors, differences
from the FEM model may occur. However, because the algorithm proposed in this paper is
developed by extending the existing algorithm already verified in various studies, and the
objective of this study was to validate the algorithm, measurement errors that occur in the
field were not considered here.

As multi-response data are used in the developed algorithm, the following three
issues are analyzed and reviewed to derive appropriate estimation results: shape function
type, sensor placement method, and EDS by multi-response data. First, an appropriate
shape function type should be selected to properly estimate the deformed shape. The MSF
derived from the frequency analysis and SSF derived from the static analysis can be used
as a shape function. An appropriate shape function is selected by comparing the estimation
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results of MSF and SSF through the data at an arbitrarily selected position. Second, when
multi-response measurement data are used for shape estimation, interference between the
data may affect the estimation results. Various methods for optimal sensor placement (OSP)
have been proposed, but most of them consider only the data of one response. To solve
this issue, a new sensor placement method is proposed in this study, and the estimation
results of various sensor placement methods were compared. Third, the effectiveness of the
algorithm developed in this study was verified by comparing the estimation error through
multi-response data and that using only displacement data.
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The mean absolute percent error (MAPE) and mutual correspondence criterion (MCC)
are usually used as indices to indicate the error of the estimated deformed shape. However,
MAPE is sensitive to small values and insensitive to large values, whereas MCC is sensitive
to large values and insensitive to small values. Therefore, in this study, normalized MAPE
(NMAPE) was used as the error index to analyze the absolute estimation error between
RDS and EDS.

NMAPE(%) =
100

Ndo f ,u

Ndo f ,u

∑
i=1

|RDSi − EDSi|
|RDS|max

. (18)

3.2. Numerical Model for Verification

To verify the developed algorithm, a beam model with a relatively simple geometric
shape and a truss model with a complex geometric shape were selected as the numerical
analysis models. The beam model in Figure 3, a four-span structure with a total length of
75 m, is composed of 61 nodes and 60 elements. The truss model in Figure 4, a two-span
structure with a total length of 120 m, consists of 24 nodes and 55 elements. In addition,
in order to analyze the estimation results of various deformed shapes that can occur
according to the load conditions, four load conditions are considered as RDS1–4 in each
numerical analysis model, as shown in Figures 5 and 6. Each load condition is configured by
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combining concentrated loads P1 and P2 of different magnitude and uniformly distributed
loads. The magnitude of the uniformly distributed load is determined by dividing P1 and
P2 by the number of nodes where the uniformly distributed load is applied. The number in
parentheses indicates the number of the node to which the load is applied.
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4. Validation of Results
4.1. Effect of Shape Function Type

As previously mentioned, the shape function type can affect the accuracy of the
estimation results. An MSF derived by frequency analysis and SSF derived by static
analysis can be used as a shape function. In the case of the MSF used by [12], because
global deformation is included in one mode shape, an appropriate estimation accuracy can
be obtained through several low-order mode shapes. However, because the mode shape is
not deformed owing to the load, the estimation result is sensitive to the number of used
MSFs. In addition, the minimum number of sensors should be the same as the number
of MSFs to derive the inverse matrix. Therefore, the lowest value of the errors estimated
by using all the number of MSFs smaller than the number of sensors is considered as the
estimation result of the deformed shape.

In the case of the SSF used in [20], because only local deformation near the point
where the unit load is applied is included in one structural shape, all SSFs should be used
to secure the estimation accuracy for various load conditions. In addition, [20] noted that
the estimation accuracy converges to a certain value as the number of SSFs used increases.
Therefore, the estimation results obtained using the SSF are represented in terms of an error
value estimated by using all shape functions to ensure uniform accuracy.

4.1.1. Beam Model

Figures 7 and 8 show examples of the MSF and SSF for the four-span beam model.
The total number of used MSFs is six, and the total number of used SSFs is 56. The SSF is
derived by applying a unit load on all nodes except the boundary points. The response data
of displacement, slope, and strain were used individually to analyze the effect of the shape
function type on the estimation result for each response. The number of response data is 1–6
for the displacement and slope, and 1–5 for the slope. In addition, the sensor location, as
shown in Table 2, is arbitrarily selected as the point at which the largest response can occur.
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Table 2. Sensor location in the FEM model used for estimation (beam).

Measured Data
Number of Measured Data (Nmd)

1 2 3 4 5 6

Displacement (Node) 8 54 23 39 11 51
Slope (Node) 1 61 31 16 46 -

Strain (Element) 8 54 23 38 16 45

The estimation error for EDS of RDS1–4 using each response data is shown in Figure 9.
However, because the trend of the results according to MSF and SSF does not appear
clearly, the number of sensors required to estimate the deformed shape within a 5% error is
additionally shown in Figure 10. In Figure 10, the transparent bar indicates that more than
six sensors are required to secure an NMAPE within 5%. In the case of using displacement



Appl. Sci. 2021, 11, 4000 11 of 32

data, there is a difference in the accuracy trend according to the number of sensors, but
the overall results show that SSF is more useful for RDS1, RDS3, and RDS4. When slope
data were used, the estimation results corresponding to the MSF were found to be more
accurate for all RDSs except RDS3. In Figures 9c and 10c, which represent the estimation
results obtained using strain data, the SSF is generally useful for all RDSs except RDS2. As
a result of the deformed shape estimation according to the shape function type for the beam
model, the specific shape function type is not always useful for estimation. However, when
MSF is used, an additional process for calculating the optimal number of MSFs is required
to ensure an appropriate estimation accuracy, because the high-order mode shapes are
considerably different from the deformed shape that can be caused by the load. Therefore,
the SSF is more useful for estimating the deformed shape of the beam model in general
owing to its convenience of use.
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4.1.2. Truss Model

Examples of MSF and SSF for the two-span truss model are shown in Figures 11 and 12,
respectively. The total number of used MSFs is six, and the total number of used SSFs is 21.
The SSF is derived by applying a unit load in the vertical direction to all nodes except the
boundary points. In the same way as the beam model, the displacement, slope, and strain
are used as response data. The number of data points is 1–6 for all responses. In addition,
the sensor location, as shown in Table 3, is arbitrarily selected as the point at which the
largest response can occur.
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For all RDSs, the NMAPE of the deformed shape estimated using the response data is
shown in Figure 13, and the number of sensors required to secure NMAPE within 5% is
shown in Figure 14. In contrast to the beam model, for the truss model, which has a complex
geometric shape, the overall estimation results obtained using the SSF are more accurate
than those obtained using the MSF. If the geometric shape of the numerical analysis model
is complex, then the deformed shape generated by the load cannot be sufficiently expressed
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by the combination of MSF. In addition, it takes considerable time to analyze and select the
optimal number of MSFs for each estimation case. Therefore, the SSF is used to analyze the
sensor placement method and the effectiveness of using multi-response data.

Table 3. Sensor location in the FEM model used for estimation (truss).

Measured Data
Number of Measured Data (Nmd)

1 2 3 4 5 6

Displacement (Node) 4 10 16 22 3 11
Slope (Element) 1 12 6 7 13 22
Strain (Element) 3 10 15 20 5 8
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4.2. Sensor Placement Method
4.2.1. Methods of Sensor Placement

To ensure the accuracy of the deformed shape estimation, the response data should be
measured at an appropriate location. Research on the OSP method must been conducted
in various fields before the need for SHM can be recognized. Representatively, [23] applied
six different OSP methods to estimate the deformed shape of a suspension bridge and
compared the estimation results. The OSP methods used for comparison were effective in-
dependence (EI), EI-driving point residue (EI-DPR), kinetic energy method (KEM), variance
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method (VM), eigenvalue vector product (EVP), and nonoptimal driving point (NODP). As
a result of comparisons, the estimation results obtained based on EI-DPR showed the best
performance. The EI-DPR method has been used in various studies on sensor placement
methods [24,25]. Therefore, in this study, a sensor placement method for deformed shape
estimation using SSF and multi-response data was analyzed based on the EI method.

The EI sensor placement method [26] was developed to maximize both the spatial
independence and signal strength of the shape function by maximizing the determinant
of the associated Fisher information matrix. To maximize the determinant of the Fisher
information matrix, the effective independence distribution (EID) ED is derived as a
diagonal of Equation (19). The ith component of ED, described in Equation (20), indicates
the fractional contribution to the shape function at the ith sensor location. A sensor location
noted as the lowest index of ED is eliminated from the candidate locations, and this
procedure is repeated until the remaining number of candidate locations is the same as the
determined number of sensors.

[E] = [Φ]
(
[Φ]T [Φ]

)−1
[Φ]T (19)

EDi = diagonal([E])i. (20)

Papadopoulos and Garcia proposed a driving point residue (DPR) coefficient to
overcome the limitations of the EI method, which allows the selection of sensor locations
associated with low energy content [27]. The DPR coefficient, as described in Equation (21),
is a weight factor that considers the modal contribution at each sensing location. The jth
modal frequency ωj is applied to consider a higher weight factor for the higher-order mode.
Then, ED from Equation (20) can be transformed into Equation (22) by multiplying it by
the DPR coefficient. EI-DPR is a method that concentrates sensor positions in high-energy-
content regions.

DPRi =

Ns f

∑
j=1

Φ2
ij

ωj
(MSF) (21)

EDi = diagonal([E])i × DPRi. (22)

Although the EI and EI-DPR methods have been verified by various researchers, there
is a limitation, in that they cannot be applied to an SSF with Ns f > Nmd because of the(
[Φ]T [Φ]

)−1
term in Equation (19). In addition, when using various response data, the

contribution of overlapping and interference affects the relationship between response
data. Therefore, in this paper, the DPR coefficient for the SSF and distance coefficient d
are proposed as Equations (23) and (24) to estimate the deformed shape using the SSF.
To derive the DPR coefficient for SSF, the maximum value of the absolute jth shape function∣∣Φj
∣∣
max is used instead of ωj. The distance coefficient di is the minimum value among the

distances from the ith candidate location to each sensor location previously selected.
The sensor locations previously selected contain locations that have a constant certain

response value, such as the boundary for displacement. ED, proposed in this study, was
calculated using Equation (24) by multiplying the distance coefficient using Equation (22).
The sensor location, which has the highest value of ED, was selected, and the distance
coefficient was recalculated containing the sensor location recently selected. This procedure
was repeated until the selected number of sensors for each response was the same as the
planned number of sensors. Using the ED proposed in this study, the limitations of the EI
and EI-DPR methods and problems that may occur when using multi-response data can
be overcome.

DPRi =

Ns f

∑
j=1

Φ2
ij∣∣Φj
∣∣
max

(LSF) (23)

EDi = diagonal([E])i × DPRi × di. (24)
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4.2.2. Comparison of Results

As previously mentioned, the estimation results obtained using the SSF are generally
more accurate than those obtained using the MSF. Therefore, in this study, the EI-DPR-
distance method that can be applied to SSFs with Ns f > Nmd is proposed and compared
with the EI and EI-DPR methods. Due to the fact that the EI and EI-DPR methods cannot
be applied when all SSFs are used, the SSFs that included the maximum value for each
response, which correspond to the number of sensors, were selected and applied.

A truss model with a relatively complex geometric shape was used for comparison of
the sensor placement method, and slope only (case 1) and strain with one displacement
(case 2) were considered for the sensor combination. In case 2, the position of the displace-
ment sensor was fixed at the 22th node in Figure 4a. The positions of the sensors selected
by each sensor placement method are shown in Tables 4 and 5, and the selection procedure
of sensor locations for case 2 is shown in Figure 15. In Figure 15, the normalized ED was
used to compare the ED value of each sensor placement method under the same conditions.

Table 4. Sensor location in the FEM model used for estimation (Case 1: slope only).

Optimization Method Number of Slope Measured Data (Nmd)

1 2 3 4 5 6

EI 1 12 14 10 21 3
EI-DPR 1 12 13 11 22 2

EI-DPR-distance 1 12 17 7 18 6

Table 5. Sensor location in the FEM model used for estimation (Case 2: strain with one displacement).

Optimization Method Number of Strain Measured Data (Nmd)

1 2 3 4 5 6

EI 46 36 32 3 42 10
EI-DPR 23 34 55 3 44 10

EI-DPR-distance 23 39 55 4 14 10

In the EI and EI-DPR methods, the nodes with the smallest ED are removed one by one
for each iteration until the number of remaining nodes is the same as the number of sensors.
In addition, the influence of the previously selected displacement sensor is not considered
in the EI and EI-DPR methods. By contrast, in the EI-DPR-distance method proposed in
this study, the node with the highest ED is selected as the sensor location for each iteration,
and the location of the next sensor is determined by recalculating the distance coefficient
considering the recently selected sensor. Therefore, the EI-DPR-distance method is a more
effective sensor placement method when using multi-response data because the influence
of different response sensors previously selected can be considered.

For cases 1 and 2, the shape estimation results according to the number of sensors are
shown in Figures 16 and 17, respectively. Case 2, which additionally used one displacement
data, generally showed more accurate results for all RDSs except RDS1. In case 1, the
estimation error corresponding to the EI-DPR-distance method was the lowest for RDS4,
and the estimation errors corresponding to all sensor placement methods were similar for
RDS1–3. In case 2, the estimation errors corresponding to EI-DPR and EI-DPR-distance for
all RDS were similar, but the estimation errors for EI depended on the RDS and number
of sensors. In particular, for RDS2 and RDS3, the estimation errors increased despite the
increase in the number of sensors. This phenomenon occurred for RDS4 in Case 1, even
when EI-DPR was used.
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As a result of reviewing the EDS of the case that included the error increase phe-
nomenon, it was found that this occurred as the error of the estimated shape at a location
far from the sensors increased, owing to the interference of sensors at a nearby location. The
EI-DPR-distance method can minimize the interference effect by considering the distance
between the sensors. In addition, according to the required number of sensors to estimate
the deformed shape within a 5% error in Figure 18, it can be seen that the EI-DPR-distance
method showed generally better performance than other sensor placement methods. There-
fore, the EI-DPR-distance method was adopted as a sensor placement method to verify the
effectiveness of using multi-response data.

4.3. Effectiveness of Using Multi-Response Data

In this study, the shape function type and sensor placement method were analyzed
before validating the use of multi-response data. As a result of the comparison of the shape
function type, the SSF was found to be more useful than the MSF for the truss model,
which has a relatively complex geometric shape. In addition, the EI-DPR-distance method
is proposed using the SSF, where the number of shape functions is larger than the number
of sensors. The EI-DPR-distance method can minimize the interference effect between
different types of sensors by using the distance coefficient. As a result of the comparison
of the sensor placement method, the estimation results corresponding to EI-DPR-distance
were generally better than those obtained by the EI and EI-DPR methods.

Therefore, the effectiveness of using multi-response data for RDS1–4 was verified
using the SSF and EI-DPR-distance methods. For the combination of response data, three
cases were considered: displacement with slope, displacement with strain, and displace-
ment with slope and strain. The estimation results obtained using multi-response were
compared to those obtained using only displacement to verify the effectiveness. Using
only displacement data is the estimation method proposed by Choi et al. [20]. In addition,
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the total number of considered data points for each response was six. The position of
the displacement sensors is first determined by considering the position of the boundary
condition, and the slope sensors are placed according to the position of the displacement
sensors. The strain sensors are finally placed considering the position of the displacement
and slope sensors.
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4.3.1. Beam Model

The multi-response sensors are placed in the order of displacement, slope, and strain
using the EI-DPR-distance method. Due to the fact that there are too many combinations
of sensor locations, the sensor locations for the case of using only two-response sensors
are shown in Tables 6 and 7. For the beam mode, the slope and strain data are derived
from the node and element, respectively. Examples of EDSs based on the combinations of
sensors are shown in Figure 19. The red, blue, and green circles indicate the displacement,
slope, and strain, respectively. As shown in Figure 19, the estimation accuracy using slope
and strain data was more accurate than that using only displacement data.

Table 6. Sensor location in the FEM model used for estimation (slope with displacement)—beam.

Displacement (Node) Number of Slope Data (Node)

Number of Data [20] ∅1 ∅2 ∅3 ∅4 ∅5 ∅6

ω1 8 61 31 1 1 1 1
ω2 24 31 1 61 61 61 61
ω3 23 46 61 45 31 31 31
ω4 39 1 17 33 16 46 17
ω5 11 17 45 16 46 17 45
ω6 51 13 13 28 4 14 48

Table 7. Sensor location in the FEM model used for estimation (strain with displacement)—beam.

Displacement (Node) Number of Strain Data (Element)

Number of Data [20] ε1 ε2 ε3 ε4 ε5 ε6

ω1 8 54 24 38 30 30 30
ω2 24 37 39 30 15 46 16
ω3 23 22 16 45 46 16 45
ω4 39 45 31 15 57 57 57
ω5 11 30 46 57 4 4 4
ω6 51 15 20 4 11 50 35

The estimation errors for each RDS according to the combination of response data are
shown in Figures 20–23. The maximum estimation errors were 16.99% for RDS1, 19.89%
for RDS2, 24.95% for RDS3, and 27.53% for RDS4. For all RDS, the estimation errors
were reduced according to the additional number of slope and strain data. In addition,
estimation accuracies using the slope and strain data were more improved than those
using the slope and slope data, respectively. Particularly in RDS3, the estimation error was
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reduced by approximately 20%, with only one additional data point because the second
sensor was properly placed in a location where the deformed shape could not be captured
through the first sensor.
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Figure 20. NMAPE according to the number and combination of sensors (RDS1): (a) displacement +
slope, (b) displacement + strain, (c) displacement + slope + strain.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 34 
 

 

(b) 

 
(c) 

Figure 20. NMAPE according to the number and combination of sensors (RDS1): (a) displacement 
+ slope, (b) displacement + strain, (c) displacement + slope + strain. 

 
(a) 

 
(b) 

Figure 21. Cont.



Appl. Sci. 2021, 11, 4000 24 of 32
Appl. Sci. 2021, 11, x FOR PEER REVIEW 26 of 34 
 

 
(c) 

Figure 21. NMAPE according to the number and combination of sensors (RDS2): (a) displacement 
+ slope, (b) displacement + strain, (c) displacement + slope + strain. 

 
(a) 

 
(b) 

 
(c) 

Figure 22. NMAPE according to the number and combination of sensors (RDS3): (a) displacement 
+ slope, (b) displacement + strain, (c) displacement + slope + strain. 

Figure 21. NMAPE according to the number and combination of sensors (RDS2): (a) displacement +
slope, (b) displacement + strain, (c) displacement + slope + strain.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 26 of 34 
 

 
(c) 

Figure 21. NMAPE according to the number and combination of sensors (RDS2): (a) displacement 
+ slope, (b) displacement + strain, (c) displacement + slope + strain. 

 
(a) 

 
(b) 

 
(c) 

Figure 22. NMAPE according to the number and combination of sensors (RDS3): (a) displacement 
+ slope, (b) displacement + strain, (c) displacement + slope + strain. 
Figure 22. NMAPE according to the number and combination of sensors (RDS3): (a) displacement +
slope, (b) displacement + strain, (c) displacement + slope + strain.



Appl. Sci. 2021, 11, 4000 25 of 32Appl. Sci. 2021, 11, x FOR PEER REVIEW 27 of 34 
 

 
(a) 

 
(b) 

 
(c) 

Figure 23. NMAPE according to the number and combination of sensors (RDS4): (a) displacement 
+ slope, (b) displacement + strain, (c) displacement + slope + strain. 

  
(a) (b) 

Figure 23. NMAPE according to the number and combination of sensors (RDS4): (a) displacement + slope,
(b) displacement + strain, (c) displacement + slope + strain.
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Figure 24. Mean NMAPE for displacement by additional response data: (a) RDS1, (b) RDS2, (c) RDS3,
(d) RDS4.

The average errors for the displacement data number are presented in Figure 22 to
evaluate the effect of using multi-response data more clearly. For all RDS, the trend of
improving accuracy owing to the additional slope and strain data can be clearly seen in
Figure 24. In particular, in the case of using slope and strain data together, a reduced level
of estimation error was the highest. Therefore, the algorithm developed in this study can be
utilized to efficiently estimate the deformed shape of the beam model by comprehensively
using data on the slope, strain, and displacement.

4.3.2. Truss Model

In the same way as for the beam model, the locations of displacement, slope, and
strain sensors are determined using the EI-DPR-distance method. The sensor arrangements
for the two-response case are presented in Tables 8 and 9. For the truss model, both
the slope and strain data were derived from the element. Examples of deformed shapes
estimated using various combinations of sensors are shown in Figure 25. The red, blue, and
green circles indicate the displacement, slope, and strain, respectively. As a result of the
estimation, the accuracies of the truss model are improved by using slope and strain data.

The estimation errors for each RDS according to the combination of response data
are shown in Figures 26–29. The maximum estimation error was 3.75% for RDS1, 5.07%
for RDS2, 4.23% for RDS3, and 14.19% for RDS4. For all RDS, when slope and strain data
were considered in addition to the displacement data, the tendency of the error reduction
according to the additional number of data was the same as that of the beam model.
However, because the truss model has a lower number of spans than the beam model, the
deformed shape that can occur is not diverse. Therefore, the estimation errors for the truss
model are generally fewer than those for the beam model.

Table 8. Sensor location in the FEM model used for estimation (slope with displacement)—truss.

Displacement (Node) Number of Slope Data (Element)

Number of Data [20] ∅1 ∅2 ∅3 ∅4 ∅5 ∅6

ω1 22 1 12 6 18 17 7
ω2 16 1 12 7 17 18 6
ω3 11 1 7 12 17 18 6
ω4 3 7 1 12 17 18 6
ω5 5 1 12 18 6 17 7
ω6 9 1 12 17 7 18 6
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Table 9. Sensor location in the FEM model used for estimation (strain with displacement)—truss.

Displacement (Node) Number of Strain Data (Element)

Number of Data [20] ε1 ε2 ε3 ε4 ε5 ε6

ω1 22 23 39 55 4 14 10
ω2 16 39 23 55 3 10 9
ω3 11 39 23 55 3 9 4
ω4 3 39 23 55 9 4 13
ω5 5 39 23 55 9 13 22
ω6 9 39 23 55 13 22 49

For RDS1–3, where the deformed shape could be estimated with an error of less
than approximately 5% using only one displacement data, the effect of reducing the error
by adding slope and strain data did not appear to be significant. By contrast, for RDS4
with a large maximum error, additional slope and strain data significantly affected the
improvement of the estimation accuracy. That is, when a sufficient number of displacement
sensors to satisfy the target error are already installed, the effect of the addition of the slope
and strain sensors may be small.

The average errors for the displacement data number are presented in Figure 30 to
more clearly evaluate the effect of using multi-response data. As with the beam model, the
estimation error tended to be reduced as the additional number of slope and strain data
increased for all RDS. In particular, the deformed shape could be more effectively estimated
by adding the slope and strain data together. Therefore, the developed algorithm using
multi-response data is also effective for estimating the deformed shape of the truss model.
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5. Conclusions

In this study, an algorithm that can estimate SDS using displacement data combined
with an additional slope and strain data was proposed, and its effectiveness was verified
using an FEM model. In the validation process, three issues that can affect the estimation
results were analyzed. The main findings derived from the validation process are as follows.

• Comparison of results by MSF and SSF has shown that SSF is more useful for estimat-
ing structural deformed shape. In addition, EI-DPR-distance, the sensor placement
method proposed in this study, can minimize the interference effect between adjacent
sensors and estimate the deformed shape with more stable accuracy than the EI and
EI-DPR methods.

• Finally, an estimation algorithm using multi-response data has shown better per-
formance compared with previous work. The addition of slope and strain data can
improve estimation accuracy or reduce required displacement data to estimate rational
SDS. Therefore, it is expected that cost-effective SHM can be established using the
proposed estimation method.

• However, the target model verified in this study is limited to the 2D FEM model.
Verification with a 3D FEM model, including transverse response and field tests, is
required to be performed as a further study in order to apply the developed algorithm
to the SHM of an actual structure.
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