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Abstract: The in situ block size distribution is an essential characteristic of fractured rock masses
and impacts the assessment of rockfall hazards and other fields of rock mechanics. The block
size distribution can be estimated rather easily for fully persistent fractures, but it is a challenge
to determine this parameter when non-persistent fractures in a rock mass should be considered.
In many approaches, the block size distribution is estimated by assuming that the fractures are
fully persistent, resulting in an underestimation of the block sizes for many fracture geometries.
In addition, the block size distribution is influenced by intact rock bridge failure, especially in
rock masses with non-persistent fractures, either in a short-term perspective during a slope failure
event when the rock mass increasingly disintegrates or in a long-term view when the rock mass
progressively weakens. The quantification of intact rock bridge failure in a rock mass is highly
complex, comprising fracture coalescence and crack growth driven by time-dependent changes of
the in situ stresses due to thermal, freezing-thawing, and pore water pressure fluctuations. This
contribution presents stochastic analyses of the two-dimensional in situ block area distribution
and the mean block area of non-persistent fracture networks. The applied 2D discrete fracture
network approach takes into account the potential failure of intact rock bridges based on a pre-
defined threshold length and relies on input parameters that can be easily measured in the field by
classical discontinuity mapping methods (e.g., scanline mapping). In addition, on the basis of these
discrete fracture network analyses, an empirical relationship was determined between (i) the mean
block area for persistent fractures, (ii) the mean block area for non-persistent fractures, and (iii) the
mean interconnectivity factor. The further adaptation of this 2D approach to 3D block geometries is
discussed on the basis of general considerations. The calculations carried out in this contribution
highlight the large impact of non-persistent fractures and intact rock bridge failure for rock mass
characterization, e.g., rockfall assessment.

Keywords: rockfall; rock mass characterization; in situ block area distribution; discrete fracture
network

1. Introduction

Rockfalls and rock avalanches are natural hazards in mountainous regions. They
can cause severe damage to settlements and infrastructure as well as serious injuries
and fatalities due to their extremely high velocities and runout distances [1]. Rockfalls
are classified as types of rock slope failure characterized by the detachment of single or
clusters of individual rock blocks from a steep slope followed by a rapid down-slope
motion by falling, bouncing, rolling and sliding [2,3]. Fragmental rockfall is related to
the movement of individual fragments which interact with the substrate and thus can be
simulated by physical models based on rigid body ballistics. The dynamic interaction of
individual blocks of a rockfall event is minor and has no relevant impact on the runout
behavior. Rock avalanches are moving in a flow-like manner as masses of fragments
that have a strong dynamic interaction of blocks [1]. Many of these events, particularly
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the large ones, show unexpected long runout distances. From a modelling perspective,
this type of movement requires a completely different mechanical approach, which is
considering the rapid coherent flowing mass by granular flow models (e.g., [4]). By nature,
there is no distinct boundary between rock avalanches and rockfalls, but rather a gradual
transition influenced by the rock type, structural setting, rock fragmentation, substrate
properties, and slope topography of the runout path. Nevertheless, also for rock avalanches,
single or clusters of blocks can separate during motion from the flowing mass resulting in
movements of individual fragments like rockfall events.

Although there is a completely different movement mechanism between these two
types of rock slope failure, both are influenced by geometrical rock mass characteristics
of the discontinuity network, such as orientation and number of sets, frequency and
spacing, size and persistence, and intact rock bridges of the failure area. These parameters
influence one important rock mass parameter termed the in situ block size distribution
(IBSD [5]). Discontinuities intersecting a rock mass are causing separated rock blocks
with sizes ranging from mm3 in crushed rocks to several m3 in massive rocks. The IBSD
influences the size of the runout area and impact energy of the rockfall and rock avalanche
events in case of a failure. Thus, the IBSD in the source area is a crucial rock mass property
for rockfall/rock avalanche hazard assessment comprising both runout modelling and
designing of protective measures [6–10].

Generally, the non-persistence of the fractures increases the percentage of bigger
blocks compared to a discrete fracture network (DFN) with similar fracture set spacings
and orientations but persistent fractures (Figure 1). However, for a rock mass with non-
persistent fractures, intact rock bridge failure between pre-existing fractures can have a
major impact on the IBSD. Fracture coalescence and crack growth driven by time-dependent
changes of the in situ stresses due to thermal, freezing-thawing, and pore water pressure
fluctuations, etc., can lead to the failure of intact rock bridges between the fractures,
provided that the intact rock bridge is small enough [11]. This commonly observed process
usually leads to a decrease of the resulting block sizes of a DFN, the stability of rock slopes
and an increase in hydraulic connectivity, and consequently, conductivity. The impact of
rock bridge failure of non-persistent fractures on the resulting block sizes as well as the
shape of the cumulative block size distribution curve has not been investigated in detail so
far because of the difficulty in assessing various relevant parameters in the field.

Figure 1. Schematic trace maps illustrating the difference between (a) persistent fractures and
(b) non-persistent fractures (black lines), and their impact on the resulting block areas/sizes (colored
areas). Both trace maps are simulated by assuming the same mean 1-D fracture frequency.

This contribution presents stochastic analyses of the two-dimensional in situ block
area distribution and the mean block area of a non-persistent fracture network based
on simulated DFNs. Due to the large amount of time required for the calculations, this
article focuses on two-dimensional fracture networks. Furthermore, the applied 2D DFN
approach takes into account the potential failure of intact rock bridges based on pre-defined
threshold lengths in two dimensions. On the basis of these stochastic DFN analyses, an
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empirical relationship between (a) the mean block area for persistent fractures, (b) the
mean block area for non-persistent fractures, and (c) the interconnectivity factor according
to [12] was determined. These relationships are based on fracture parameters which can be
determined in the field by scanline surveys. The further adaptation of this 2D approach to
3D block geometries is discussed on the basis of an approach proposed by [13,14].

2. Theoretical Background

The IBSD of a natural or man-made fractured rock slope is influenced by (a) the orien-
tation and number of fracture sets, (b) the frequency and spacing, and (c) the persistence
(size) of the fractures. Natural meso-scale fractures (i.e., joints) are often non-persistent and
therefore characterized by finite fracture trace lengths or sizes. According to [5], persistence
is defined as the areal extent or size of a fracture within a plane. In 2D, persistence can be
estimated by observing the discontinuity trace lengths on the surface of rock exposures.
Non-persistent fractures often show terminations within the intact rock which geometri-
cally lead to intact rock bridges of variable extend. These rock bridges affect the overall
rock mass strength, given that the intact rock is usually characterized by higher strengths
and thus has a major impact on the stability of rock masses [15], but it is nearly impos-
sible to map them at in situ conditions. It is obvious that rock mass failure occurs much
easier if fractures are fully persistent and rock blocks are already formed as if pre-existing
intact rock bridges have to fail either suddenly or in the long-term by sub-critical crack
growth [11,15,16].

In many cases, the block area A0 [m2] or block volume V0 [m3] is estimated either on
the basis of numerical DFN modelling or analytically by determining the mean normal
set spacing of three major fracture sets (s1, s2, and s3 in [m]) and the angle between these
fracture sets (γ11, γ13, and γ23 in [◦]). According to [14], the mean block area and block
volume assuming persistent fractures is given by:

A0 =
s1·s2

sin(γ12)
(1)

V0 =
s1·s2·s3

sin(γ12)· sin(γ13)· sin(γ23)
(2)

This common analytical approach based on the assumption of persistent fractures
cause an underestimation of the block areas/volumes of non-persistent fracture sets
(Figure 1). This could have adverse impacts for rockfall hazard assessments, such as
underestimated run out length and block energies. In [13], the authors validated the sup-
position of [17], suggesting that the mean block area and block volume of rock masses with
non-persistent fracture sets is related to the fracture persistence according to,

Ab =
s1·s2

sin(γ12)·
√

p1·p2
(3)

Vb =
s1·s2·s3

sin(γ12)· sin(γ13)· sin(γ23)· 3
√

p1·p2·p3
(4)

where Ab and Vb are the block area and block volume assuming non-persistent fractures,
respectively, and p1, p2, and p3 are persistence factors in the range between 0 and 1. Sub-
scripts 1 to 3 represent the assigned number to fracture sets. Assuming a Veneziano fracture
network model [18,19], i.e., Poisson line and Poisson plane processes, the persistence factor
is given as the ratio between the accumulated fracture trace length in a sampling plane
to the total characteristic length of the rock mass under consideration (i.e., the sampling
plane). Alternative approaches to estimating the persistence factor have been presented by,
e.g., [14,19], but they are all based on ratios between fracture and intact rock bridge geome-
tries, which is a ratio that is usually very difficult to measure during practical campaigns in
the field.
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Validation of these equations by [13] based on stochastic analyses using numerical
fracture network simulation tools implemented in the discrete element codes UDEC and
3DEC (Itasca), respectively, suggest that simulated block sizes only differ by <1% and
around 4% from the Equations (3) and (4), respectively. However, the persistence factors p1,
p2 and p3 require a ratio between the sum of the trace lengths of the joint sections in a plane
and the length of the intact rock bridges in between. While the trace length distribution
of individual fracture sets usually can be acquired in the field by window and scanline
mapping, a measurement of the length of the intact rock bridges is still a big challenge and
nearly impossible. Furthermore, persistent fracture traces/planes are generally not aligned
one by one along a plane but rather are randomly distributed within the rock mass [20].
An additional limitation of some DFN modelling software products is the requirement
of at least one fully persistent fracture set or a spacing parameter that is valid for the
Veneziano model only. Besides that, for many cases, the applied persistence factor [17]
does not consider the relation to other fracture sets and is a simplification concerning its
impact for IBSD considerations. In practice, the determined IBSD is only a rough estimate
because all mentioned restrictions do not consider natural conditions and limitations.
Consequently, a method of analyzing the IBSD of a rock mass composed of non-persistent
fractures on the basis of geometrical parameters that can be easily acquired in the field is
needed. Typically, only the orientation, spacing and trace lengths of fractures are acquired
in the field concerning fracture geometries (e.g., by applying the widely accepted scanline
mapping method [21]). Similar parameters of large datasets can be acquired by non-contact
survey methods, such as photogrammetry and terrestrial laser scanning, e.g., [22–27]. The
application of the interconnectivity index, Iij, proposed by [12], as an alternative parameter
to the persistence factor, is a possibility for such a parameter, which can be acquired based
on the above-mentioned field parameters. The interconnectivity index is independent of
the knowledge of the lengths of intact rock bridges and can be determined between two
fracture sets within a rock mass.

Iij =
li
sj
· sin

(
γij
)

(5)

where li is the mean trace length of the fracture set i [m]; sj is the mean normal set spac-
ing of fracture set j [m]; γij (I 6= j) is the average angle in [◦] between the two fracture
sets i and j. For a fractured rock mass containing several fracture sets, the total in-
terconnectivity index (Ii) for each fracture set can be determined by summation of the
interconnectivity indexes,

Ii =
n

∑
j=1

Iij(i 6= j) (6)

where n is the number of fracture sets. Although the index does not rely on a theoretical
background, it provides a useful parameter to characterize interconnectivity based on frac-
ture orientation, trace length and spacing. From a practical perspective, the index is easier
to determine for a rock mass than the persistence factor proposed by [17]. Nevertheless,
the resulting values for the interconnectivity index may show a much larger range than the
persistence factor (i.e., 0 < p≤ 1 while 0 < Ii < ∞). Consequently, p and Ii are not comparable,
and thus Ii cannot be directly implemented in Equations (3) and (4). However, so far, no
equations were established to implement the interconnectivity index for the determination
of an IBSD.

Generally, DFN modelling is the most appropriate approach to analyze IBSDs of
rock masses. Currently, there are only a few software products, e.g., FracMan (Golder
2021), UDEC, 3DEC (Itasca 2021), ELFEN (Rockfield 2021) [28–30], mostly commercial and
proprietary codes, available that are able to calculate the block sizes by DFN modelling.
Most of them have limitations in considering rock bridge failure. The adaptation of these
proprietary codes to implement rock bridge failure is challenging. While there have been
recent improvements in using DFN for open source code analyses, especially in the field of
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hydrogeology [31,32], the simulation of the IBSD for various scenarios (e.g., including rock
bridge failure) still needs further investigation.

3. Methodology
3.1. Discrete Fracture Network Generation

A total of about 1500 models with random fracture networks (DFN) were generated
to analyze their 2D block areas. These models comprise non-persistent fractures and are
generated by using MATLAB (R2015b, Mathworks) [33]. Fractures are represented by their
traces, i.e., lines (see Figures 1b and 2). Stochastic analyses were performed on the basis of
all simulations by varying values for each input parameter of the simulations, comprising
of fracture orientation, the number of sets, linear frequency along the normal to the ith

fracture set, and trace length. For all simulations, a discrete fracture network with two
fracture sets was generated for a 50 m × 50 m study region. In this study, the four outer
boundaries of the region were defined as fully persistent fractures in contrast to other
approaches (e.g., [34]).

Figure 2. Determination of the intersection of two intersecting fractures.

The number of fractures, nf [−], which are generated in each of the 50 m × 50 m study
regions, is based on the linear fracture frequency, λi [m−1], according to the following equation:

n f = λi·Ly·
Lx

tl
(7)

where Lx and Ly are the lengths of the analyzed region in the x- and y-direction [m],
respectively, and tl is the mean fracture trace length [m]. The linear fracture frequency is
usually measured by the application of scanlines and is similar to P10 proposed by [35],
which is perpendicular to the mean fracture set orientation. According to [36], the linear
fracture frequency is the reciprocal of the normal set spacing of a fracture set. The central
locations of all fractures within the analyzed study region were determined randomly by a
2D Poisson process, which causes a negative exponential distribution of normal set spacing
values. This type of probability distribution was chosen because it is able to represent
many naturally occurring fracture spacing patterns (e.g., [14,37–39]). Other common
distributions would be, e.g., the logarithmic normal (e.g., [40–42]) or fractal (e.g., [43–45])
distributions, which can be generated by a Kolmogorov process or a scale-invariant process,
respectively [46].

The following geometric restrictions were implemented in the random fracture gener-
ation for the two fracture sets of the approx. 1500 models: (a) mean values for the fracture
trace length (0.5–12 m), (b) linear fracture frequency (0.15–3 m−1), and (c) fracture orien-
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tation (0–90◦). As an additional limitation, a minimum difference of the angle between
the two sets was defined as 15◦. Based on the mean orientation of the fracture set and a
standard deviation of Std = 5, the fracture orientation of each fracture of a set was simulated
randomly on the basis of a normal probability distribution (e.g., [47]). In addition, the
individual fracture trace lengths were generated with the randomly defined mean trace
length and a negative exponential probability density distribution (e.g., [12,36,48]). Frac-
tures simulated and located partly outside of the 50 × 50 m study region (central locations
of fractures were set to be located always within the boundaries of the study region though)
were deleted and not considered for further analyses, i.e., the trace map was cropped along
the outer boundary of the analyzed region.

3.2. Block Area Calculation

The in situ block area distributions of the non-persistent fractures in the DFNs were
calculated as followed:

First, the coordinates of each intersection between two fracture traces (lines) are
determined by the MATLAB function lineSegmentIntersect (Ref. [49], Figure 2).

The X and Y coordinates of the intersection, XI and YI, are given by:

XI = XA,begin + uA·
(

XA,end − XA,begin

)
(8)

YI = YA,begin + uA·
(

YA,end −YA,begin

)
(9)

where XA,begin, XA,end, YA,begin, and YA,end are the X and Y coordinates of the beginning and
termination of fracture A, and the slope, uA, is given by:

uA =
(XB,end − XB,begin)·

(
YA,begin −YB,begin

)
−
(

YB,end −YB,begin

)
·
(

XA,begin − XB,begin

)
(

YB,end −YB,begin

)
·
(

XA,end − XA,begin

)
−
(

XB,end − XB,begin

)
·
(

YA,end −YA,begin

) (10)

In the next step, the lines are checked if they share an adjacency matrix (e.g., see [50])
by using the built-in MATLAB function adjacency. Points or line segments that are not part
of any adjacency matrix are removed for further calculation steps.

For each of the adjacency matrices, closed polygons are determined, which result
from crossing the fracture traces (i.e., lines). Closed polygons, which are formed from the
combination of more than one other closed polygons, are excluded, i.e., only the smallest
possible polygons are counted.

Next, the surface area, A, of these polygons are then calculated by the built-in MATLAB
function polyarea according to:

A = [(X1 + X2)·(Y1 −Y2) + (X2 + X3)·(Y2 −Y3) + · · ·+ (Xn + X1)·(Yn −Y1)]/2 (11)

where X and Y are the coordinates of the vertices and n is the number of vertices.
When the surface areas of all polygons of an adjacency matrix are calculated, this

procedure is repeated for the next adjacency matrix until no more exist.
This algorithm produces a list of block areas of all polygons, whereby the total sum

of all block areas is equal to the area of the study region, herein assumed as 50 m × 50 m
(i.e., 2500 m2). Only the smallest possible polygons are counted in this way.

3.3. Implementation of Rock Bridge Failure

Depending on the investigated rock mass scenario, a discrete fracture network consists
of the pre-existing fractures but also of fractures that are newly formed due to rock bridge
failure during the failure process.

In this study, approximately 600 different fracture network scenarios where rock
bridges may fail and coalesce with two pre-existing fracture sets were simulated. In
nature, fracture coalescence between two pre-existing fractures is characterized by tensile
(i.e., wing cracks, en echelon) and/or shear (secondary cracks) failure modes, according
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to the stress state in the rock mass (e.g., [51]). Thus, the newly formed fractures do not
simply grow as single fractures aligned in the direction of the shortest distance. In order to
avoid too much complexity and the short fracture coalescence length assumed herein, a
simplified approach based on fracture propagation in the direction of the shortest distance
between two pre-existing fractures is chosen. As an assumption and simplification, a
new fracture will be formed between two pre-existing fractures if the shortest rock bridge
thickness is below a pre-defined threshold. For this simulation the threshold value of the
rock bridge was set to (i) 0.05 m, (ii) 0.1 m, (iii) 0.2 m, (iv) 0.3 m, and (v) 0.4 m, respectively.
The presented approach does not consider the complexity of fracture coalescence due to
stress heterogeneities or anisotropies and does not consider the impact of non-planarity of
fractures on the block area distribution.

Considering the new, due to the intact rock bridge failure formed fractures, the short-
est distance between the two fractures is calculated according to the MATLAB function
DistBetween2Segment [52]. This function uses a geometric approach to find the unique
vector, which is characterized as the smallest possible length between the two pre-existing
fractures [53]. In the case that the distance between two fractures is smaller than the
threshold value of the rock bridges (i.e., here specified as 0.05 m, 0.1 m, 0.2 m, 0.3 m, or
0.4 m), a new fracture representing rock bridge failure is generated along the line repre-
senting the shortest measured length (red dotted lines in Figure 3). Restrictions, where
rock bridge failure is not possible, are summarized in Figure 3 and comprise: (1) a failure
distance that is larger than the threshold length, (2) a new coalescing fracture crossing a
different fracture in between, and (3) two existing fractures, which are already intersecting.
Concerning the example of Figure 3, three closed polygons are formed (green, magenta,
and turquoise background colors). It should be noted that, for example, a merged polygon
consisting of the magenta, turquoise, and green polygons, is not considered to be a valid
polygon in this study. The block areas are then calculated by using a method similar to the
method described above.

Figure 3. Schematic illustration showing the rock bridge failure procedure between pre-existing
fractures (black lines) and the development of closed polygons.

3.4. Monte Carlo Simulations for Persistent Fractures

The block area distribution of discrete fracture networks based on non-persistent
fractures were compared with the common approach, which assumes persistent fractures
(Equation (1)). Monte Carlo simulations of Equation (1) were performed to estimate the
entire distribution of block areas instead of unique values only. Therefore, values obtained
randomly from normal and negative exponential probability density distributions for
fracture orientation and spacing were applied, respectively.
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4. Results
4.1. Block Areas Assuming Persistent Versus Non-Persistent Fractures

For each of the more than 600 simulations, block areas of the DFN were calculated and
statistically evaluated. Generally, the block area analyses show cumulative distributions,
which are typically gained when the fracture frequency follows a negative exponential
probability distribution. Exemplarily, Figure 4 shows block area distribution simulations
based on three different input scenarios. Simulation scenario A is based on a mean angle
between the two fracture sets of 85.6◦, a frequency and trace length of set #1 of 3.4 m−1 and
10.0 m, and a frequency and trace length of set #2 of 2.8 m−1 and 13.5 m, respectively. For
simulation scenario B, a mean angle between the two fracture sets of 61.6◦, a frequency and
trace length of set #1 of 0.9 m−1 and 5.0 m, and a frequency and trace length of set #2 of
2.9 m−1 and 7.7 m was implemented. For simulation scenario C, the mean angle between
the two fracture sets were further reduced to 27.5◦. The frequency and trace length of set
#1 was set to 1.1 m−1 and 2.1 m and of set #2 to 1.0 m−1 and 7.2 m, respectively. The shape
of the cumulative block area distribution curves is similar for non-persistent and persistent
fractures, although the slopes of the distribution curves for non-persistent fractures are
marginally less steep for all simulations (Figure 4). Depending on the implemented fracture
network geometry, the simulated mean block areas based on non-persistent fractures are
between 1.1 to 6.2 times larger than the corresponding block areas, which were estimated
by Equation (1) and the Monte Carlo approach.

Figure 4. Selected examples of block area simulations, assuming non-persistent fractures (solid
lines) and block area distributions, assuming persistent fractures (Monte Carlo simulation based on
Equation (1), dashed lines).

In contrast to the suggestions by [12] for the calculation of the total interconnectivity
index (Ii), a new factor termed as the geometric mean interconnectivity factor (Ig) was
defined, which was averaged from the two interconnectivity indexes I12 and I21.

Ig =
I12 + I21

2
(12)

This modification was done because it allows making correlations with only one
interconnectivity factor instead of two. The difference between the simulated mean
block areas with non-persistent fractures (Ab) and the mean block areas (A0), assum-
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ing persistent fractures (see Equation (1)) for a given fracture network, was determined.
Figure 5 illustrates a clear correlation between the mean A0/Ab ratio and the geometric
mean interconnectivity factor (Ig). Remarkably, the mean A0/Ab ratio does not converge
towards 1, even for high values of the interconnectivity factor. Consequently, the simulated
block areas (Ab) are larger than those that were obtained by the simplified calculation
according to equation (1), even for very long fracture dimensions. All geometric mean
interconnectivity factors greater than approximately 20 result in an A0/Ab ratio of ap-
proximately 0.65–0.85, indicating that Ab is 15–35% smaller than A0 for the analyzed
DFN simulations.

Figure 5. Correlation between the geometric mean interconnectivity factor (Ig) and the mean A0/Ab

ratio based on about 600 simulations with different input values for fracture frequency, orientation,
and trace length (blue line: power law curve fit).

An empirical relationship based on non-linear curve fitting (Figure 5) was obtained
between the mean A0/Ab ratio and the geometric mean interconnectivity factor (Ig). Curve
fitting according to a power law showed the best fit to the data set, resulting to the empirical
Equation (13):

A0

Ab
= a·Ib

g + c (13)

For this simulation, empirical fitting parameters of a = −0.9001, b = −0.8012, and
c = 0.8283, as well as a coefficient of determination of R2 = 0.9902 are determined. Conse-
quently, the mean block area Ab for a non-persistent fracture network can be
estimated by:

Ab =

s1s2
sin(γ12)

a·I b
g + c

(14)

Figure 5 further illustrates that the mean A0/Ab ratio of the DFNs with small Ig values
(i.e., low interconnectivity factor) are characterized by a large range of variation. Higher Ig
values lead to minor variations.
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4.2. Impact of Rock Bridge Failure on Block Areas

For each geometrical fracture network scenario (i.e., variation of fracture orientation,
trace length and frequency), a total of six DFNs were generated by setting the maximum
threshold length of potential rock bridge failures to (a) 0 m (i.e., no rock bridge failure),
(b) 0.05 m, (c) 0.1 m, (d) 0.2 m, (e) 0.3 m, and (f) 0.4 m, respectively. For each rock bridge
failure length, surface areas were calculated and analyzed.

Depending on the geometrical parameters of the DFN, i.e., trace length, fracture
frequency, and fracture orientation, consideration of rock bridge failure can have a mi-
nor or major impact on the resulting block areas (Figure 6). All simulations of the se-
lected example shown in Figure 6 are characterized by the same fracture network, but
varied regarding the threshold lengths for rock bridge failure from (a) 0 m, (b) 0.05 m,
(c) 0.1 m, (d) 0.2 m, (e) 0.3 m, and (f) 0.4 m. The illustrated fracture networks were generated
by implementing two fracture sets. Fracture set #1 has a mean dip angle of 1.16◦, with a
standard deviation of std = 5, a mean trace length of 5.65 m, and a mean 1D frequency of
0.74 m−1. Fracture set #2 is based on a mean dip angle of 94.72◦ (std = 5), a mean trace
length of 2.33 m, and a mean 1D frequency of 1.20 m−1.

In comparison to scenarios without rock bridge failure, the scenarios with rock bridge
failure lead to cumulative distribution curves shifting towards smaller block areas. How-
ever, the shape of the cumulative distribution curves (Figure 7) between these scenarios
remains almost similar. Thus, rock bridge failure affects block areas of all sizes, and there is
no linear decrease in block areas with increasing maximum length of rock bridge failure.
However, the shift along the x-axis of the cumulative block area distribution curves in
the graph of Figure 7 for the individual threshold values is approximately in the same
order of magnitude. Implementation of rock bridge failure decreases the number of blocks
with unrealistic complex shapes, which is dominating for larger block areas. As a result of
implementing rock bridge failure in the simulations, blocks are representing more natural
shapes and less bounding surfaces. In addition, it was observed that rock bridge failure
has a stronger impact on the resulting block area for DFNs with smaller interconnectivity
factors than those with larger interconnectivity factors. Comparing similar DFNs, the
resulting mean block areas of simulations without rock bridge failure are approximately
five times larger than those obtained for simulations considering rock bridge failure and
implementing a maximum rock bridge failure length of 0.4 m.

For DFNs with rock bridge failure thresholds larger than 0 m, no correlation between
the geometric mean interconnectivity factor and the ratio between the mean block area
(A0) assuming persistent fractures and the mean block area (Ab) considering non-persistent
fractures (in contrast to simulations in Figure 5) is observed. Instead, the impact of the
threshold length on the resulting mean block area, Abr, is a function of both the geometric
mean interconnectivity factor and the mean block area with a threshold level of 0 m (Anb,
Figure 8). For large Ig values (approximately > 10), the ratio between the mean block
area without rock bridge failure, Anb, and the mean block area with rock bridge failure,
Abr, is nearly constant and varies only between 1.0 and 1.5, depending on the maximum
length of rock bridge failure. This suggests that the block areas do not decrease with the
implementation of rock bridge failure if Ig is larger than approximately 10. The power law
of Equation (15) fits the data set and shows a clear correlation trend (Figure 8).

Anb
Abr

= a·I b
g + c (15)
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Figure 6. 2D discrete fracture networks showing 30 × 30 m detail views, extracted out of the
50 × 50 m total models. Areas generated by intersecting fracture traces (black lines) are shown
and randomly colored. All models (a–f) are characterized by the same fracture network but varied
regarding the threshold lengths for rock bridge failure.
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Figure 7. Cumulative block area distribution of the six simulation examples presented in Figure 6.

Figure 8. Correlation between the geometric mean interconnectivity factor, Ig, and the ratio between
the mean surface areas, Anb/Abr (color-coded according to different thresholds). Power-law fit for the
various data sets of similar threshold lengths are illustrated as lines and color-coded according to
the lengths.

However, scattering is high for very low values (around Ig < 2). This could by an
indication that the defined study area with a size of 50 m × 50 m was set too small (i.e., the
representative elementary area is larger than 50 m× 50 m) in order to enable comprehensive
statistical analyses of these DFNs.
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Parameters (a, b, and c) of the empirical power-law describing the correlation between
the ratio Anb/Abr according to a threshold of 0.05 m, 0.1 m, 0.2 m, 0.3 m, and 0.4 m for rock
bridge failure with the geometric mean interconnectivity factor are presented in Table 1.
The coefficient of determination, R2, increases with longer threshold lengths.

Table 1. Fitting parameters for Equation (15) of the power law in relationship to the threshold length.

Threshold Length a b c R2

0.05 m 0.360 −0.668 1.005 0.972
0.10 m 0.924 −0.842 1.026 0.980
0.20 m 2.575 −1.115 1.089 0.982
0.30 m 4.823 −1.263 1.134 0.984
0.40 m 6.443 −1.259 1.149 0.985

Consequently, it is possible to estimate the mean block areas of non-persistent fractures
based on the combination of Equations (14) and (15) if the fracture orientations, fracture
frequencies, trace lengths as well as the maximum length of rock bridge failure is known
(Note: Anb equals Ab).

5. Discussion
5.1. Implications for Using the Results

This study focuses on the difference in rock block areas between models, assum-
ing persistent fractures and non-persistent fractures. It is widely accepted that fractures
terminating within rock blocks are influencing the overall rock mass properties. Rock
bridge failure and block formation become important for the determination of rockfall
hazards, quarry production, and others. Thus, the implementation of potential rock bridge
failure in this study provides a further step to account for this problem. However, the
approach herein is simple and is based solely on a defined threshold length for rock bridges
that are prone to fail. Other relevant factors, such as the impact of in situ stresses, dy-
namic loading (e.g., rockfall impact forces or blasting energy), or rock anisotropy and
heterogeneity, were not considered in this study. Furthermore, the setting of representa-
tive threshold length values for rock bridge failures is difficult and requires preceding
studies on selected well-exposed rock faces, ideally recently formed failure surfaces of
rockfall events.

It should be noted that the methodical approach used in this study does not exclude
smaller blocks enclosed totally by larger blocks (e.g., the orange block within the large
beige block in Figure 1). This may or may not produce representative results, depending
on the application of the in situ block area distribution. In addition, the simulation can
produce complex block area shapes, which may not gravitationally release from a rock face
due to partial blocking by the remaining rock mass. In Figure 6a, for example, the large,
irregular light green block area highlights the problem, which occurs mainly for DFNs with
small interconnectivity factors. The consequences of this phenomenon were not considered
in this study but may be relevant, especially for rockfall studies.

5.2. Adaptation from Block Area to Block Volume Analyses

One major limitation of this study is that the analyses of the block distributions were
done only two-dimensional. Within this framework, this limitation was accepted because,
even in 2D, a high number of simulations were required to perform a reliable statistical
analysis. 3D simulations would have been very time-consuming, and starting initially with
a 2D approach allows for a first and crucial validation of the methodical approach.

Conceptually, if a third fracture set is added, an estimation of the mean 3D block
volume (Vb [m3]) on the basis of the 2D analyses can be done according to following
general mathematical relation:

Vb = Ab·
s3

cos γ3D
(16)
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where Ab is the simulated mean block area considering non-persistent fractures [m2]; s3 is
the mean normal set spacing [m]; γ3D is the angle between the mean normal to fracture set
#3 and the normal vector to the Ab-plane for fracture sets #1 and #2. If the dip direction,
αd, and dip angle, βd, of a fracture set is known, the trend and plunge of its normal can be
found from the following expressions:

αn = αd ± 180 with 0 ≤ αd ≤ 360 (17)

n = 90− βd with 0 ≤ βd ≤ 90 (18)

Accordingly, the normal vector to a plane (i.e., fracture set) is determined from the
trend, αn, and the plunge, βn.

n =

 nx
ny
nz

 =

 cos αn cos βn
sin αn cos βn

sin βn

 (19)

The orientation of the Ab-plane is clearly defined by the normal vector of fracture set
#1 (nset1) and fracture set #2 (nset2). Furthermore, the normal vector, nAb, to the Ab-plane is
calculated by the cross product of the normal vectors of fracture sets #1 and #2.

nAb = nset1 × nset2 (20)

The angle, γ3D, between the normal vector of fracture set #3 and the normal vector to
the Ab-plane is determined by the dot product:

cos γ3D =
nAB·nset3

|nAB| · |nset3|
(21)

The limitations of this approach are manifold and comprise that fracture set #3 is
fully persistent and that the 3D shape of the fractures, i.e., polygonal or circular, are not
taken into account. Furthermore, scanline mapping or window sampling based on laser
scanning or photogrammetric methods adds additional biases in the data set. These biases
comprise that the observed fracture dimensions do not necessarily represent the actual
fracture dimensions, given that they are locally obscured. The intact rock bridge failure
that can be considered for fracture sets #1 and #2 cannot be considered for fracture set #3.
The occurrence of more than three fracture sets cannot be considered as well.

Besides that, the difference between the trace length in 2D and the areal extent of
the fractures in 3D must be considered. For example, three orthogonal fracture sets with
circular-shaped fractures, trace lengths and frequencies of 1 m and 1 m−1, respectively, can
form a closed block area of 1 m2 but cannot form a block volume of 1 m3. Consequently,
the shape of the fractures must be known to be able to determine the IBSD in 3D. Large,
bias-corrected datasets from fracture mapping by non-contact mapping methods may be
the best option to gain all parameters required for 3D simulations.

However, these considerations have not been validated yet. Nonetheless, they high-
light that the general impact of non-persistent fractures on the IBSD is even larger in 3D than
in 2D. Further, intact rock bridge failure must play an important factor when comparing the
block sizes and shapes of rockfall deposits with the in situ fracture
set geometry.

Apart from this simplified comparison between 2D and 3D fracture networks, ad-
ditional research is needed to prove and further develop the herein proposed approach
for the applicability to 3D rock masses. For example, an extension of Wang’s equation
method [54] for non-persistent fractures to estimate the entire in situ block size distribution
(IBSD) might be possible in the future by implementing the interconnectivity factor and
adaptation of the correction factors. However, a comprehensive review of the 2D approach
in terms of quality and practicality should be carried out before further development
is pursued.
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6. Conclusions

This contribution presents the approach and statistical results of 2D block areas
of DFNs, which are formed by the intersection of non-persistent, non-parallel fracture
traces. Besides that, the impact of rock bridge failure on the block area distribution is
investigated statistically.

On the basis of stochastic analyses performing 600 simulations by using the MATLAB
code, a correlation was found between the interconnectivity factor also see [12] and the
difference between the mean block area assuming non-persistent fractures and the mean
block area assuming simplified persistent fractures. This correlation allowed the devel-
opment of an empirical relationship to estimate the mean block area based on the mean
fracture set orientation, fracture set trace length and fracture set spacing.

Varying the threshold length of rock bridge failure in simulations with similar DFNs
showed an approximately uniform shift of the cumulative distribution curves towards smaller
block areas by increasing the rock bridge failure threshold length. Furthermore, there is a
correlation between the ratio of mean block area with rock bridge failure to the mean block
area without rock bridge failure and the geometric mean interconnectivity factor.

These empirical equations require input parameters only, which can be acquired
in the field easily with great accuracy by applying classical fracture mapping methods
(e.g., scanline surveys). These parameters comprise (i) the mean fracture set orientation
(and its standard deviation), (ii) the normal set spacing, and (iii) the mean fracture set trace
length. This direct relation to in situ measurements of fracture data represents a benefit of
this approach compared to other DFN modelling approaches.

As a basis for DFN simulations to investigate block sizes in 3D, general mathematical
equations are discussed to adapt the 2D analyses for 3D block volume problems.
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