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10000 Zagreb, Croatia; davor.ljubas@fsb.hr

2 Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 20,
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Abstract: This study presents a novel method for the development of TiO2/reduced graphene oxide
(rGO) nanocomposites for photocatalytic degradation of dyes in an aqueous solution. The syner-
gistic integration of rGO and TiO2, through the formation of Ti–O–C bonds, offers an interesting
opportunity to design photocatalyst nanocomposite materials with the maximum absorption shift
to the visible region of the spectra, where photodegradation can be activated not only with UV but
also with the visible part of natural solar irradiation. TiO2@rGO nanocomposites with different
content of rGO have been self-assembled by the hydrothermal method followed by calcination
treatment. The morphological and structural analysis of the synthesized photocatalysts was per-
formed by FTIR, XRD, XPS, UV-Vis DRS, SEM/EDX, and Raman spectroscopy. The effectiveness of
the synthesized nanocomposites as photocatalysts was examined through the photodegradation of
methylene blue (MB) and rhodamine B (RhB) dye under artificial solar-like radiation. The influence
of rGO concentration (5 and 15 wt.%) on TiO2 performance for photodegradation of the different
dyes was monitored by UV-Vis spectroscopy. The obtained results showed that the synthesized
TiO2@rGO nanocomposites significantly increased the decomposition of RhB and MB compared to
the synthesized TiO2 photocatalyst. Furthermore, TiO2@rGO nanocomposite with high contents of
rGO (15 wt.%) presented an improved performance in photodegradation of MB (98.1%) and RhB
(99.8%) after 120 min of exposition to solar-like radiation. These results could be mainly attributed to
the decrease of the bandgap of synthesized TiO2@rGO nanocomposites with the increased contents
of rGO. Energy gap (Eg) values of nanocomposites are 2.71 eV and 3.03 eV, when pure TiO2 particles
have 3.15 eV. These results show the potential of graphene-based TiO2 nanocomposite to be explored
as a highly efficient solar light-driven photocatalyst for water purification.

Keywords: graphene oxide; TiO2@rGO nanocomposite; photocatalysis; solar-like irradiation; Methy-
lene blue; Rhodamine B

1. Introduction

Nowadays, accessible clean water and energy resources are among the highest priori-
ties for sustainable economic growth and societal wellbeing. Water scarcity is a growing
worldwide problem, so it is imperative that wastewater is treated and re-used in industrial
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processes, irrigation, and feeding to livestock, thus saving potable water for drinking.
Research activities focus on the synthesis of new materials for use in energy-efficient pro-
cesses for water treatment by using doped metal oxides with a reduced bandgap, which
allows photocatalysis in the visible region of the electromagnetic spectrum [1,2]. Different
types of pollutants such as pharmaceuticals, dyes, pesticides, etc., are widespread and may
interact with the environment through different pathways. In the present work, as relevant
environmental pollutants, methylene blue (MB) dye and rhodamine B (RhB) dye were
selected as complex compounds for decomposition from an aqueous medium because of
their often-frequent occurrence in the environment. MB and RhB are widely utilized for
industrial production purposes such as dyeing and printing on textile, leathers, papers,
and also on plastics [3–5].

Organic pollutants are entering the water cycle through wastewater release into the
environment. Very toxic and cancerogenic residual dyes and their metabolites already have
a strong impact on ecosystems. Moreover, these organic pollutants can be very harmful to
living organisms, especially if they enter the food chain [6–10]. Thus, the removal of them
from water is a huge challenge and an emergency assignment. Conventional wastewater
treatment plants (WWTP) are not adequately designed for the removal of dyes, their
metabolites, or transformation products. Hence, the removal of dyes and their degradation
products from industrial wastewater before discharging into the environment requires
necessary treatment [11,12].

To degrade the mentioned harmful compounds present in the environment, re-
searchers are globally looking for an effective approach such as Advanced oxidation
processes (AOPs). Nowadays, the AOPs have received considerable attention as alternative
wastewater treatment processes, which may be implemented in conventional wastewater
treatment processes to ameliorate their removal efficiency. The photocatalytic oxidation
process, especially heterogeneous photocatalysis, is one of the AOPs that is increasingly
being explored due to its relatively efficient degradation and environmentally benign
impact [6,13–16]. This technology can be a clean, green, and sustainable alternative to
conventional wastewater treatment technologies [17,18]. Currently, there are different ma-
terials that can be used as heterogeneous photocatalysts, but titanium dioxide (TiO2) arises
like the one with widespread use. This semiconductor material presents extraordinary
properties for degradation of organic matter dissolved in water; its low environmental
impact, cheapness, high chemical and thermal stability, and pollution-free process to
remove low concentration pollutants, as well as biocompatibility, are relevant features
for its application [2,19–21]. TiO2 photocatalysts are usually very active under ultravi-
olet (UV) irradiation when the wavelength is lower than 387 nm. The major pitfalls in
the practical application of heterogeneous TiO2 based semiconductor photocatalysis are
the wide bandgap energy and quick recombination of the photogenerated electron-hole
pairs [22,23]. Therefore, the application of TiO2 as a photocatalyst shows low efficiencies in
the decomposition of effluent organic compounds under solar light. In global solar spectra
that reach the Earth’s surface, UV part amounts around 3–5%, while almost 45% is visible
light [9,11]. New photocatalysts are being designed in the form of nanocomposite materials
to overcome their current limitations assigned to the fact of being mostly active only under
UV radiation [22–25].

Graphene-based materials have unique properties that may be applied in wastewater
purification. Graphene oxide (GO) was chosen to prepare the graphene-based nanocompos-
ites due to its affordable production of bulk quantities. The oxidation process of graphite
to GO brings defects into its structure that change its physico-chemical properties [26]. As
a result, the carbon network of GO possesses a substantial density of oxygen functional
groups like epoxy, carbonyl, hydroxyl, and carboxyl groups. The oxygen functionalities
may be removed by the reduction process, which can significantly shift its properties, such
as improving optical surfaces and changing the electronic structure. The properties of
reduced graphene oxide (rGO) play an important role in the synthesis of graphene-based
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nanocomposite materials. Moreover, the improved performance of developed composites
will rely on the influence of rGO and materials committed to its surface [26–28].

In this study, the synthesis parameters of the one-pot cost-effective hydrothermal pro-
cedure were optimized, followed by a calcination treatment at 300 ◦C to prepare TiO2@rGO
nanocomposite-based photocatalyst. As model pollutants, MB and RhB dyes were exposed
to the photocatalytic decomposition initiated by the solar-like irradiation source. The aim
of this research was to contribute to a broader understanding of photocatalytic degradation
of MB and RhB with additional criteria to prepare TiO2@rGO nanocomposite, showing
significant photocatalytic activity.

2. Materials and Methods
2.1. Chemicals and Reagents

Commercially available flakes of graphite (particle size ≤ 50 µm) and titanium (IV)
isopropoxide (Ti(C3H5O12)4, TTIP 97%) were acquired from Sigma-Aldrich (St. Louis,
MO, USA), while nitric acid (HNO3, ≥65%) and sulfuric acid (H2SO4, 97%) were ob-
tained from Honeywel Fluka (Seelze, GER). Hydrochloric acid (HCl, 37%), potassium
permanganate (KMnO4) and sodium nitrate (NaNO3), hydrogen peroxide (H2O2, 30%
w/v), i-propanol (C3H7OH), acetylacetone (CH3(CO)CH2(CO)CH3) were supplied from
Gram mol (Zagreb, CRO). Methylene blue (MB), (7-(dimethylamino) phenothiazine 3-
ylidene)-dimethyl azanium chloride and Rhodamine B (RhB), (9-(2-carboxyphenyl)-6-
diethylamino-3-xanthenylidene)-diethylammonium chloride were purchased from Sigma-
Aldrich (St. Louis, MO, USA) The solutions with stated chemicals were prepared using
ultrapure water (Millipore).

2.2. Synthesis of Graphene Oxide (GO)

A chemical process called Hummer’s method was used to manufacture the GO [29].
Firstly, flakes of graphite powder (3 g) were dispersed in a concentrated solution of H2SO4
(69 mL) then NaNO3 (1.5 g) was added to an Erlenmeyer flask. The solution was stirred
on a magnetic stirrer until a homogeneous solution was obtained at a low temperature
(0–5 ◦C). Then KMnO4 (9.0 g) was gradually added to keep the reaction temperature below
20 ◦C. The mixture was warmed to 35 ◦C and shuffled for 30 min, during which 138 mL of
water was slowly added. The mixture produced an exothermic reaction, spontaneously
heating to 98 ◦C. During the next 15 min, the mixture was heated in order to hold the
temperature at 98 ◦C, and then the reaction mixture was chilled in a water container for
a few minutes to the room temperature. Then 420 mL of water and 3 mL of H2O2 (30%)
were added to the mixture. The resultant suspension was centrifugated at 3000 rpm for 10
min to remove the remaining impurities and to recover the GO. The isolated GO was first
washed with HCl (10%) and then rinsed intensively with deionized water until it reached
neutral pH.

2.3. Preparation of TiO2 Colloidal Solution

The main precursor of titanium, TTIP, was added drop by drop in the i-propanol.
Acetylacetone chelating agent was then added to the solution, followed by nitric acid acting
as a catalyst. The chemicals were mixed in the molar ratio, 1:35:0.63:0.015. During the
preparation, the mixture solution was constantly stirred, and clear yellow color of solvent
was attained [30].

2.4. Preparation of TiO2@rGO Nanocomposites

The TiO2 sol and GO nanosheets were mixed to produce TiO2@rGO nanocomposites
by hydrothermal method. Different ratios of the prepared suspension of GO were added
into a colloidal solution of TiO2 sol and stirred for 1 h. After that, the black-brown mixture
was homogenized for 10 min in an ultrasonic bath. The obtained product was transferred
into a Teflon-lined autoclave tube. The hydrothermal reaction was performed at 180 ◦C for
8 h. The resultant nanocomposite material was extensible washed first with i-propanol and
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then with deionized water until the neutral pH value was reached. The obtained TiO2@rGO
nanocomposite was dried at 60 ◦C in the electric dryer for 1 h and then calcinated in the
oven at 300 ◦C for 1 h.

2.5. Characterization of Photocatalysts

The crystalline phases of GO and TiO2@rGO were analyzed by powder X-ray diffrac-
tion (P-XRD, Rigaku) operating with CuKα radiation. Fourier transform infrared (FT-
IR/ATR, Bruker Vertex 70)) spectra were performed to analyze the chemical groups in the
structure of the nanocomposite materials obtained. To confirm the crystalline phase of
GO and TiO2@rGO, Micro-Raman analyses were performed using a Bruker SENTERRA
spectrometer with an Olympus microscope. X-ray photoelectron spectroscopy (XPS) per-
formed on SPECS Phoibos 150 with AlKα radiation (1486.74 eV) was used for elemental
composition determination. Binding Energy (BE) was corrected using the main peak of
reduced GO as a reference, set at 284.4 eV. C 1s spectra of GO and rGO were normalized
to get similar intensity to the other carbon spectra. Scanning electron microscopy and
energy-dispersive X-ray spectroscopy (SEM/EDX) were carried out with the aim of obtain-
ing microstructural characteristics and elemental mapping of the samples. Measurements
were made using Hitachi TM4000 plus tabletop SEM-EDX facility with 15 kV field energy
in the backscattered electron (BSE) imaging mode and FEG-SEM model JSM-7600F from
Jeol at 10 kV in the secondary electron (SE) mode. The bandgap energy of the prepared
nanocomposite powders was acquired from UV/Vis/NIR spectroscopy measurements
using a Perkin Elmer Lambda 950 spectrophotometer.

2.6. Photodegradation Experiments

Methylene blue dye (MB) and Rhodamin B dye (RhB) purchased from Sigma-Aldrich
(St. Louis. MO, USA) have been used for monitoring the photoactivity of the synthesized
TiO2@rGO nanocomposites. Each pollutant was dissolved in MilliQ water in order to reach
a concentration of 10 mg/L. The photocatalysts (4.5 mg) were dispersed in 9 mL of the
contaminant solution within a modified beaker reactor with quartz cover. As-prepared
samples were left for 60 min in a chamber without irradiation. After the irradiation was
turned on, the photocatalytic efficiency was monitored over 120 min. The magnetic stirrer
was continuously turned on. Concentration change was measured by the adsorption de-
crease using a UV/VIS spectrophotometer (PerkinElmer Lambda 950) in set time intervals
while irradiated by light in a climatic chamber equipped with the cooling system, using
Osram’s Ultra Vitalux lamp. The lamp produces a mix of radiation intervals that can be
found in the natural solar radiation spectrum. Therefore, the term solar-like radiation for
this radiation mix was used. The lamp and the solution in the reactor were set up at a
distance of 20 cm.

From the slope of the straight line, the first-order rate constant was calculated, repre-
sented with the following equation [31]:

At= A0·e−k·t (1)

where k (min−1) is the rate constant of photodecomposition of dye, A is the absorption of
dye at the time of the photocatalytic process, and A0 is the absorption at the beginning of
the experiment [32,33].

The calculation of half-life (t1/2) was done using the following equation [31]:

t1/2 =
ln2
k

(2)

The percentage of photocatalytic degradation efficiency of the prepared photocatalysts
were calculated using the following equation [31]:

η =
A0 − At

A0
·100% (3)
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where η is the percentage efficiency of the photodecomposition of dye, A0 is the absorbance
of the starting content of dye, and At is the content of dye after irradiation at the time, t
(min) during the photocatalytic experiment.

3. Results and Discussion
3.1. Characterization of Photocatalyst

The successful preparation of materials by the combination of the hydrothermal
method and calcination can be demonstrated with detailed characterization of the obtained
TiO2@rGO nanomaterials. The FT-IR spectra of natural graphite GO and rGO are presented
in Figure 1A, while the spectra of TiO2 and the nanocomposites are shown in Figure 1B.
The GO spectrum present the following peaks at 3372 cm−1 corresponded to the stretching
vibration of the carboxyl group (−OH), which was ascribed on the attendance of alcohol
groups and absorbed water molecules, 2857 cm−1 and 2925 cm−1 vibrations corresponded
to the symmetric and asymmetric CH2 stretching of GO [34,35]. The stretching vibration
at 1715 cm−1 ascribed to the C=O from carbonyl and carboxyl group and the vibration at
1622 cm1 (C=C) as skeletal vibration of unoxidized graphitic materials [35]. The deforma-
tion vibration of C–OH stretch from the alcohol group was displayed at 1376 cm−1 [36,37].
The stretching vibrations at 1221 cm−1 were assigned to the C–O–C of epoxy groups, and
at 1039 cm−1 were ascribed to the C–O from the alkoxy group [37]. By comparing the
GO and rGO spectra, displayed in Figure 1A, it could be seen that in the rGO sample,
that the intensity of peaks attributed to oxygen functional groups, e.g., O–H, C=O, and
C–O, were reduced [38]. The TiO2@rGO nanocomposite spectra exhibited peaks between
450–900 cm−1, which belonged to the stretching vibration of Ti–O–Ti and Ti–O–C bonds,
affirming the effective interaction between Ti and C [39,40].

Figure 1. FTIR spectra of (A) natural graphite, GO, rGO; (B) TiO2 and TiO2@rGO nanocomposites
prepared with different amounts of GO (5 wt.% and 15 wt.%).

The Raman spectrum of TiO2 is shown in Figure 2A (inset), highlighting five sharp
peaks for the anatase-phase of TiO2. These peaks are located at 147 cm−1, 198 cm−1, and
641 cm−1 as Eg, 399 cm−1 as B1g, and 517 cm−1 as A1g + B1g [41]. As the figures show,
these peaks appeared for all prepared nanocomposites, but in comparison to pure TiO2
nanoparticles, the intensity of the anatase phase was strongly reduced in the nanocompos-
ites. Figure 2A shows, the prepared nanocomposites with a smaller amount (5 wt.%) of
rGO had sharper peaks than the prepared nanocomposites with a higher amount (15 wt.%).
The crystalline phase of the nanocomposite was disturbed because of the content of rGO.
Figure 2B presents the Raman spectra of GO, rGO, and nanocomposites. The GO spec-
trum showed the presence of the two characteristic peaks at 1329 cm−1 as D-band and
1585 cm−1 as G-band. On the rGO spectrum, two peaks appeared at 1347 cm−1 (D-band)
and 1593 cm−1 (G-band). The vibrations of the peaks in rGO materials were shifted signifi-
cantly in relation to GO materials. The reason for the shift is the structure of the graphene
material, where the G band corresponds to the sp2 hybridization in C-C bonds, and D band



Appl. Sci. 2021, 11, 3966 6 of 15

matches the sp3 defects in carbon atoms as associated with structural defects [42,43]. The
spectra of the prepared nanocomposites show characteristic peaks of anatase-phase TiO2
and the presence of the D and G band. The binding of TiO2 nanoparticles into rGO, as well
as the intensities of anatase-phases in the nanocomposites, showed a significant decrease
(Figure 2A,B).

Figure 2. Raman spectra of (A) the respective nanocomposites, (inset shows TiO2 calcinated at
300 ◦C); and (B) GO, rGO, and the respective nanocomposites. The inset shows the characteristic D
and G bands of graphene-based materials.

As Figure 2B shows and Table 1 confirms, the content of graphene has an influence on
the intensity of G and D bands in the nanocomposites. The reason for the high-intensity ra-
tio between D and G bands was the presence of a lot of sp2 hybridization in C-C bonds [41].
The rGO shows a higher ratio than GO, indicating that the rGO contained more defects. The
nanocomposites have a higher intensity ratio compared to GO indicating higher graphene
structural disorder upon binding onto TiO2 [43]. The interactions of Ti-O-C bands could be
the reason for increasing sp3 defects in nanocomposites [42]. The intensity ratios between D
and G bands were utilized to determine the crystal size parallel to basal planes (La), using
the equation of Tuinstra, where the coefficient 38.5 was for wavelength at 633 nm [44]:

La(nm) =
38.5

ID/IG
(4)

Table 1. Raman intensity and shift of the prepared GO, rGO, and TiO2@rGO nanocomposites.

Samples ID D-Band, cm−1 ID G-Band, cm−1 IG ID/IG La, nm

GO 1329 42 1585 95 0.44 87.5
rGO 1347 77 1593 99 0.78 49.4

TiO2-rGO (5%) 1345 302 1605 381 0.79 48.7
TiO2-rGO (15%) 1341 138 1601 154 0.90 42.8

The recalculated values of La are shown in Table 1. The La values decreased from
GO over rGO to the prepared nanocomposites. It could be concluded that prepared
nanocomposites had decreased sp2 domains in the structure [31].

XRD patterns of pure graphite and synthesized GO are given in Figure 3A. Both of
these materials had characteristic X-ray diffraction peaks. The pure graphite showed char-
acteristic peaks at 26.48◦ and 54.58◦ attributed to the (002) and (004) planes. In particular,
the diffraction peak of GO located at 10.68◦ corresponded to the (001) plane. On the XRD
pattern of rGO, after the reduction method of GO, a new and wide diffraction peak located
at 24.40◦ attributed to the (002) plane appeared. The (002) plane in rGO indicates that
the most oxygen-containing groups such as O–H, C=O, and C–O were removed from the
nanomaterials. The new diffraction peak confirmed the successful conversion of GO into
rGO (inset of Figure 3A) [44–46]. XRD patterns of pure TiO2 and prepared nanocomposites
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are shown in Figure 3B. The pure TiO2 nanoparticles had diffraction peaks at 25.30◦, 37.86◦,
47.98◦, 53.94◦, 55.06◦, 62.62◦, 68.68◦, 70.18◦, and 75.12◦ and were indexed to the (101), (103),
(004), (200), (105), (211), (204), (116), (220), and (215) plane, respectively [37]. Specified
diffraction peaks correspond to the anatase-phase of TiO2 nanoparticles. As can be seen
in Figure 3B pure TiO2 nanoparticles and both nanocomposites show only anatase-phase
peaks in the X-ray diffraction patterns. This could be a consequence of the overlapping of
the powerful intensity of the anatase-phase peak at 25.30◦ and the low diffraction peak of
the rGO at 25.40◦ [46,47]. Nevertheless, we noticed that the diffraction intensities of anatase
peaks decreased in both nanocomposites, in particular the diffraction peak at 25.30◦. The
reason for that can be in an increasing amount of GO with defects in carbon atoms.
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XPS was performed in order to analyze the elemental composition and chemical envi-
ronment of the elements detected at the surface of the prepared nanocomposite materials.
Figure 4A shows a comparison between the high-resolution C 1s spectra of the different
samples. The C 1s spectrum of GO shows the expected shape for this nanomaterial, with
two intense peaks and a tail at higher BE. The peak at lower BE (284.4 eV) corresponded
to the net of interconnected carbon atoms with a combination of sp2 and sp3 hybridiza-
tion, derived from the breakdown of graphite layers [48]. The second peak and the tail
were associated with carbon bonded to oxygen in a variety of functional groups, with a
higher degree of oxidation as BE increased. This region of the spectrum was fitted using
components centered at 286.4 eV, 288.2 eV, and 289.5 eV, corresponding to C–O, C=O, and
O–C=O bonds, respectively [48]. In comparison, the rGO spectrum shows an intense peak
at 284.4 eV with a smaller shoulder elongated towards higher BE values. The main peak,
related to non-oxygenated carbon, was fitted using an asymmetric function according to
the higher proportion of carbon sp2 after the reduction of GO. The left side of the spectrum
includes the contribution of different functional groups containing oxygen, just like in
GO but with a noticeable decrease of intensity, indicating effective deoxygenation of GO
nanosheets [48]. The carbon region of the TiO2 sample reveals the typical spectrum shape
of adventitious carbon contamination. It was fitted using the main peak at 285.3 eV, com-
patible with hydrocarbons, and two smaller components at 286.7 eV and 289.4 eV, related
to the C–O and O–C=O groups. C 1s spectra of the TiO2@rGO nanocomposites (5 wt.%
and 15 wt.% of rGO) combine components from both rGO and TiO2 samples. This fact was
easily perceptible in the spectrum of TiO2@rGO (5 wt.% of rGO), which showed a shape
similar to the adventitious carbon spectra but with a shoulder at lower BE, towards the
position of rGO. This way, both spectra (5 wt.% and 15 wt.% of rGO) were fitted using four
components, the first one related to the C net of rGO, at 284.4 eV; the second one coinciding
with the energy of hydrocarbons in TiO2; and two more components associated to oxygen
functionalities. As expected, there is a noticeable increase in the area of the component
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associated with rGO in the nanocomposite containing 15 wt.% of rGO with respect to one
having 5 wt.%.
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High-resolution Ti 2p spectra of TiO2 and TiO2@rGO nanocomposites (Figure 4B)
showed two symmetric peaks at 459.2 eV and 464.9 eV, corresponding to Ti 2p3/2 and
Ti 2p1/2, respectively. Both the BE values and spin-orbit splitting of 5.7 eV were in good
agreement with Ti (IV) in a TiO2 chemical environment [44]. Supporting this, Figure 4C
shows the O 1s spectra of TiO2 and both TiO2@rGO nanocomposites. All of them had a
main peak at 530.4 eV, assigned to oxygen bonded to titanium, and a smaller and wider
component around 531.8 eV, commonly ascribed to hydroxyl groups covering the sur-
face oxygen vacancies in the TiO2 structure [49,50], and also compatible with oxygen in
organic compounds.
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The synthesized TiO2 and TiO2@rGO nanocomposites and commercially available
P-25 were analyzed by scanning electron microscope (SEM). Representative images of
the analyzed powders are shown in Figure 5. The size of P-25 grains was around 30 nm
(Figure 5A). The synthesized TiO2 particles were half smaller and were spherical in shape,
just like P-25 (Figure 5B). SEM images of synthesized GO and prepared rGO are displayed
in Supplementary Figure S1. Figure 5C,D shows the TiO2@rGO nanocomposites with 5
and 15 wt.% of rGO, which aggregated into larger forms. It can be seen that TiO2 particles
had a similar size as pure powder, and they were embedded in the surface of rGO sheets
(insets in Figure 5C,D) [51,52]. To confirm the homogeneous distribution of elements in
the prepared nanocomposite of TiO2@rGO (15 wt%), elementary mapping is shown in
Supplementary Figure S2.
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3.2. Photocatalytic Activity of TiO2@rGO Nanocomposites

Diffuse reflectance UV-Vis spectroscopy for modulation of the bandgap energy of the
synthesized materials was calculated by Kubelka-Munk function, as shown in Figure 6.
The bandgap results were obtained, giving Eg values of 2.71 eV, 3.03 eV, and 3.15 eV
for synthesized TiO2@rGO nanocomposites and for pure TiO2 particles. The bandgap
energy of reference P-25 material was compared and displayed in the Supplementary
Figure S3. The obtained results indicate that the decrease of the bandgap of the synthesized
nanocomposites occurs with the introduction of rGO sheets. It can be observed that the
photoactivity could be shifted into visible light.

Firstly, the photolysis tests (without catalysts) were performed, and it can be reported
that the degradation of MB and RhB dyes was negligible under the irradiation. Before
the photocatalytic tests, the adsorption properties of synthesized catalysts were evaluated.
The obtained results of adsorption tests for MB and RhB dyes in the dark for different
catalysts are displayed in Figure 7. The adsorption test is related to adsorption-desorption
equilibrium among MB and RhB dyes molecules and catalysts surface. It could be seen
that prepared nanocomposites showed higher adsorption of dyes compared to pure TiO2
particles and reference P-25 material. Indeed, the dyes adsorption for pure TiO2 particles
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and reference P-25 material was negligible for both dyes. On the other hand, the RhB and
MB adsorption for synthesized nanocomposites was dependent on the amount of rGO. The
RhB adsorption for TiO2@rGO (5%) was 1.6% which was lower than for the MB at 4.8%.
The highest adsorption capacity of dyes was observed for TiO2@rGO (15%) nanocomposite
with 25.8% for RhB and 13.8% for MB.

Figure 6. The absorption threshold energy (inset shows the bandgap energy) of synthesized pure
TiO2 particles and nanocomposites TiO2@rGO with 5 wt% and 15 wt.% of rGO thermal treated at
300 ◦C.
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The photocatalytic performances of TiO2 and respective nanocomposites were evalu-
ated for dyes degradation under experimental parameters as reported in Supplementary
Table S1. The photoactivity of prepared photocatalysts in comparison with reference P-25
material was monitored based on MB (cationic dye) and RhB (zwitterionic dye) decomposi-
tion under the irradiation (depicted in Figure 8A,B).
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It can be seen in Figure 9A,B that the synthesized nanocomposites increased the de-
composition of RhB and MB significantly compared to synthesized TiO2 photocatalyst.
Both synthesized nanocomposites have a very efficient MB and RhB decolorization after
120 min, which was very similar to reference P-25 material. The photoactivity of TiO2@rGO
(5%) was obtained with 99.6% of MB degradation and 99.9% of RhB photodecomposition.
The nanocomposite with a higher amount of rGO (TiO2@rGO (15%)) showed similar pho-
todegradation results, 98.1% for (MB) and 99.8% for (RhB). Meanwhile, the photoactivity
evaluation of synthesized TiO2 particles was significantly lower than that of nanocompos-
ites and referenced P-25 material. The degradation rate of TiO2 was 70.9% for RhB and
73.9% for MB.

The photodegradation rate of MB and RhB dyes followed the pseudo-first-order
kinetics. The linear kinetic rate constant (k) in detail is reported in Table 2. It could be
determined that pseudo-first-order rate constants of TiO2@rGO nanocomposites were
significantly higher than for pure TiO2 nanoparticles in the degradation of both dyes. The
structure of organic pollutants played an important role in the photocatalytic process. MB
as cationic dye and RhB as zwitterionic dye based on obtained photocatalytic tests showed
significant photodegradation rates under the irradiation by nanocomposites which were
related to the presence of rGO. In comparison to the P-25 TiO2, for MB photodegradation, all
composite materials showed lower photocatalytic activity, and for RhB, the photocatalytic
activity was almost equal to the photoactivity of P-25 TiO2. Pure synthesized TiO2 showed
the lowest photoactivity for both dyes. To confirm the immutability and persistence of
as-prepared materials after performed photocatalytic tests, the SEM images were taken
and given in Supplementary Figure S4.
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Figure 9. The percentage of (A) MB and (B) RhB degradation efficiency by the photocatalytic activity of the prepared
catalysts under the radiation; rate constant, k of (C) MB and (D) RhB degradation for the as-prepared photocatalysts.

Table 2. Photodegradation kinetics of MB and RhB dyes under radiation.

Sample ID
MB Dye RhB Dye

R2 k × 10−3, Min−1 t1/2, Min R2 k × 10−3, Min−1 t1/2, Min

P-25 0.9919 47.45 14.61 0.9813 52.76 13.14
TiO2 0.9963 10.99 63.07 0.9958 10.19 68.02

TiO2@rGO (5 wt.%) 0.9821 26.40 26.26 0.9688 36.15 19.17
TiO2@rGO (15 wt.%) 0.9936 32.84 21.11 0.9951 53.05 13.07

4. Conclusions

The presented TiO2@rGO nanocomposites were successfully synthesized with appro-
priate structural features for the possible application on the photodegradation of MB and
RhD dyes under natural sunlight. Graphene-based TiO2 nanocomposites, prepared using
an optimized two-step method that combined hydrothermal treatment and calcination,
presented a significantly improved photocatalytic activity under solar-like irradiation. The
chemical bonding of particles was closely associated with the amount of rGO, time of
hydrothermal synthesis, and calcination temperature. Importantly, the obtained value
of the bandgap energy (Eg = 2.71 eV and 3.03 eV) of nanocomposites indicate that the
wavelength value shifted to visible light when compared with pure TiO2 (Eg ≤ 3.15 eV).
The application of prepared TiO2@rGO nanocomposites as photocatalysts for degradation
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of RhB and MB in an aqueous medium showed that the chemical integration of rGO with
TiO2 promoted synergistic effects which sped up the photodegradation of selected pollu-
tants. The photodegradation efficiency of MB and RhB dye by the synthesized TiO2@rGO
(5 wt.% of rGO) and TiO2@rGO (15 wt.% of rGO) nanocomposite photocatalysts after 120
min of exposure to the irradiation were significantly higher than for pure synthesized TiO2
nanoparticles. TiO2@rGO (5%) presented a photodegradation of 99.6% for MB and 99.9%
for RhB. The nanocomposite with a higher amount of rGO (TiO2@rGO (15%)) showed
similar photodegradation results, 98.1% for MB and 99.8% for RhB. Meanwhile, the pho-
toactivity evaluation of synthesized TiO2 particles was significantly lower. Although these
nanocomposite materials showed lower photocatalytic activity than P-25, their large lay-
ered structure allows a facile recovery from the aqueous medium after the photocatalytic
reaction. These preliminary results show that the prepared TiO2@rGO nanocomposite
photocatalyst may be explored as high-efficiency and green photocatalysts for simultane-
ous sorption and degradation of dyes that can be directly applicable in real effluent water
treatment by solar exposition.
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