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Abstract: With the ubiquitous use of mobile imaging devices, the collection of perishable disaster-
scene data has become unprecedentedly easy. However, computing methods are unable to understand
these images with significant complexity and uncertainties. In this paper, the authors investigate
the problem of disaster-scene understanding through a deep-learning approach. Two attributes of
images are concerned, including hazard types and damage levels. Three deep-learning models are
trained, and their performance is assessed. Specifically, the best model for hazard-type prediction has
an overall accuracy (OA) of 90.1%, and the best damage-level classification model has an explainable
OA of 62.6%, upon which both models adopt the Faster R-CNN architecture with a ResNet50 network
as a feature extractor. It is concluded that hazard types are more identifiable than damage levels in
disaster-scene images. Insights are revealed, including that damage-level recognition suffers more
from inter- and intra-class variations, and the treatment of hazard-agnostic damage leveling further
contributes to the underlying uncertainties.

Keywords: disaster scenes; mobile images; understanding; deep learning; object detection; classifica-
tion; convolutional neural network; transfer learning

1. Introduction

Disasters are a persistent threat to human well-being, and disaster resilience is of
paramount importance to the public. To achieve disaster resilience, technical and organi-
zational resources play vital roles in securing adequate preparation, adaptable response,
and rapid recovery [1]. During the phases of response and recovery, while disaster scenes
are possibly still being unfolded, information collection via disaster reconnaissance is
crucial for restoring the functionalities of communities and infrastructure systems. Dis-
aster scenes, however, are perishable as a disaster recedes and recovery efforts progress.
Traditional remote sensing (RS) technologies via orbital or airborne imaging sensors have
long been recognized as a helpful tool that provides geospatial analytics for improving the
efficacy of disaster reconnaissance. In general, RS technologies can provide data that record
the disaster scenes, including unfolded hazards (e.g., flood inundation) and disastrous
consequences (e.g., building damage). However, traditional RS platforms suffer from long
time latency due to revisit periods, orbital maneuver, and the ensuing data processing [2].
Moreover, due to their orbital or airborne view, it is often impossible for traditional RS
sensors to capture the elevation view of built objects (e.g., buildings) and other detailed
structural conditions. Therefore, although it is less efficient in terms of spatial coverage,
ground-based disaster reconnaissance is not replaceable by traditional remote sensing.

In recent years, two emerging RS technologies are changing the normal of disaster
reconnaissance. First, due to the ubiquity of digital cameras, smartphones, body-mounted
recording devices, and social networking smart apps, which may be collectively termed
smart devices, can seamlessly capture, process, and share images. This nearly real-time
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imaging can record personal and public events, including disasters. Many researchers in
Civil Engineering hence recognize the power of mobile devices for aiding disaster response,
infrastructure inspection, and construction monitoring [3–6]. The second is the use of small
unmanned aerial vehicles (UAVs). As witnessed in recent years, since UAVs can provide
high-resolution coverage of ground scenes at low above-ground-level (AGL) heights, many
research efforts investigate the application of UAV-based RS [7–10]. UAV imaging can
be deployed with diverse modes, including survey-grade imaging similar to traditional
airborne remote sensing.

Nonetheless, recent trends include using a micro-sized UAV as a flying camera at
a very low AGL, which is then similar to the imaging with the use of mobile devices,
for example, via the so-called ‘follow-me’ drone [11]. In this paper, the authors propound
that this non-traditional RS practice can conduce to the demand for real-time analytics
arising from the post-disaster response and recovery activities. By recognizing their primary
characteristic of using small and low-cost devices carried or operated by human users
or operators, the term mobile remote sensing is coined in this effort. It is noted that in this
paper, the emphasis is on smart device-based imaging and the disaster-scene images from
this venue. In the meantime, this choice is supported by the abundance of such images,
as researchers have archived a large volume of mobile imagery data from numerous
disaster reconnaissance activities (e.g., as found in DesignSafe-CI, a collaborative cloud-
based workspace) [12].

Mobile RS provides untapped opportunities for extracting relevant information and
understanding natural disasters. However, significant differences exist when comparing
the processing methods for mobile RS images against traditional ones. First, traditional
RS images are generally ortho-rectified and geo-referenced when provided for processing
and understanding. Because of such geo-readiness, many application efforts concern
change detection, which is to detect landscape differences at different times for a terrain of
interest on the Earth surface. As such, besides basic photogrammetric processing methods,
a wide range of digital change-detection methods are found [13–17]. Mobile RS images
differ from traditional ones in that they are often opportunistically collected. Due to their
low-altitude or ground-level capturing mode, numerous images at different perspective
angles are necessary for characterizing a local scene. Therefore, the involved processing to
obtain a full view of the object (e.g., via a 3-dimensional reconstruction process) is much
more complex than processing geo-ready images. Second, although mobile RS images
can be geo-tagged via geographical positioning services in smart devices, many social or
crowdsourced images are often marked with questionable geo-tags or simply have not
geo-tags [18,19]. Last, traditional RS images captured at different times can give rise to a
time-series coverage for a particular region, whereas mobile RS data lacks such temporal
advantages. These differences imply that one cannot use the traditional photogrammetric
processing and change-detection methods to deal with mobile RS images that are arranged
spatially and temporally non-structural. From this point of view, the process of processing
and understanding mobile RS images, including extraction, interpretation, and localization
of objects in images, belong to the general image understanding problem as defined in the
computer or machine vision literature [20,21]. By borrowing this concept, image-based
disaster-scene understanding is coined in this paper, which is defined as a computational
process of extracting information and detecting features or objects from images relevant
to interpret a disaster. As will be further elaborated, research gaps exist towards a more
cognitive mobile RS-based disaster-scene understanding.

This paper contributes to the knowledge by developing and testing a deep-learning
framework to understand disaster scenes. In this framework, the proposed learning
models identify two essential properties in a given disaster image (namely the hazard
type and the disaster-induced damage level). Performance evaluation reveals the insights
in understanding disaster scenes in mobile images, including that the general damage-
level classification is more challenging than hazard-type recognition. To achieve the goal,
the authors built a multi-hazard disaster database with images from multiple sources,
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which forms another contribution of this paper. In the following, the specific research
problems and challenges are defined. The methodology framework is proposed, including
data preparation, network architectures and adjustment for two deep-learning models,
and transfer-learning-based training. Three strategically designed deep-learning models
are evaluated in this paper, followed by a comprehensive discussion. Conclusions are then
given based on the research findings in this paper.

2. Research Problems and Challenges

Disaster scenes from extreme events, such as hurricanes, floods, earthquakes, tsunamis,
and tornadoes, are considerably complex. From the perspective of naked eyes, a disaster
scene includes countless visual patterns related to built objects, natural hazards, landscapes,
human activities, and many others. The semantic attributes for labeling patterns relevant
to this effort are named hazard-type and damage-level. The rationale for this proposition is
justified as follows by examining the practice of professional reconnaissance activities.

It is a cognitive process when professionals in a disaster field conduct digital recording
via cameras or smart apps, e.g., Fulcrum [22]. To the trained eyes of professional engineers,
their attention can be quickly paid to the visual patterns of interest, the built objects,
the apparent damage features (e.g., cracking or debris), and other clues that are relevant
to damage due to the extraordinary intelligence of human beings and their professional
training. For example, a post-tsunami image often contains inundation marks or water-
related textures, whereas the post-earthquake images usually show conspicuous cracking
in buildings or cluttered debris. For tornado scenes, the damaging effects usually lie on the
roof or the upper area of buildings, showing peeled surface materials due to wind blowing
and shearing. In sum, professionals often act as a detective while conducting a forensic
engineering process. In this process, they record the consequential evidence of damage
in built objects using digital images. They further look for cues that cause the damage,
namely the causal evidence of hazardous factors, which may co-exist in the same image
of damaged objects or are recorded in different images. Second, this cognitive process
continues in written reports by professionals, where the images are often showcased with
captions or descriptions. Domain knowledge is more involved in this process, wherein the
engineers tend to use a necessary number of images to analyze the common evidence of
hazards and damage in images, then remark the intensity of the hazard and the degree
of damage rationally, and even further, infer the underlying contributing factors, such
as structural materials and geological conditions. Indeed, this has been called a learning
from disaster in engineering communities as demonstrated in many disaster reconnaissance
reports (e.g., [23]).

This cognitive understanding and learning process rarely occurs when the crowd
conducts it as they lack domain knowledge. Also, even it is conducted by professionals,
they may seek to excessively record disaster scenes yet without describing and reporting all
images. As mentioned earlier, digital archives and social networks to this date have stored a
colossal volume of images recording extreme events in recent years, which are not exploited
or analyzed in the foreseeable future. This accumulation will inevitably be explosive with
the advent of ubiquitous use of personal RT devices, for example, body-mounted or flying
micro-UAV cameras.

In this paper, inspired by the practical cognitive process of disaster-scene understand-
ing, the authors argue an identifiable causality pair in a disaster-scene image, the hazard
applied to and the damage sustained by built objects in images. This identifiable causality,
more specifically termed disaster-scene mechanics, gives rise to the fundamental research
question in this effort: does a computer-vision-based identification process exist that can
process and identify hazard and damage related attributes in a disaster-scene image? To
accommodate a computer-vision understanding process, the attributes are reduced to be
categorical. As such, two identification tasks are defined in this paper:

(1) Given a disaster-scene image, one essential task is to recognize the contextual and
causal property embedded in the image, namely the Hazard-Type.
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(2) The ensuing identification is to estimate the damage-level for an object (e.g., a building).

It is noted that compared with human-based understanding found in professional
reconnaissance reports, the underlying intelligence is much reduced in the two fundamental
problems defined above. Regardless, significant challenges exist toward the images-based
disaster-scene understanding process.

The challenges come from two interwoven factors: the scene complexity and the
class variations. To illustrate the image complexity and the uncertainties, sample disaster-
scene images are shown in Figure 1, which are manually labeled with hazard-type and
damage-level. Observing Figure 1 and other disaster-scene images, the first impression is
that image contents in these images are considerably rich, containing any possible objects
in natural scenes. Therefore, understanding these images belong to the classical scene
understanding problem in Computer Vision [24,25], which is still being tackled today [26].
In terms of variations, as one inspects the image samples in Figure 2, it is relatively easy
to distinguish the hazard-type if the images show visual cues of water, debris, building,
and vegetation patterns. However, when labeling damage-level, it is observed that the
‘Major’ or ‘Minor’ damage-level is relatively easy to identify, whereas the ‘Moderate’
possess significant uncertainties between different observers or even the same observer at
different moments, which are collectively called inter-class variations. As one inspects more
images, the variations are extensively observed within images that fall in the same class in
terms of either the same hazard-type or damage-level, known as intra-class variations [27].
The effects of these variations are two-fold. First, human-based labeling is more likely to
be erroneous, which increases the theoretical lower-bound decision errors. Second, they
challenge any machine-learning candidate model if it has a low capacity in representing
the complexity or weak discriminative power to deal with the class variations.

Model EvaluationTraining ModelsDisaster-scene 
database

Training 
Dataset
(85%)

𝑀!"
#$
(𝐹𝑅𝐶, 𝑍𝐹)

𝑀!"
#$
(𝐹𝑅𝐶,𝑅𝑁)

𝑀!"
#$
(𝑆𝑆𝐷,𝑅𝑁)Test Dataset

(15%)

𝑀!"
#$
(𝐹𝑅𝐶,𝑅𝑁)

HT/DL 
Prediction

The best
model?

Figure 1. Workflow of proposed methodology framework.
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wave

(a) (b) (c)

Figure 2. Sample disaster-scene images labeled with hazard-type and damage-level with bounding-
box annotation: (a) green box means minor damage, (b) yellow for moderate damage, and (c) red for
severe to collapse damage.

The scene complexity and the conjunct inter-class and intra-class variations pose
significant challenges in constructing a supervised learning-based model. Such a model
should be high-capacity to encode the complexity in images and be sufficiently discrim-
inative to identify class boundaries in the feature space. By considering these demands,
the bounding-box-based object-detection models are selected in this paper. A review of
related background is given in the following.

3. Deep-Learning-Based Framework
3.1. Review of Deep Learning

The performance of natural scene understanding culminates today as deep-learning
techniques advance [24–26]. A deep-learning model, incorporating both feature extraction
and classification in an end-to-end deep neural network architecture, can learn intricate
patterns (including the objects of interest and the background in images) from large-scale
datasets. For visual computing tasks, the dominant deep-learning architecture is the
Convolutional Neural Network (CNN), which has a reported superb performance in many
types of tasks, such as object classification, localization, tracking, and segmentation [28].
Moreover, contemporary deep-learning models, especially those for image-based scene
understanding, possess an advantageous mechanism when learning from small datasets,
the transfer learning (TL) mechanism. The technical advantage of TL, briefly speaking,
is that if a pre-trained CNN model bearing a priori knowledge of the general scenes via
learning from a large-scale database, it can be re-trained over the new but small database
to achieve updated knowledge for objects of interest with improved convergence rates and
prediction performance [29,30]. In the literature, many commonly used CNN models have
been trained and validated based on a large-scale database (e.g., the ImageNet [31]); the
backbones of these CNN models (usually all layers except the final classification layer) can
be directly used to realize transfer learning in a new model.

In this effort, the central problem of image-based hazard-type and damage-level classi-
fication is essentially an object-detection problem, including localization and classification.
Early object-detection methods often use sliding-window and template-matching strate-
gies. However, they are superseded by more accurate deep-learning-based methods in
recent years. The first category of deep-learning-based methods features bounding-box
detection, which provides a natural mechanism of classifying the region of interest in an
image domain, namely an attention mechanism. Two strategies are found for bounding-
box-based localization of objects: region-proposal strategy represented by the Faster R-
CNN model [32] and regression-based generation as in the Single Shot Multibox Detector
(SSD) [33]. The third type of object-detection technique aims to localize and classify ob-
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jects at the pixel level, which is known as semantic segmentation [34]), and is typically
much computationally expensive (as shown in [35]). In light of disaster scenes in images,
which often show cluttered objects without apparent boundaries, pixel-level segmentation
is unnecessary.

The two bounding-box detection models, Faster R-CNN and SSD, are adopted and
further modified in this paper; for a detailed comparison and evaluation of the original
models, one can refer to a recent review paper [36]. To this date, the Faster R-CNN is a
de-facto CNN-based object-detection model, which implements shared network weights
and adopts uniform network structures (the Regional Proposal Network, or RPN, and a
user-selected CNN for feature extraction), resulting in much faster and more accurate
prediction than its predecessors (Fast R-CNN and R-CNN) [32]. It is noted that in a Faster
R-CNN model, besides the two core networks (RPN and CNN), bounding-box coordinates
regression and final classification layers still exist. On the other hand, the SSD model
realizes global regression and classification, mapping straightly from image pixels to
bounding-box coordinates and class labels. Therefore, the SSD model remarkably reduces
the prediction time and achieves real-time prediction, which was reported to have a rate of
46 frames per second (FPS) compared with about 7 FPS for Faster R-CNN [33]. Nonetheless,
as evaluated by [36], its performance gain sacrifices its accuracy in detecting small objects
or objects with granular features in images.

3.2. Methodology Framework

In this effort, three deep-learning models are developed and evaluated based on a
unique disaster-scene database prepared by the authors. The basic methodological steps
are illustrated in Figure 1. In the following, these steps are detailed.

3.2.1. Multi-Hazard Disaster-Scene Database

A multi-hazard disaster-scene (MH-DS) database covering three different hazard
types with mobile images captured mostly in urban settings is created in this paper and
has been publicized as an open-source database [37]. This database was completed by
the authors and several graduate and undergraduate researchers at the University of
Missouri – Kansas City. This moderate-scale database, including approximately 1757
color images, was collected from five disaster events worldwide. Among them, 760
images were collected using Internet searching based on two earthquake disasters (the 2010
Haitian earthquake and the 2011 Christchurch Earthquake, New Zealand). Five hundred
fifty-six (566) images were searched from the Internet based on two tsunami disasters
(the 2011 Tōhoku Earthquake and Tsunami in Japan and the 2004 Indonesian Tsunami).
The remaining 441 images were collected and shared by a research team from the 2013
Moore Tornado, Oklahoma [38]. As illustrated in Figure 2, three types of hazardous forces
are embedded in the images in accordance with the five disaster events; all images are
filtered such that one or multiple buildings are found in the images. It is noted that when
developing the disaster-scene database, images with intact or normal buildings without
a disaster context are not considered. If otherwise added, the treatment is to add a label
of ‘no-damage’ or ‘no-hazard’ to the class labels; in such case, the model to be developed
essentially conducts building detection. For solving the research problem in this paper, this
is irrelevant.

The semantics creation process for completing the disaster-scene database is intro-
duced below. At the end of this process, besides the original images, two types of metadata
are created: the coordinates for a bounding box in the image (four integer values) and the
class types for hazard-type and damage-level (two integer values). This process is similarly
used as in a typical object-detection-oriented image database in the literature of computer
vision. In this paper, it was assisted by using an open-source package, ImageLabel [31]. First,
for localizing an object in an image, the most common approach is to annotate a bounding
box to the object. Nonetheless, how to define a bounding box that largely expresses the
attributes of hazard-type and damage-level is a very subjective process. The authors dis-
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cover that although cognition is individualistically different, there is an attention zone in
each image that attracts a human observer who can collectively determine the hazard-type
and damage level, leading to the desired consensus necessary for annotating and labeling
images by multiple analysts. It is found too that such attention zones subtly differ between
labeling the hazard-type and that for damage-level. For the hazard-type, the features
in such a zone include all pertinent objects in an image, including buildings, vegetation,
water, pavement, and vehicles. The attention is focused on the damaged buildings due
to the secondary task of classifying the damage level. For determining the damage level,
the attention zone is mostly on the buildings and their structural failure features. To avoid
creating two different bounding boxes for localizing hazard-type and damage-level in an
image, only a single bounding box is manually annotated to approximate the underlying
building-object focused attention zone. However, the authors argue that this treatment
may compromise the model performance.

Following the bounding-box annotation, labels for the hazard type and damage level
are assigned to each image. Due to the image collection process, hazard-type recognition
and labeling are relatively straightforward. Given the disaster-event type known in advance
of the collection process, the analysts only need to filter out images that do not fall in any
of the hazard-type. For example, given the 2011 Tōhoku event, buildings damaged by
earthquakes were found in images; to focus on the tsunami-wave induced hazards, these
images were excluded. When assessing the images from the 2011 Christchurch Earthquake,
images with ground water-related scenes (due to liquefaction) were removed. Damage-
level recognition and labeling bear more uncertainties. First, no standard or rule can
guide damage-level scaling agnostic to hazard types. The most commonly used guide for
field-based visual damage scaling is found in [39], which defines five levels of identifiable
damage based on visual features of a low-rise building. However, it is for earthquake-
induced damage only. In this effort, with five hazard types and considering indefinite
variations in building materials and types, three levels of damage are enacted to describe
damage-level, which is assumed to be invariant to hazard types and building properties.
Consequentially, the authors propose to use the following three damage levels. (1) The
‘Minor’ level stands for slight damage (usually the structure stands and appears to have
a few instances of cracks, cluttered objects, or debris); (2) The ‘Moderate’ level describes
globally moderate to locally severe damage (visually, the object stands but appears to
have many cluttered artifacts, severe cracks, or distorted elements); (3) The ‘Major’ level
covers both globally severe damage and full collapse (visually the structure shows partial
to full collapse).

A numeric tag is uniquely assigned to simplify the labeling, which differentiates
both the hazard type and the damage level. After the manual labeling and bounding-box
creation, all these visually obtained manual tagging and annotation results become the
critical metadata as an integral part of the resulting disaster-scene database for the ensuing
machine-learning framework. Furthermore, the labels and bounding-box information
(including the coordinates of the bounding-box corners in images) for each image is written
in an XML file. The number of the resulting XML files is the same as the number of images
in the database. Figure 3 illustrates the distribution of the resulting labels. It is noted that
the instances of class labels are not well-balanced, where the Earthquake type takes 43.5%
of all hazard-type class labels, and the Moderate type owns 44.5% of all damage-level
labels. This imbalance needs to be heeded when evaluating model performance.
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Figure 3. Distribution of class instances: (a) Hazard-type; (b) Damage-level.

3.2.2. Deep-Learning Models and Training

Given the nature of a disaster scene, it bears two attributes simultaneously: the
hazard type and the damage level. Two classification schemes can be designed. First,
one can multiply the two sets of class labels, attempting to create a learning model that
predicts nine different classes. The problem at hand can be achieved by using a single
model outputting nine class labels. The second one is to predict hazard-type and damage-
level, separately, by two independent models. In this effort, to achieve straightforward
performance evaluation and to reveal the insights about what aspect of the underlying
disaster-scene mechanics is identifiable by a computer model, the second scheme is adopted.
Accordingly, each of the two disaster-scene attributes is learned separately from the data
using a standalone model.

As reviewed and reasoned previously, the generic bounding-box-based object-detection
models, Faster R-CNN and SSD, are adopted in this work as the baseline architectures.
First, given the flexibility of choosing a user-defined CNN feature extraction in Faster
R-CNN, two CNN-based extractors are evaluated, which are the ZF (Zeiler and Fergus)
CNN as used in the original Faster R-CNN model in [32], and the ResNet-50, a popular
and high-performance extractor proposed by [40]. Second, given the computational gain
of using the SSD architecture, a modified SSD model with the ResNet-50 as the feature
extractor is developed for comparison with the Faster R-CNN counterpart.

With this treatment and the consideration of two different deep-learning architectures
and two CNN-based feature extractors, three different deep-learning models for the two
different predictive tasks are designed, trained, and tested in this work, as defined in
Table 1. In Table 1, the symbol MHT means to learn hazard-type: MHT(FRC, ZF) using
Faster R-CNN with a ZF extractor, MHT(FRC, RN) with ResNet50, and MHT(SSD, RN)
using SSD with ResNet50. The model with the symbol MDL outputs the damage level.
Similarly, MDL(FRC, ZF) refers to the Faster R-CNN model with ZF, MDL(FRC, RN)
means Faster R-CNN with ResNet50 and MDL(SSD, RN) applies the SSD network. Table 1
summarizes the achieved trained models and their goals of prediction. With this attribute
separation, Table 1 simplifies the model outputs: for both types of models, Class 1, 2,
and 3 correspond to either the three hazard types or the three damage levels, respectively.
Therefore, besides the modification as presented in the following, all the models are adapted
to output three class labels.
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Table 1. Disaster-scene learning models and class prediction.

Models Class 1 Class 2 Class 3

MHT(FRC, ZF) Tornado Tsunami Earthquake
MDL(FRC, ZF) Minor Moderate Major

MHT(FRC, RN) Tornado Tsunami Earthquake
MDL(FRC, RN) Minor Moderate Major

MHT(SSD, RN) Tornado Tsunami Earthquake
MDL(SSD, RN) Minor Moderate Major

Note: HT—hazard-type; DL—damage-level; FRC—Faster R-CNN; RN—ResNet-50; and SSD, Single Shot Multi-
Box Detector.

3.2.3. Modified Faster R-CNN Models

As shown in Figure 4, this network consists of two sub-networks: a basic convolutional
network for image feature extraction and the region-proposal network for bounding-box
prediction. To evaluate the effects of CNN feature extractors, the basic ZF network is
used first. As originally proposed in [32], this model is taken as a baseline model in
this paper. The ZF network [41], a variant of the AlexNet model, can map the extracted
features to a synthesized image at the pixel level (termed DeConvNet), which makes it
convenient to visualize the mechanism of CNN-based feature extraction. ZF network has
five convolutional layers and two fully connected layers. Figure 4a illustrates this network.
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(b)
Figure 4. Modified Faster R-CNN models: (a) using a ZF network as feature extractor; and (b) using a ResNet-50 as
feature extractor.

In the second model, the ZF network is replaced by the ResNet-50 [42] as an enhanced
feature extractor. In the ResNet family of networks, multiple nonlinear layers are used
to approximate a residual function. This treatment significantly reduces the degradation
phenomenon caused by introducing deeper layers. The ResNet layers are structured into
blocks, and typical block stacks three layers: 1 × 1 convolutional layer for reducing the
dimension first, a 3 × 3 convolutional layer, and another 1 × 1 convolutional layer for
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restoring the dimension. Adopting batch-normalization (BN) in ResNet further enables
improved generalization performance for such a large-scale deep network. A ResNet-50
network has four main clustered layers, which have 3, 4, 6, and 3 blocks in each cluster. As a
result, ResNet-50 has 50 layers. Since the last layer of ResNet50 is a fully connected layer
that cannot directly connect to the RPN stage in the Faster R-CNN architecture, the output
from the 3rd layer cluster of ResNet50 is fed to the RPN sub-network. The ROI layer is
re-connected to the 4th layer cluster of the ResNet-50, followed by the fully connected
layers for bounding-box and label prediction. Figure 4b illustrates the resulting modified
Faster R-CNN network.

3.2.4. Modified SSD Network

With the concern of expensive computation pertinent to the Faster R-CNN architecture,
the authors further consider the SSD architecture. To have a fair comparison with the Faster
R-CNN with a ResNet-50 extractor, ResNet-50 is adopted for the SSD model. This treatment
implies that when comparing the Faster R-CNN models with the modified SSD in this
paper, the only difference at the architecture level is their individualistic treatment of
bounding-box generation and classification scores generation. The resulting architecture of
the SSD model is shown in Figure 5.
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Figure 5. Modified SSD network ResNet-50.

3.2.5. Training Via Transfer Learning

The disaster-scene database in this work has about 1700 (1.7 K) images for both training
and testing. For training and testing in this effort, 85% and 15% of the images are randomly
picked, respectively. As such, 1403 images are randomly selected and used in the training
phase, and the remaining 254 images as the testing data. However, the database is relatively
much smaller than a typical database (which usually has over 10 K to millions of images)
for training a CNN model. As reviewed earlier, the transfer learning (TL) mechanism is
introduced into the training procedure.

In this paper, the pre-trained ZF and the ResNet-50 models as feature extractors
trained on ImageNet, are used; the weights in their networks are subject to a fine-tuning
process during the training (i.e., not from a set of random weights or from ‘scratch’). Other
network layers in the modified Faster R-CNN or SSD models are still subject to complete
training. To proceed with the TL-based training, an end-to-end iterative training process is
implemented. Since the Faster-R-CNN models have two parallel parts, the shared CNN
(ZF or ResNet-50) and the RPN, in this paper, the CNN is trained with 80,000 epochs first,
then the RPN is trained continuously with 40,000 epochs. This procedure is repeated twice,
resulting in a total of 240,000 epochs. A fully connected classifier is trained at the end of
the framework. To create the same condition for the performance comparison, the SSD
models are trained with 240,000 epochs too. Figure 6a,b provides the losses as the training
epochs for the model M(FRC,RN)

HT and M(FRC,RN)
DT , respectively. Both loss curves indicate the

convergence of learning with the epochs set in this work.
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Figure 6. Loss curves of (a) M(FRC,RN)
HT and (b) M(FRC,RN)

DL .

All the models use descending learning rates: the learning rate starts from 3 × 10−4,
then it becomes one-tenth of the original learning rate after the CNN training (at the
80,000 epoch). For the second training procedure (CNN + RPN), the learning rate is
reduced by 10 times again. These models are trained in a workstation with Nvidia Titan
X GPU and Intel Xeon CPU. Due to the hardware limitation, the batch size is set as 16.
The entire training for each model takes around 9 h.

4. Performance Evaluation

With the deep-learning models defined previously, this section aims to conduct ex-
perimental testing based on the multi-hazard disaster-scene dataset prepared in this work.
Quantitative performance measures and graphical analytics are used for this purpose. It is
noted that similar to the conventional treatment in bounding-box-based objection detection,
it is the class labels that are evaluated. Bounding boxes are used as a visual reference to
exam if proper attention zones are produced.

4.1. Performance Measures

The simplest and basic performance measures are based on the calculation of pre-
diction rates given a set of known class labels and classification labels, resulting in the
counting of four prediction consequences, including the number of true-positive (TP),
true-negative (TN), false-negative (FN), and false-positive (FP) predictions. With these
counts, simple accuracy measures, including the confusion matrix, the Overall Accuracy
(OA), and the Average Accuracy (AA), can be defined. These simple accuracy measures
may be misleading in practice, particularly when the learning data is imbalanced. In this
work, a comprehensive set of performance metrics, including scalar and graphic metrics,
are adopted.

Precision and recall are improved performance measures in the field of information
retrieval and statistical classification, also widely used in the deep-learning-based object-
detection literature. The precision is the ratio of the number of positive samples to the total
number retrieved (defined as TP/(TN + FP)). It reflects the ability of a model to predict
only the relevant instances. The recall rate refers to the ratio of the number of positive
samples retrieved and the number of all truly positive samples in the dataset (defined as
TP/(TP + FN). The recall indicates the ability of a model to find all relevant instances.
The two measures are coupled; in general, when both measures approach 1, they reflect a
more accurate model. However, practical models often achieve higher precision and low
recall or vice versa. Based on precision and recall, the F1 score, which is the harmonic mean
of precision and recall, quantifies the balanced performance of a classification model.

The precision and recall can be evaluated using a default threshold value (i.e., 0.5) in
the classification layer. By varying the underlying classification threshold, a precision-recall
curve (PRC) can be plotted. Technically, a maximal F-1 measurement (and the optimal
threshold) can be recognized from this PRC curve. Another graphical evaluation approach,
called the Receiver Operating Characteristic (ROC) curve, is often used in the literature on
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machine learning. A ROC is created by plotting the true-positive rate (which is the same as
the recall measure) against the false-positive rate, during which the classification threshold
varies as well. Given a PRC or ROC associated with an acceptable classification model,
one usually observes that as the recall (or the true-positive rate) increases, the precision
decreases, and the false-positive rate increases. Last, it is noted that with the ROC curve,
the area under the ROC curve (AUC) can be used as a lumped measure that indicates
the overall capacity of the model. In this paper, the baseline confusion matrices, four
performance statistics AUC, F1 score, AA, and OA, and two graphical curves (PRC and
ROC curves) are used as performance measures.

4.2. Model Performance

The performance of the predictive models for hazard-type and damage-level classi-
fication is evaluated separately in this section. In each case, besides the straightforward
confusion matrix, the scalar accuracy measures, including the F1 score, the overall accuracy
(OA), the average accuracy (AA), and the area under the ROC curve (AUC) are jointly
considered. The graphical ROC and PRC of the best models selected in this paper are
further used to examine the model capacity and robustness.

4.2.1. Hazard-Type Prediction Performance

Three hazard-type prediction models are assessed herein (Table 1). Figure 7 demon-
strates four sample prediction results from MHT(FRC, RN). In each predicted instance,
both ground-truth and predicted information are annotated, including the bounding boxes,
the class labels, and the prediction scores. Regarding the bounding-box prediction, first, it
is observed that our strategy of emphasizing the spatial boundaries of damaged buildings
is largely confirmed. In all cases, the bounding boxes tend to envelop the buildings. It is
observed that for tornado scenes, as illustrated in Figure 7a,b, both bounding boxes and
hazard-type are more accurately detected. For earthquake and tsunami scenes, instances
exist that are challenging to differentiate for human analysts if one inspects Figure 7c,d.
Nonetheless, the model largely has learned the salient differences in terms of geometric
distinction of debris patterns. In addition, while outlining the bounding box in Figure 7d,
it seems that the analyst emphasizes the salient region that can inform the tsunami hazard-
type. Therefore, a smaller box is given. In terms of discriminating its damage-level, it is
excessively small.
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(a) (b)

(c) (d)
Figure 7. Hazard-type prediction using MHT(FRC, RN) (red-bounding boxes from prediction; and
blue boxes from testing data): (a) Tornado-wind scene (correct prediction with a score of 100.0%);
(b) Tornado-wind scene (correct prediction with a score of 100.0%); (c) Earthquake-shaking scene
(correct prediction with a score of 99.9%); (d) Tsunami-wave scene (correct prediction scene with a
score of 90.18%).

Based on the testing data, the accuracy measurements are reported in two tables.
Table 2 reports the confusion matrix for each hazard-type model. In Table 3, four accuracy
measures are listed, including the AUC based on the ROC curve as a measure of model
capacity, the F1 score as the primary accuracy measure, and the AA as a simple accuracy
measure. These three measures are calculated as different class labels (the hazard-type of
Tornado, Tsunami, and Earthquake). Then the overall accuracy measure, OA, is given for
each model. The following observations are summarized based on these performance mea-
surements.

Table 2. Confusion matrix of hazard-type prediction.

Actual

Prediction MHT(FRC, ZF) MHT(FRC, RN) MHT(SSD, RN)

Tornado Tsunami Earthquake Total Tornado Tsunami Earthquake Total Tornado Tsunami Earthquake Total
Tornado 72 2 1 75 73 0 2 75 33 3 39 75
Tsunami 4 48 16 68 0 59 9 68 16 19 33 68

Earthquake 9 16 86 111 2 12 97 111 17 22 72 111

Total 85 66 103 254 75 71 108 254 66 44 144 254
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Table 3. Performance of hazard-type prediction.

MHT(FRC, ZF) MHT(FRC, RN) MHT(SSD, RN)

AUC F1 Score AA AUC F1 Score AA AUC F1 Score AA

Tornado 0.98 0.90 0.96 0.99 0.97 0.97 0.64 0.47 0.44
Tsunami 0.83 0.72 0.705 0.92 0.85 0.87 0.57 0.34 0.28

Earthquake 0.86 0.80 0.774 0.91 0.88 0.88 0.55 0.57 0.65

OA 0.81 0.90 0.49

First, the high AUC scores of both the FRC-based models signify their higher predic-
tion capacities than the SSD model at all hazard types. In terms of the F1 scores, the FRC-
based models again show much greater accuracy than the SSD model. If the F1 scores alone
are compared, one may see that when the Resnet-50 is used as the feature extractor, slightly
better classification accuracy is observed than the ZF-based model. The AA measure shows
a consistent trend as the F1 score. On the other hand, when the SSD model MHT(SSD, RN)
is concerned, even with the more competitive feature extractor (ResNet-50), its accuracy
drops significantly. Based on this evidence, it is argued that the use of Faster R-CNN as the
basis for hazard-type prediction is superior to the SSD-based architecture.

Between the two Faster R-CNN models, MHT(FRC, ZF) and MHT(FRC, RN), it can
be seen that this hazard-type detector is more sensitive to the tornado disaster than to
the earthquake disaster, and the last is the tsunami disaster. To comprehend this obser-
vation, the percentages of images of different hazard types in the learning datasets may
provide some insight. It is found that the earthquake images are about 42% of the total
samples, tornado images about 25%, and tsunami images around 33%. This indicates
that the data is relatively not well-balanced but not severely imbalanced, implying that
data imbalance does not sufficiently explain the lowest performance in tsunami disaster
prediction. By visually inspecting the images and further reflecting on the strategy of using
building-focused bounding boxes when annotating the data, the authors speculate that for
a tsunami image, by the mandatory attention of the visual cues on building objects using
bounding boxes, this treatment may tend to miss other important visual cues, particularly
water. In other words, by confining the visual cues within the bounding boxes for only
the buildings, more subjective uncertainties are introduced to discriminate tsunami scenes
against the other two.

As observed previously, the best model for hazard-type prediction is MHT(FRC, RN).
To better assess its capacity and robustness, the PRC and ROC curves are illustrated in
Figure 8. In the PRC plot, the iso-contours of the F1 values with various classification
thresholds are illustrated, which lead to the F1 contours of 0.2, 0.4, 0.6, and 0.8. The baseline
prediction line is marked in the ROC lines, indicating that any ROC above this diagonal
line implies a useful classification model. From PRC and ROC plots, which are overall
monotonic and symmetrically concave, it is evident that the model consistently has a strong
capacity and robustness at most select thresholds.
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Figure 8. Performance of MHT(FRC, RN) in terms of: (a) Precision-Recall Curve; (b) ROC curve.

4.2.2. Damage-Level Prediction Performance

Three damage-level prediction models are assessed herein (Table 1). Figure 9 first
demonstrates the damage-level prediction results using the same four sample inputs
as in Figure 8 using the damage prediction model MDL(FRC, RN). As shown earlier,
the bounding boxes tend to envelop the buildings with different damage features. It is
interesting to note that in Figure 9d, the damage prediction model chooses a much different
bounding box and reports a correct damage level. In contrast, the underlying bounding-
box emphasizes tsunami hazard features, and an erroneous damage level is given as
‘ground-truth’. This implies the subjective variability introduced by human annotators.

The performance measurements are reported in terms of the confusion matrices and
scalar measures in Tables 4 and 5, respectively. The most significant observation is that
damage-level prediction performance decreases considerably compared to the hazard-type
prediction over the testing data. In terms of both the AUC, F1 score, the AA’s, and OA’s,
none of the performance measurement exceeds 0.9. Nonetheless, the model with the high-
est performance values is found in MDL(FRC, RN), which shows moderate performance
with an overall accuracy of 62.6% and AUC and F1 scores both greater than 0.5 at all
damage-level predictions, albeit an alarming accuracy at predicting moderate-level dam-
age. The two other damage-level prediction models, MDL(FRC, ZF) and MDL(SSD, RN),
manifest unsatisfactory prediction performance. This implies that the ‘strong’ Faster R-
CNN model with a ‘moderate’ ZF feature extractor or the ‘normal’ SSD model with a
‘strong’ Resnet feature extractor cannot sufficiently discriminate damage-level as human
experts can do. The model MDL(FRC, RN) with a strong feature extractor and a strong
region-proposal model can correctly detect damage-level. If one scrutinizes all the model
performance measurements, even with two non-satisfactory models, it is evident that pre-
dicting moderate-level damage poses to be the most challenging one. This aspect, as well
as the overall moderate performance, is further discussed later.
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(a) (b)

(c) (d)
Figure 9. Damage-level prediction using MDL(FRC, RN): (a) minor-damage scene (predicted
as moderate damage with a score of 97.4%); (b) minor-damage scene (correct prediction with a
score of 100.0%); (c) major-damage scene (predicted as moderate damage with a score of 95.1%);
(d) mislabeled moderate-damage scene (predicted as major damage with a score of 95.8%).

Table 4. Confusion Matrix of damage-level Models.

Actual

Predict MDL(FRC, ZF) MDL(FRC, RN) MDL(SSD, RN)

Minor Moderate Major Total Minor Moderate Major Total Minor Moderate Major Total
Minor 27 24 10 61 46 7 8 61 29 8 24 61

Moderate 23 57 33 113 19 55 39 113 24 21 68 113
Major 10 34 36 80 4 18 58 80 13 15 52 80

Total 60 115 79 254 69 80 105 254 66 44 144 254

Table 5. Performance of damage-level classification.

MDL(FRC, ZF) MDL(FRC, RN) MDL(SSD, RN)

AUC F1 Score AA AUC F1 Score AA AUC F1 Score AA

Minor 0.59 0.44 0.44 0.85 0.71 0.75 0.55 0.46 0.47.5
Moderate 0.50 0.50 0.50 0.67 0.57 0.49 0.51 0.27 0.18.58

Major 0.58 0.45 0.45 0.75 0.62 0.72 0.60 0.46 0.65

OA 0.47 0.63 0.50

The ROC and PRC plots in Figure 10 further illustrate the moderate predictive ca-
pacity of the model MDL(FRC, RN). Compared to the ROC and PRC plots for the best
hazard-type model MHT(FRC, RN), it is seen that both predictive capacity and robustness
degrade. Moreover, both graphical analytics show a relatively high capacity to predict
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minor-damaged buildings, moderate in major-damage prediction, and less satisfactory in
minor-damage prediction at all possible variable classification thresholds.
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Figure 10. Performance of MDL(FRC, RN) in terms of: (a) Recall-Precision Curve; (b) ROC Curve.

4.3. Observation

The primary observations from the experiments above are multi-fold, which are
listed below:

1. Hazard-type detection achieves statistically high performance over hazard-type (very
high accuracy on tornado-wind scenes, high on the earthquake scene, and weak on
the Tsunami-wave scene), and the best model architecture is MHL(FRC, RN).

2. Damage-level prediction retains moderate yet explainable performance; nonetheless,
the model MDL(FRC, RN) secures acceptable performance on minor- and detecting
major-damage level.

3. The bounding-box-based detection is overall satisfactory and sufficiently captures the
attention zones in disaster-scene images.

4. Regarding the three-model architecture for the two disaster-scene understanding
tasks, it is observed too that Faster R-CNN as a general object-detection architecture
with outputs of both bounding boxes and class labels has a superior performance.

More explanations and limitations in the proposed methodology framework are
discussed in the following.

5. Discussion
5.1. Justification of Accuracy

First, to enlighten the discussion regarding the accuracy of image-based damage
classification, the authors retrieve relevant accuracy results from the literature. It is noted
that again there are no similar efforts that use mobile RS images. Ref. [43] reviewed many
efforts, where categorical structural damage was classified using traditional RS images.
First, the average or overall accuracy ranged from 70% to 90%, depending on the availability
and quality of the data; higher rates were usually a result of possessing high-quality pre-
and post-event data. Ref. [44] conducted damage classification using synthetic aperture
radar (SAR) images before and after the 2011 Tohoku Earthquake and Tsunami in Japan.
With a traditional machine-learning framework, they reported an average accuracy of 71.1%
using the F-1 score. Ref. [45] proposed a deep-learning-based damage detection workflow
using the same type of data over the tsunami-related damage as in [44]. They reported
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a damage-level recognition accuracy of 74.8% over three damaging classes. Ref. [46]
identified the significance of fusing the Digital Elevation Model (DEM) with SAR data for
damage mapping. In terms of four levels of building damage for an Indonesia tsunami,
they reported a higher overall accuracy (>90%) yet a low average accuracy (around 67%).
Given such comparison, the authors of this paper argue that towards an image-based
classification of structural damage for built objects, an OA measurement of 62.6%) as
reported by the model MDL(FRC, RN) is not surprisingly low.

To further explain this, three vital differences between traditional RS images and
mobile RS images are argued below, which render mobile RS-based damage detection
more challenging.

1. Bitemporal GIS-ready RT images vs. non-structured mobile images. In traditional
RT images, the bitemporal pairs are usually both ortho-rectified and co-registered;
therefore, bitemporal pixels for the same objects may only subject to misalignment of
a few pixels, which significantly constrains the degree of errors. In the case of mobile
images, there are no bitemporal pairs, and the damage is opportunistically captured
from an arbitrary perspective of a built object. This difference leads to overall much
more uncertainties in mobile RS images towards damage interpretation.

2. Bounded vs. unbounded scene complexity. In traditional RT images, most multi-story
building objects in the nadir or off-nadir views only show the roof level damage with
minimal building elevation coverage. This implies that the structural characteristics
are primarily in terms of lines, edges, and corners at the roofs of buildings, which
are low-level visual features. When damage occurs, these low-level features are
distorted or modified. In mobile images, however, the scene complexity is mounted
dramatically, and the involved features are at a high-level, including parts of objects,
adjacent objects, and potential relations between adjacent parts or objects.

3. Hazard specific vs. hazard-agnostic damage-level. In most RT-based damage-level
classification, the hazard-type comes from a single event, and the damage for built
objects is extracted from bitemporal images. In this work, treating the damage-level
agnostic to hazard-type leads to significant intra-class variations, which are much less
significant when using traditional RS images.

Secondly, it is explainable that hazard-type prediction models perform better than
the damage-level models in this work. For this performance disparity, three empirical
reasons are speculated herein. First, visual clues that imply hazard-type in disaster-scene
images are more abundant and distinct than those possibly exploitable for discriminating
damage-level. Second, the damage-level semantically imply an increasing order of damage
severity. This renders secondary yet significant overlapping in the underlying decision
boundaries in the high-dimensional feature space, namely inter-class variations. Third,
treating the damage-level not specific but agnostic to hazard-type leads to significant
intra-class variations. These three conjunct reasons are believed to corroborate that generic
damage-level are much more challenging to learn than hazard types given the same
disaster-scene database.

5.2. Suggestions for Future Research

Tornado-scene images in this work should be augmented to include more complexity.
It is noticed that when predicting the tornado scenes, very high accuracy is achieved
(with an AA up to 0.973 and an F1 score of 0.970; Table 2). The prediction accuracy is
high on earthquake-scene prediction (AA = 0.873; F1 score = 0.994); then the least on
tsunami-scene (AA = 0.867; F1 score = 0.849). This ranked trend in prediction accuracy
essentially coincides with the scene complexity, from low to high: Tornado-wind, Tsunami-
wave, and Earthquake-shaking scenes. Essentially, although the disaster-scene database
created in this work contains images for events around the world, they are still limited
in terms of diversity. Specifically, the tornado-scene images came from a single event
and were taken within residential areas from one town (Moore, Oklahoma). Regardless
of the relative complexity, nearly all buildings in images are residences captured from



Appl. Sci. 2021, 11, 3952 19 of 23

their front view. More diversity is in the earthquake scenes from urban settings of two
quite different countries, Haiti and New Zealand. Similarly, the tsunami images came
from two countries as well, coastal towns in Japan and Indonesia. These distinctions in
imagery-scene complexity in terms of their sources and characteristics explain the observed
performance. It is suggested that a different source for tornado-scene images may be
included to augment the scene complexity.

More flexible bounding-box-based annotations may be designed for very complex
disaster-scene images. When the tsunami-wave scene is classified, relatively lower perfor-
mance is observed with all the three models used. The authors speculate that by annotating
bounding boxes and focusing on building objects, the tsunami-specific visual cues, partic-
ularly flood-borne debris, tend to be missed by the bounding boxes. The authors argue
that this can reduce prediction performance about the tsunami scenes. As observed in
Figures 7d and 9d, bounding boxes are predicted differently from the human annotation.
This is inevitably due to arbitrary and subjective variations in a subjective human-based
process. The models learn the most plausible bounding box statistically in this tsunami-
scene image. For damage-level prediction, however, the model chooses the bounding box
with the damage-level of the maximum score value, and a much different box is predicted
yet with a correct prediction (relative to the mislabeled label by a human analyst). This
implies the disadvantage of the proposed simplified annotation process for the human
analyst in this work. It is suggested that for very complex disaster scenes, such as hydraulic
hazards induced disasters (e.g., flooding, tsunami, and storm surges), multiple and differ-
ent bounding boxes can be used for characterizing the hazard-type and building damage.
This treatment is left for future research.

Hierarchical and fine-grained semantic labeling should be pursued in future research.
Related to hazard types, a hierarchical scheme may be designed based on event type; for
example, for an earthquake-event scene, the hazard labels may include: shaking, land
sliding, liquefaction, ground sinking; whereas related to disaster types, specific damage
types may be classified according to element types and location; for example, for buildings,
these may include structural beam, wall, or foundation damage and nonstructural-element
damage. Nonetheless, this fine-grained labeling demands a much larger-scale database
and a more sophisticated model.

Data imbalance in disaster-scene images is intrinsic. First, it is due to the nature of
hazards in their frequency; for instance, the returning period of a strong earthquake is
much more extended than a windstorm. Second, after an intense event, crowdsourced
images from the general public are more focused on severely damaged buildings due to
physiological preferences. In recent years, innovative loss functions were proposed that
deal with dense objects in images with a high ratio between the foreground objects and
background objects [47]. However, in this work, the imbalance occurs within different
built objects, which are mainly in the foreground. Future research is needed, and the work
of [47] provides an inspiring direction by tuning the loss function.

5.3. Understanding UAV Images

It is asserted in this paper that UAVs are becoming a personal RT platform and a
standard tool in professional disaster reconnaissance activities in recent years. In practice,
UAVs-based RS images possess special characteristics due to their much flexible imaging
geometrics. In general, UAV images according to their coverage and imaging heights
can be categorized into three types: (T1) elevation view of buildings if the imaging UAV
captures at an AGL height comparable to building heights; (T2) overhead view of one or
several buildings when the AGL heights are higher than buildings; (T3), aerial view of
a large number of buildings when the AGL is much high (e.g., hundreds of feet above
ground). In general, the authors state that the developed models in this work should work
well for UAV images from the first category (T1) as they are similar to any ground-level
mobile images. For images in T2, the images may still be similar to the mobile images
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in this paper as one may capture images at a higher ground than buildings. For T3, they
should be processed first using photogrammetric methods used for traditional RS images.

In this effort, the models MHT(FRC, RN) and MDL(FRC, RN) developed previously
are applied to some sample UAV images, which were captured from a recent tornado
disaster reconnaissance (Jefferson City, Missouri). The images were shot at a low altitude
over an apartment complex. As shown in Figure 11a, two of three damaged buildings
are classified correctly as the tornado hazard-type. The lower left one is classified as the
tsunami type because its roof is disappeared, which is a scene not appeared in the tornado-
scene images in this paper (that were captured mostly with the front view). For damage-
level classification, three buildings are detected in Figure 11b; the predicted damage-
level conform to the hazard-agnostic damage classification. This extrapolation effort
demonstrates that UAV images may deserve some specific processing to improve accuracy.
One possible solution is to exploit the 3-dimensional (3D) embeddings hidden in many
overlapped UAV images hence a 3D reconstruction of the scene can be obtained [8,48].
With 3D image-based learning, more granular and representative features may positively
augment the model accuracy.

(a) (b)

Figure 11. UAV image prediction: (a) hazard-type classification by MHT(FRC, RN); (b) damage-level
classification by MDL(FRC, RN).

6. Conclusions

In this work, the authors explore the feasibility of a quantitative understanding of dis-
aster scenes from mobile images. To deal with the significant complexity and uncertainties
in disaster-scene images, this paper proposes adopting advanced deep-learning models to
identify both hazard-type and damage-level embedded in images.

The authors develop three deep-learning models for two disaster-scene understanding
tasks: hazard-type identification and damage-level estimation. The following conclusions
are resolved by assessing the performance of the two tasks based on quantitative perfor-
mance measures. First, the performance of the models demonstrates that disaster scenes in
mobile RS practice can be modeled, and predictive models with acceptable performance
are feasible. Second, it is concluded that hazard-type can be identified with high accuracy
due to the underlying abundant visual characteristics. On the other hand, relatively modest
performance is observed when the models predict damage level. Empirical explanations
are provided, including that the proposed damage-level scaling is agnostic to hazard types
and possesses much inter- and intra-class variations. Last, it is observed that the Faster
R-CNN architecture with a Resnet-50 CNN as the feature extract excels with the highest
performance in this effort.

With these conclusions, the authors expect that higher-performance predictive mod-
els for disaster-scene learning can be developed by enhancing data volume, veracity,
and better-suited deep-learning architectures. The proposed concept of mobile imaging-
based disaster-scene understanding and the developed frameworks in this paper can
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facilitate the automation of imaging activities conducted by either professionals or the gen-
eral public as smart and mobile devices become ubiquitous, enabling data-driven resilience
of disaster response.
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