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Abstract: To achieve human-level object manipulation capability, a robot must be able to handle
objects not only with prehensile manipulation, such as pick-and-place, but also with nonprehensile
manipulation. To study nonprehensile manipulation, we studied robotic batting, a primitive form of
nonprehensile manipulation. Batting is a challenging research area because it requires sophisticated
and fast manipulation of moving objects and requires considerable improvement. In this paper,
we designed a batting system for dynamic manipulation of a moving ball and proposed several
algorithms to improve the task performance of batting. To improve the recognition accuracy of the
ball, we proposed a circle-fitting method that complements color segmentation. This method enabled
robust ball recognition against illumination. To accurately estimate the trajectory of the recognized
ball, weighted least-squares regression considering the accuracy according to the distance of a stereo
vision sensor was used for trajectory estimation, which enabled more accurate and faster trajectory
estimation of the ball. Further, we analyzed the factors influencing the success rate of ball direction
control and applied a constant posture control method to improve the success rate. Through the
proposed methods, the ball direction control performance is improved.

Keywords: nonprehensile manipulation; robotic batting; high-speed object manipulation; ball recog-
nition; trajectory estimation; motion control; weighted least square

1. Introduction

To date, a variety of robots have been used in automated production lines for object ma-
nipulation tasks in factories, and these robotic technologies have contributed significantly
to the development of modern industry. Recently, with the fourth industrial revolution,
robots have been introduced to provide various services not only in factories but also in
human living environments. Robots used in factories perform simple repetitive operations
such as pick-and-place using specially designed grippers; however, in an environment such
as cafes and restaurants, human-level object manipulation ability is required. Therefore,
to provide a wider range of services in a human living environment, robots must have a
higher level of object manipulation similar to that of humans.

In addition to manipulating objects using grasping, humans can manipulate objects
freely by appropriately utilizing nonprehensile manipulations [1] without grasping, such as
throwing, batting, rolling, pushing, and sliding. Most robots are still limited to prehensile
manipulation using grasping. A robot that performs nonprehensile manipulation is rare
owing to the difficulty of control using nonprehensile manipulations. When nonprehensile
manipulation is performed, the object moves during manipulation. Since the moving
object is not fixed to the robot, it is necessary to plan and control the future behavior
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of the moving object based on the state of the robot and the moving object. Despite
these difficulties, nonprehensile manipulation has advantages such as increased object
manipulation methods, expansion of the robot workspace, and increased manipulation
dexterity [2]. To improve the ability of robots to manipulate objects, the robots must have
nonprehensile manipulation capabilities with these advantages.

Fabio et al. conducted a survey on nonprehensile manipulation of robots to address
the trends and open issues of nonprehensile manipulation studies [3]. According to [3], the
nonprehensile manipulation task is complex and difficult. Because of the complexity and
difficulty of the task, most studies divide the nonprehensile manipulation task into simpler
subtasks called nonprehensile manipulation primitives. The representative nonprehensile
manipulation primitives include throwing [4], catching [5], batting [6], pushing [7], slid-
ing [8], and rolling [9]. Each of these nonprehensile manipulation primitives is selectively
operated by a high-level supervisor depending on the task [10]. Among the nonprehensile
manipulation primitives, batting is challenging because it requires precise and fast ma-
nipulation of the moving objects, and studies on this topic are lacking. In sporting events
such as table tennis, tennis, and baseball, players have a batting ability to send the moving
objects (balls) to the desired position with sophisticated and quick manipulation, while
the batting performance of robots is insufficient. Therefore, this study aims to contribute
to the improvement of the dexterity of robots by conducting research on batting, which
requires more precise and quicker nonprehensile manipulation of moving objects than do
the above-mentioned primitives.

For a robot to perform a batting task, at least four methods are required. First, image
processing is required to recognize a moving ball. Second, estimation of the future trajectory
of the ball is required. Third, the motion of the robot arm must be controlled to affect the
ball direction. Lastly, calibration is required to convert the coordinates between the robot
arm’s coordinate system and the vision sensor’s coordinate system. This implies that the
performance of each method affects the performance of the batting primitive; studies that
can improve the performance of each method are discussed.

Chen et al. [11] developed a vision module for humanoid robotic table tennis. The
vision module contains two stereo vision sensors with a 200 fps and an algorithm for
predicting the rebound trajectory of a table tennis ball. Nakabo et al. [12] developed a high-
speed vision system capable of image acquisition and image processing at 1 kHz for moving
ball recognition. A parallel computation architecture was used to reduce image transfer
and processing time, and an active vision system with moving cameras was developed
to track the moving objects. Tesheng et al. [13] used an aerodynamic model of a ball to
account for the trajectory of the ball before and after collision to improve the performance
of ball direction control. Serra et al. conducted the study of hitting a table tennis ball to the
desired position [14]. To accurately control the arrival position of the ball after hitting, a
more accurate aerodynamic model that that in [13] was applied for the trajectory estimation
of the ball. Although the algorithms were tested via simulations, the implementation of
the algorithms on an actual hardware system was left to be covered under future work.
For accurate ball direction control, a batting algorithm considering impact dynamics was
proposed [15,16]; however, the problem of extending the 2D algorithm to the 3D algorithm
remains due to the computation time required for impact dynamics in 3D.

Schüthe et al. [17] introduced the optimal control with state and soft constraints for
a simulated ball batting task. By utilizing the soft constraints, a motion utilizing the
redundant degree of freedom (DOF) is automatically generated, but there is a limitation in
that a motion exceeding the range of motion of the joint is generated. Pekarovskiy et al. [18]
proposed a motion generation method that can adapt to rapidly changing target points
in consideration of the feasibility and computation time of the motion trajectory. This
method was applied to 2D planar volleyball batting. Kober et al. [19] proposed a method
to generate the trajectory of the robot arm through learning. If the system is changed, the
process of collecting and processing data is required again, and the ball direction control is
not considered. Mori et al. [20] developed a fast and lightweight robotic arm for badminton.



Appl. Sci. 2021, 11, 3920 3 of 19

The use of pneumatic actuators made the robotic arm lighter, enabling high-speed batting.
The position of the shuttlecock was measured using a high-speed motion capture system of
240 Hz, but there was a limitation in that control of the direction of the ball was generated by
a pre-learned feedforward motion. In the realization of a three-dimensional ball direction
control system, the amount of computation in object recognition and trajectory estimation
and the realizable three-dimensional motion generation are important.

Senoo et al. [21] developed a high-speed robot batting algorithm using a high-speed
active vision system developed by Nakabo et al. [12]. The algorithm was extended to
control the direction of the baseball in three-dimensional space [22]. For fast batting and
ball direction control, the authors proposed a hybrid trajectory generator comprising a part
that generates a high-speed batting motion and a part that modifies the motion through
visual feedback. A high-speed image processing system (1 kHz) specially developed for
object recognition was used, and a simple least square method was applied to estimate
the object trajectory because the sampling rate was fast. Without this specially designed
sensor system, it is difficult for other researchers to implement a batting system using this
algorithm.

In this study, we propose a batting framework capable of controlling the three dimen-
sional direction of a moving ball by using an off-the-shelf vision sensor with a relatively
low fps (50 Hz). The proposed batting framework includes object recognition, object tra-
jectory estimation, robot arm motion control, and calibration. In a condition where the
image sampling rate is low, since the importance of one data point is relatively large, the
performance of algorithms for object recognition, trajectory estimation, and motion control
becomes more important. Therefore, we propose ways to improve the performance of each
algorithm at a low sampling rate. Since the proposed methods were developed based on
an off-the-shelf vision sensor, other researchers can easily implement these algorithms.

The specific contributions of this study are as follows. First, in terms of ball recognition,
this study proposes an image processing method for improving ball recognition accuracy
in a more general environment. Previous studies covered noise filtering after applying a
difference image or color segmentation. In the real world, however, various lights affect the
ball recognition accuracy. Further, we applied the method using the geometrical properties
of the ball to improve the recognition accuracy under these lighting conditions. Second,
by applying weighted squares regression considering the positional accuracy according
to the distance of the stereo vision sensor, we improve the trajectory estimation accuracy
of the target object even with a low sampling rate. Third, we analyze the factors that
affect the performance of ball-direction control and propose additional constant posture
control methods to reduce the influence of those factors. Finally, in actual implementation,
calibration between the camera and the robot coordinate system is essential. A simple but
accurate calibration method is introduced.

2. Robot Batting System

We built a robot betting system as shown in Figure 1. The hardware of the batting
system consists of a stereo vision sensor for recognizing the red ball and obtaining positional
information in three-dimensional space, and a six DOF robotic arm for batting the ball to
the target position (Net in Figure 1). The stereo vision sensor (Bumblebee2, Point Gray
Research Inc.) provides 640 × 480 pixels color images at up to 48 frames per second
(fps). The Triclops library included in Bumblebee2 (Point Gray Research Inc.) provides 3D
position coordinates. Bumblebee is shipped with precision calibration at the production
stage, and because the two cameras are structurally fixed, there is no need to perform
additional calibration between the two cameras. A slightly modified version of the arm of a
humanoid robot, Hubo [23], designed by the HUBO LAB of the Korea Advanced Institute
of Science and Technology, was used for batting. Link lengths were changed to extend the
workspace, and the robotic hand end device was replaced with a 0.09 m diameter round
aluminum plate to perform the batting task.
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Figure 1. (a) Robotic batting system. The hardware of the batting system consists of a stereo vision
sensor and a six degree of freedom robotic arm. (b) Robot arm configuration. The base coordinate
system of the robot arm is the first coordinate system.

3. Method

We applied a color segmentation method [24] to recognize the red ball. To improve
the recognition accuracy of the ball under the conditions of illumination, a circle fitting
method [25] using the geometrical characteristics of the ball is employed.

3.1. Ball Recognition
3.1.1. Color Segmentation

The color separation method is used to find pixels with specific color values in the
image. Since we used a red ball in the batting experiment, only red is segmented in the
image by comparing the red component (Ic) and the threshold value (IThreshold) of the pixel
as shown in Equation (1).

Ib(u, v) =
{

1, i f Ic(u, v) ≥ Ithreshold
0, i f Ic(u, v) < Ithreshold

(1)

For improved visualization, the color image is converted to a binary image comprising
pixels (Ib) with only two values. The pixels corresponding to the threshold value or more
are represented by “1” (white), and the other pixels are represented to “0” (black); thus, the
red ball becomes white. However, since the RGB value changes according to the change
in illuminance, not only the ball but also noise are binarized. To remove this noise, the
morphology method [26] is applied. This method is effective for removing the salt-and-
pepper noise or impulse noise between objects and the background. Figure 2 shows the
results of finding the location of the ball on the desk in the lab when color segmentation
and morphology methods are applied. The left side of the figure is a color image, the right
side is a binary image, and only the red ball appears white in the binary image.
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Figure 2. Color image (left) and binary image (right). Green circle of color image represents the
position of the red ball.

3.1.2. Circle Fitting

Figure 3a shows the batting experiment environment captured using a stereo vision
camera. Because the ceiling light creates a shadow on the lower part of the ball, the RGB
value of the lower part of the ball changes. Figure 3b shows a binarized image with color
segmentation applied to the image in Figure 3a. In the binary image of Figure 3b, the
shape of the ball appears as a semicircle rather than a circle because the lower part of the
color change is not properly color segmented. Incorrect color segmentation causes errors
in the center position measurement of the ball. For example, if only the upper part of the
ball is color-segmented, the position error in the vertical direction increases. Threshold
adjustment is limited because the difference between the color value of the lower part of
the ball and the color value of the upper part is large.

To overcome the limitations of color segmentation, we additionally applied a circle
fitting method that uses the geometric characteristics of a circular ball. Figure 3c shows
only the edge of the semicircle shown in Figure 3b. By applying a circle fitting to the edge
of the semicircle, we can estimate the original circle ball shape, as shown in Figure 3d.
Figure 3e shows the center position of the ball before applying the circle fitting (lime green
point) and the center position of the ball after application (blue point). The positions of
the lime green and blue points are (X, Y, Z) = (−0.0416, 1.3299, −0.0888) and (X, Y, Z) =
(−0.0413, 1.3207, −0.0955), respectively. The true position of the ball is (X, Y, Z) = (−0.0414,
1.3187, −0.0985). Prior to the circle fitting method, the error in the z direction was 0.0097 m,
which is approximately 20% of the diameter of the ball at 0.05 m. After the circle fitting
method was applied, the center position of the ball moved by about 0.007 m further down
the Z-axis, and the position error in the Z direction was reduced from 0.0097 m to 0.0030 m.
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Figure 3. Circle fitting process. (a) Batting experiment environment captured using a stereo vision camera, (b) A binary
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semicircle, (e) Center position before (green) and after (blue) circle fitting.
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3.1.3. Calibration

Since the position of the ball measured in the vision coordinate system needs to be
converted to the robot coordinate system, a coordinate transformation between the two
coordinate systems is required. For coordinate transformation between two coordinates,
we attached the red marker shown in Figure 4 to the end-effector of the robot arm and
measured its position in the vision coordinate system and the robot coordinate system.
Coordinate transformation between two coordinates is possible using a homogeneous
transformation matrix representing the relationship between the camera coordinate system
and the robot base coordinate system, as shown in the following equation:[ BP

1

]
= H

[ CP
1

]
(2)

where H =

[ B
CR BPc

0 0 0 1

]
.

Subscripts B and C represent the robot arm base coordinate and camera coordinate
systems, BP and CP represent the positions of the markers (Figure 4) measured in the robot
and vision coordinate systems, respectively, H denotes the homogeneous transformation
matrix, and B

CR and BPc represent the rotation matrix and the distance vector between the
robot coordinate system and the camera coordinate system, respectively. The homogeneous
transformation matrix can be calculated by the least square method as

H = EVT
(

VVT
)−1

,

where E =

[[ BP1
1

] [ BP2
1

]
· · ·

[ BPN
1

] ]
, V =

[[ CP1
1

] [ CP2
1

]
· · ·

[ CPN
1

] ]
. (3)

E and V consist of the position vectors of the markers measured in the robot coordinate
system and the vision coordinate system, respectively, and N is the number of measured
position vectors. From the base coordinate system of the robot, the position data set BP1 . . .
BPN is calculated by forward kinematics. The position data set CP1 . . . CPN is measured
using the stereo vision sensor.

The accuracy of coordinate transformation is improved by calculating a homogeneous
matrix from data measured at various locations as shown in Figure 5. From the measured
data, the homogeneous transformation matrix is calculated as

H =


−0.9981 −0.0066 0.0054 0.1935
0.0184 −0.9754 0.0026 0.8037
−0.0114 0.0055 0.9906 0.3792

0 0 0 1

. (4)

From B
CR and BPc of the homogeneous transformation matrix, the camera coordinate

system is at a distance of 0.1935 m in the X-axis direction, 0.8037 m in the Y-axis direction,
and 0.3792 m in the Z-axis direction from the robot coordinate system. In the robot
coordinate system, the camera coordinate system is rotated by 0.3188◦ for the X axis,
0.6539◦ for the Y axis, and 178.9466◦ for the Z axis. To evaluate the accuracy of the
calculated homogeneous transformation matrix, the positions of the markers obtained
from the homogeneous transformation of the marker positions measured in the vision are
compared with the positions of the markers measured in the robot coordinate system as
shown in Figure 6. The error is expressed as a norm value for the X, Y, and Z axes. The
mean error is 0.0024 m and the standard deviation is 0.0012 m. Considering that the error is
less than 0.005 m and the diameter of marker is 0.01 m, the calculated homogeneous matrix
is sufficiently accurate.
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3.2. Ball Trajectory Estimation

Considering the limitations of the joint speed, the robot arm should be able to move
in advance by estimating the trajectory of the ball. To estimate the trajectory of the ball,
we used weighted least-squares regression [27]. Each time a new ball position and time
is acquired by the vision sensor, the trajectory of the ball is updated using weighted
least-squares regression.

3.2.1. Least Square Regression

The x and y planes of the robot coordinate system are horizontal planes and the z
direction is perpendicular to the x-y plane. A linear function was used to estimate the
horizontal trajectory of the ball, and a quadratic function was used to estimate the vertical
trajectory. Because the ball moves in a parabolic trajectory, the z-axis trajectory of the ball is
fitted as a quadratic function, unlike other axes. The trajectory function for each of the x, y,
and z axes of the ball is given by 

x = a1t + b1
y = a2t + b2

z = a3t2 + b3t + c
(5)

Whenever three-dimensional position data are newly measured in the stereo vision
sensor, the coefficient of the trajectory function (5) is newly calculated through least square
regression [28]. The position data sampling interval of the ball is 20 ms, which is the image
acquisition period of the stereo vision sensor. Since the flight time of the ball is 0.5 s on
average, approximately 15 to 20 ball position data points are measured. Figure 7 represents
the estimated trajectory of the ball according to the number of data points using least
squares regression. As the number of data points increases, it can be seen that the estimated
trajectory converges to one trajectory.
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3.2.2. Weighted Least Square Regression

Least square regression was applied to the ball trajectory estimation regression de-
scribed in Section 3.2.1, based on the assumption that the data measured by the stereo
vision sensor are accurate. However, the accuracy of the position data measured from the
stereo vision sensor is inversely proportional to the distance between the stereo vision
sensor and the object. This is because the closer the distance, the greater is the number
of pixels representing the object. Figure 8 shows a graph of position accuracy versus
distance between Bumblebee2 and the object. Therefore, it is more appropriate to apply
the weighted least-squares regression than the least-squares regression considering the
accuracy of the measured value according to the distance.
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Least squares regression minimizes the sum of the squares of the residuals, and the
weighted least-squares regression minimizes the sums (Q) of the squares of the residuals
(yi − bxi) multiplied by the weight (wi); it is given by
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Q = ∑n
i=1 wi(yi − bxi)

2, where wi = wi+1λ (6)

The weights are calculated as a geometric sequence based on the last weight. In several
tests, 0.8 was used as λ of the weighted least square. Figure 9 is a graph showing the RMS
errors for the X, Y, and Z components obtained by applying the weighted least square and
least square regressions. Although there is almost no difference in the RMS error for X
and Y with and without the weighted least square, the RMS error decreases rapidly with
weighted least square for the Z axis. This result is expected because the change in the
trajectory of the ball on the z axis is larger than that on the x and y axes.
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3.3. Motion Control of the Robot Arm

The trajectory of the robot arm consists of two stages: before and after batting. The
speed of the end-effector of the robot arm increases before batting, and after batting,
a trajectory is generated that slows down the increased speed of the end-effector. The
robotic arm used in the experiment has six joints, and, therefore, we need to generate the
trajectories of the six joints. For convenience, the joint trajectory generation method is
described by the notation of one joint, and the same method is applied to the remaining
joints. The trajectory generation method before batting is described first, followed by the
trajectory generation method after batting.

The cubic spline interpolation function for generating the motion trajectory of a joint is:

f (t) = ∑3
i=0 aiti, (7)

where ai is the coefficient of the trajectory function and t is the time. Since coefficients ai in
Equation (7) are four, four constraints are needed to obtain each coefficient. The constraints
of the trajectory function before hitting the ball are as follow:

f (0) = θ0, f (th) = θh,
.
f (0) = 0,

.
f (th) = uh (8)

3.3.1. Trajectory Interpolation

The trajectory constraints of Equation (8) represent the initial joint position f (0), joint
position f (th) to hit the ball, initial joint velocity

.
f (0), and velocity

.
f (th) to hit the ball. θ0

and θh represent the initial position of the joint and the joint position at the moment of
hitting the ball, th represents the time of the moment of hitting the ball, and uh represents
the angular velocity vector at the moment of hitting the ball. Four simultaneous equations
are constructed according to four constraints, and each coefficient can be obtained by
calculating the simultaneous equations.
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After hitting the ball, a joint trajectory has to be generated to reduce the speed of the
robot arm. By calculating the simultaneous equations with the following four constraints,
a joint trajectory is generated to decrease the velocity of robot arm.

f (th) = θh, f
(

t f

)
= θ f ,

.
f (th) = uh,

.
f
(

t f

)
= 0 (9)

The initial joint position is the angle to hit the ball, the final joint position is the angle
in the configuration where the robot arm stops, the initial velocity is uh at the time of the
hit, the final velocity is 0, and t f is the time to stop.

3.3.2. Robot Batting Trajectory

The angular and velocity trajectories of joints 1 and 3 for when the batting task is
performed as generated by the cubic spline function and constraints are shown in Figure 10.
Through cubic spline interpolation, the trajectories of the joints were smoothly interpolated
from the initial position before batting to the stop position after batting. The batting time
is 0.274 s and the time it takes for the robot arm to stop completely after it starts moving
is 0.914 s. The maximum angular velocity is given only to joints 1 and 3 because the
maximum angular velocity of the other joints is limited and has little effect on the speed of
the end-effector. After hitting, the robot arm stops smoothly by imposing a constraint on
the angular velocity of joints 1 and 3 as 0. The velocity of the end-effector is calculated as

VR = J
.

Θ (10)

where J =


∂PX
∂θ1

· · · ∂PX
∂θ6

∂PY
∂θ1

· · · ∂PY
∂θ6

∂PZ
∂θ1

· · · ∂PZ
∂θ6

,
.

Θ =


.

θ1
...
.

θ6


J is the Jacobian matrix of the robot arm, and

.
Θ is a vector consisting of the angular

velocities of the joints of the robot arm. The calculated velocity of the end-effector is
6.2 m/s.
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3.3.3. Ball Direction Control

The ultimate goal of the batting task is to move the object to the desired target position
in a single collision. The orientation of the end-effector of the robot must be controlled
to move the ball to the desired target position. That is, the direction of the ball after the
collision can be controlled by controlling the normal vector perpendicular to the circular
plate of the end-effector. The normal vector can be calculated from the coefficient of
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restitution between the ball and the end-effector, the velocity of the ball and the end-
effector before and after the collision, and some assumptions. Figure 11 shows the velocity
vector of the ball before the batting (VB1 ∈ R3), the velocity vector of the ball after the
batting (VB2 ∈ R3), and the velocity vector of the end-effector of the robot (VR ∈ R3) and
the normal vector (n ∈ R3) perpendicular to the plane of the end-effector.
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Figure 11. Vector arrangements representing end-effector velocity (VR), ball velocity before collision
(VB1), ball velocity after collision (VB2), and normal vector (n).

The vector shown in Figure 11 can be expressed as shown in Figure 12 under the
assumption that there is no change in the velocity of the end-effector before and after the
collision, and that there is only energy loss caused by the deformation of the ball in the
collision.
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Figure 12. Vector analysis before and after collision.

From Figure 12, the relationship between the velocity vectors and the normal vector
can be defined by the collision coefficient equation

e =
(vB2 − vR) · n
(vB1 − vR) · n

(11)

The collision coefficient (e) is the speed ratio before and after the collision of the ball,
and the material of the ball and the end device has a major influence on the collision
coefficient. Considering the inherent properties between the ball and the end-effector,
we obtained the collision coefficient through collision experiments. The coefficient was
obtained by dropping the ball perpendicular to the end-effector to measure the speed
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before and after the impact. The average collision coefficient obtained from 20 experiments
is 0.6506 and the standard deviation is 0.0448. Based on the assumptions above, the velocity
of the horizontal component before and after the collision of the ball is preserved and can
be expressed as

vB1 − vR − {(vB1 − vR) · n}n = vB2 − vR − {(vB2 − vR)n}n (12)

The above equation can be rearranged as

n =
vB2 − vB1

||vB2 − vB1 ||
(13)

Note that the normal vector is in the same direction as that of the difference in the
velocity vector before and after the collision of the ball. Therefore, the information of vB1
and vB2 is needed to calculate n. The vB1 is calculated by differentiating Equation (5), and
the direction of vB2 is calculated from the estimated trajectory of the ball and the target
position. Therefore, to calculate the normal vector, it is necessary to calculate the magnitude
of the vB2.

The direction of the velocity vector after the collision is derived from the vector
geometry. The velocity vector after the collision in Figure 12 can be set to one side of
the triangle as shown in Figure 13. ρ is the direction vector of v2, and σ represents the
horizontal relative velocity vector that is preserved before and after the collision of the ball.
The Pythagorean theorem applies to the two triangles4abc and4acd and is represented
by the following two equations:

||vB1 − vR||2 = ||(vB1 − vR) · σ||2 + ||(vB1 − vR) · n||2, (14)

||vB2 − vR||2 = ||(vB1 − vR) · σ||2 + ||(vB1 − vR) · n||2e2 (15)
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The difference between the two equations is

||vB1 − vR||2 − ||vB2 − vR||2 = ||(vB1 − vR) · n||2
(

1− e2
)

(16)

The cosine law is applied to4abd as

||(vB1 − vR) · n||2(e + 1)2 = ||vB1 − vR||2 + ||vB2 − vR||2 − 2||vB1 − vR||||vB2 − vR|| cos θ, (17)

where θ = cos−1 (vB1 − vR) · ρ
||vB1 − vR||||ρ ||

From Equations (16) and (17), we can calculate the relative velocity of the ball after
the collision as

||vB2 − vR|| =
||vB1 − vR||(1− e) cos θ +

√
(||vB1 − vR||(1− e) cos θ )2 + 4||vB1 − vR||2e

2
(18)

From Equations (13) and (18), the normal vector perpendicular to the circular plate of
the terminal end-effector can be expressed as

n =
vB2 − vB1

||vB2 − v1 ||
=

(vB2 − vR)− (vB1 − vR)

||(vB2 − vR) − (vB1 − vR) ||
(19)

From the calculated normal vector, the orientation of the ball after the collision is
adjusted by adjusting the orientation of the robot end-effector.

4. Experiment
4.1. Batting Experiment

The batting task was performed based on the algorithms proposed in the previous
sections. Snapshots of the robot arm hitting the oncoming ball to the target are shown in
Figure 14. The target position for the ball is a blue net that is 0.57 m in the x-axis, −0.48 m
in the y-axis, and −0.09 m in the z-axis from the robot base coordinate. We performed the
experiment in the same way by changing the position of the target to 0.36 m for the x-axis
and 1.06 m for the y-axis to −0.02 m for the z-axis. We conducted 30 batting experiments
each, the success rate converged to approximately 40%.
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We conducted two additional experiments to analyze the factors that influence the
success rate. Since the trajectory prediction function of the ball is a function of position
versus time (Equation (5)), the arrival position estimation error of the ball and arrival time
estimation error of the ball are analyzed. If there is a large error in the estimated ball
position or time, this error will affect the success rate of the batting task.

4.2. Experiment to Analyze the Predicted Ball Position Accuracy

We stopped the robotic arm at the predicted ball position without swinging to analyze
the estimated ball position accuracy. We will call this experiment a bunt experiment, similar
the action of the same name in a baseball game. The effect of the time error was separated
by placing the end-effector of the robot arm at the position where the ball arrived. Thirty
experiments were carried out, and the robotic arm was able to touch all the thrown balls
(success rate is 100%). This experiment shows that the estimated ball position is accurate
for ball batting. Figure 15 shows the positions of the batted balls in 30 experiments.
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Figure 15. Shot group of the batted ball. In this bunt experiment, the robotic arm hit the ball with a
100% success rate.

4.3. Experiment to Analyze the Accuracy of the Predicted Ball Arrival Times

Data acquired from the stereo vision sensor includes time information together with
image data. The time information is measured at the moment the shutter of the camera is
closed, and this time information is called a time stamp. The timer cycle of the camera is 8
kHz, and a time stamp is calculated based on this cycle.

A red marker (Figure 4) was attached to the end-effector of the robot arm, and the
position and time of the marker was measured with a vision sensor. To measure the
time difference between each image, the robot arm drew a circle at a constant velocity of
17 degree/s with respect to the Y-Z plane. While the robot arm moved in a constant velocity
circular motion, time information was measured along with the position of the marker.
Figure 16 shows the marker positions of the end-effector when the robot arm moved
at constant speed. A histogram comparing the time difference between two theoretical
positions caused by constant circular motion and the time difference measured using a
vision sensor is shown in Figure 17. The mean time difference error was −0.00057 s and
the standard deviation was 0.0048 s. If the error pattern is biased, the time difference
error can be compensated; however, in the case of such a random error, it is difficult to
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compensate for the time difference error. Therefore, the following section describes the
proposed method to compensate for the time error.
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4.4. Constant Posture Control Method

Time errors change the timing of the hitting. Accordingly, the success rate of ball
direction control is decreased. To compensate for this time error, we propose a method
of maintaining the posture of the end-effector for a predetermined time before and after
the ball hitting, and this method is called the constant posture control (CPC) method. By
maintaining the posture of the end-effector for a predetermined time before and after the
hitting timing, the posture change of the end device due to time error is prevented. We set
the time that the posture of the end-effector should be maintained to a total of 0.3 s with
0.015 s before and after the hit.

We conducted a ball direction control experiment to verify the effectiveness of the
CPC method. Figure 18 shows the posture change of the end-effector with and without the
CPC method while the robot arm swings. Postures are expressed in Euler angles. The solid
line is a change in posture considering the CPC method, and the dotted line is a change in
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posture without considering the CPC method. Since the robot arm strikes the ball while
rotating about the Z axis (refer to the Z1 axis in Figure 1), the Euler angle change about the
Z axis is very large. For a clear comparison, the experimental results are described based
on the Z axis Euler angle. The interval in which the posture should be kept is between
0.222 s and 0.252 s. The red solid Z-axis Euler angle was in the range of −76.79◦ to −77.63◦.
This is a negligible error compared to the Z axis Euler angle of −77.16◦ to be maintained.
On the other hand, the blue dotted line without considering the CPC method shows that
the Z-axis Euler angle was changed from −73.24◦ to −82.81◦. Finally, after 15 experiments,
the success rate was 53.0% when considering the CPC method, and the success rate was
increased by 13% when the CPC method was not considered. The experimental video is
shown in [29].
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5. Discussion

In this paper, we designed a ball batting system to perform batting tasks and proposed
algorithms to improve the success rate of ball direction control under low sampling rate
conditions. In a condition where the image sampling rate is low, since the importance of
one data point is relatively large, the performance of algorithms such as object recogni-
tion and trajectory estimation becomes more important. In terms of object recognition,
we applied a circular fitting method that is robust to the influence of illuminance and
improved the 3D position accuracy of the ball by about 60% compared to the conventional
image processing method with color segmentation and noise filtering applied. In terms of
trajectory estimation, while the conventional method uses complex models, we proposed a
weighted least square trajectory estimation method based on a simple model. As shown
in Figure 9, it is possible to accurately estimate the trajectory with a small number of data
points by considering the weight according to the distance. In terms of motion control of
the robot arm, through analysis of the factors affecting the success rate of ball direction
control, a time error, which is a random error, was found as shown in Figure 17, and a
constant posture control method was proposed to overcome this. Through this method,
the ball direction control success rate was improved by about 13%.

The methods proposed in this study can be applied to other research fields. The
ball recognition method using geometric features can be used to improve recognition
accuracy of other objects. Since the ball trajectory estimation method using the weighted
least squares method can overcome the problem of computation time in the conventional
complex model-based trajectory estimation method, this method can be applied not only
at low-speed sampling times but also at high-speed sampling times. In addition to the
trajectory estimation field, the algorithm considering the accuracy of the stereo vision
sensor according to the distance can be easily applied to other stereo vision applications,
and thus can be used as an effective performance improvement method.

Although the current ball direction control success rate is similar to that of research
using high-speed vision sensors, there is a possibility that the success rate will be further
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improved if the algorithms proposed in this study are applied to a batting system equipped
with a high-speed vision sensor. In addition, if the currently used ball model is improved,
the accuracy of ball trajectory estimation is expected to be further improved. We plan to
study the trajectory estimation method that combines the improved ball model and the
weighted least squares method.

6. Conclusions

We conducted research on batting, one of the primitives of nonprehensile manipula-
tion. We designed a ball batting system to perform batting tasks and proposed algorithms
to improve the success rate of ball direction control under low sampling rate conditions.
The recognition accuracy of the ball was improved by applying the color segmentation
method and the circle fitting method to the recognition of the ball. In consideration of the
measurement accuracy according to the distance of the stereo vision sensor, the estimated
trajectory of the ball was predicted more accurately and in a faster manner by applying
weighted least square regression to the ball trajectory estimation. A method of controlling
the posture of the end-effector of the robot arm to control the direction of the ball was
presented, and a smooth robot arm trajectory was generated while satisfying the constraints
and adapting to the target trajectory. Furthermore, we analyzed the factors affecting the
ball direction control and proposed a method of maintaining the end position of the robot
arm to compensate for the time uncertainty. Through this, the posture of the end-effector
was kept constant before and after hitting, and the success rate of the ball direction control
was increased by about 13%.
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