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Abstract: An accurate whole heart segmentation (WHS) on medical images, including computed
tomography (CT) and magnetic resonance (MR) images, plays a crucial role in many clinical applica-
tions, such as cardiovascular disease diagnosis, pre-surgical planning, and intraoperative treatment.
Manual whole-heart segmentation is a time-consuming process, prone to subjectivity and error.
Therefore, there is a need to develop a quick, automatic, and accurate whole heart segmentation
systems. Nowadays, convolutional neural networks (CNNs) emerged as a robust approach for
medical image segmentation. In this paper, we first introduce a novel connectivity structure of
residual unit that we refer to as a feature merge residual unit (FM-Pre-ResNet). The proposed
connectivity allows the creation of distinctly deep models without an increase in the number of
parameters compared to the pre-activation residual units. Second, we propose a three-dimensional
(3D) encoder–decoder based architecture that successfully incorporates FM-Pre-ResNet units and
variational autoencoder (VAE). In an encoding stage, FM-Pre-ResNet units are used for learning a
low-dimensional representation of the input. After that, the variational autoencoder (VAE) recon-
structs the input image from the low-dimensional latent space to provide a strong regularization of
all model weights, simultaneously preventing overfitting on the training data. Finally, the decoding
stage creates the final whole heart segmentation. We evaluate our method on the 40 test subjects of
the MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) Challenge. The average dice
values of whole heart segmentation are 90.39 % (CT images) and 89.50 % (MRI images), which are
both highly comparable to the state-of-the-art.

Keywords: artificial intelligence; cardiac CT; cardiac MRI; deep learning; ResNet; variational autoen-
coder; whole heart segmentation

1. Introduction

Functional irregularities of the heart and blood circulatory system are referred to
as cardiovascular diseases (CVDs). CVDs cause significant degeneration of patients’ life
quality, while severe cases result in death. Research statistics provided by the World
Health Organization show that CVDs account for 17.9 million deaths per year, which
makes them the leading cause of death globally [1]. Early diagnosis of CVDs enables
timely and appropriate treatment and prevention of patients’ death. The diagnostic process
includes obtaining images of unhealthy or weakened heart structures using imaging
devices such as echocardiography, computed tomography (CT), or magnetic resonance
(MRI). After that, collected images are observed, interpreted, and analyzed by clinical
experts using specialized medical software built with advanced image processing methods.

Various clinical applications require insights into different cardiovascular system
structures. For example, whole heart segmentation is crucial for pathology localization
and hearts’ anatomy and function analysis. The construction of patient-specific three-
dimensional (3D) heart models and surgical implants greatly benefits pre-surgical planning
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for patients with atherosclerosis, congenital heart defects, cardiomyopathy, or even inspect-
ing different heart infections in post-surgical treatment [2]. Whole heart segmentation
includes delineation of four heart chambers, the entire blood pool, and the great ves-
sels, which makes manual segmentation by clinical experts time-consuming and prone
to observer variability. There is an increasing focus on developing accurate and robust
automatic image processing methods. The development of accurate, efficient, and auto-
matic image processing and analysis methods is a complex task, especially in the medical
field. The main reason is in high variability in image intensities distribution and dynamic
properties of cardiac structures. Nevertheless, the advancements and rapid development in
image processing, computer vision, and artificial intelligence fields significantly facilitate
this challenging task.

A commonly used approach for medical image segmentation includes encoder–
decoder-based architectures such as the U-Net architecture [3]. The U-Net architecture
and its’ corresponding three-dimensional counterpart, 3D U-Net [4], consist of contract-
ing and expanding pathways. Throughout the contracting pathway, the network learns
low-level features and reduces its numbers using sets of pooling and convolutional layers.
In an expanding pathway, the network learns high-level features and recovers the original
image resolution using deconvolutional layers. Features from contracting and expanding
pathways are concatenated with skip connections to retrieve lost image information that
occurs during the down-sampling process. Intuitively, this indicates that the part of the
information is lost during the encoding process and can not be recovered when decoding.
Variational autoencoders [5] enable regularization during the training to ensure that the
latent space, i.e., encoded space, keeps the maximum of information when encoding, which
results in the minimum reconstruction error during the decoding. Furthermore, since the
number of features in the contracting pathway is significantly lower than the number in
the expanding pathway, direct concatenation of these features may not produce the most
optimal results. The increment in the number of layers provides larger parameter space
enabling learning of more abstract features. Therefore, deeper architectures could provide
more abstract learning that results in better performance and higher accuracy in medical seg-
mentation tasks. Common obstacles in training deeper neural network architectures are the
appearance of vanishing gradients, accuracy degradations, and extensive parameter growth
that lead to computationally expensive models. Recent advancements have shown that convo-
lutional networks can be significantly deeper and still preserve high efficiency and accuracy if
they contain shorter and direct connections in between each layer. The introduction of skip
connections in ResNets [6] allows for copying of the activations from layer to layer. Since
some features are best constructed in shallow networks and others require more depth, skip
connections increase the network’s capability, flexibility, and performance.

1.1. Research Contributions

Motivated by previously described advancements, in this paper, we present a novel 3D
encoder–decoder based architecture with variational autoencoder regularization. Our intention
is to achieve maximum optimality in training performance, efficiency, and final segmenta-
tion result accuracy for the whole heart segmentation task. The work contributions can be
summarized as:

1. We propose a new connectivity structure of residual unit that we refer to as feature
merge residual units (FM-Pre-ResNet). The FM-Pre-ResNet unit attaches two convo-
lution layers at the top and at the bottom of the pre-activation residual block. The top
layer balances the parameters of the two branches, while the bottom layer reduces
the channel dimension. This allows the construction of a deeper model with a similar
number of parameters compared to the original pre-activation residual unit.

2. We present a 3D encoder–decoder based architecture that efficiently incorporates
FM-Pre-ResNet units and is additionally guided with variational autoencoders (VAE).
The architecture includes three stages. First, in an encoding stage, FM-Pre-ResNet
units learn a low-dimensional representation of the input. Second, in the VAE stage,
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an input image is reduced to a low-dimensional latent space and reconstructs itself to
provide a strong regularization of all model weights and is only used during the net-
work training. Finally, the decoding stage creates the final whole heart segmentation.

3. The proposed approach obtains highly comparable dice scores to the state-of-the-art
for whole heart segmentation tasks on CT images while outperforming the current
state-of-the-art on the MRI images.

1.2. Paper Overview

The remainder of the paper is structured as follows. In Section 2, we give an overview
of related research. First, we briefly review previous research regarding whole heart seg-
mentation. After that, we provide a background of the most successful ResNet variants and
feature reuse mechanisms. Section 3 gives details about our proposed method. First, we
introduce an overall architecture design. After that, we present the encoder and decoder
stages as well as a theoretical explanation of the new connectivity structure of the residual
unit. We introduce the variational autoencoders and their role in the proposed architecture
as well. Section 4 provides dataset description, implementation details, and presents con-
ducted experiments and obtained results for the whole heart segmentation. Finally, the
concluding remarks are given in Section 5.

2. Related Concepts

In this section, we review some related works. First, we briefly review the prior
methods in the whole heart segmentation tasks, focusing on CNN-based approaches.
After that, we present significant residual network variants and feature reuse mechanisms
relevant to our research.

2.1. Previous Methods for Whole Heart Segmentation

The field of whole heart segmentation is a frequently researched area due to its ex-
tremely high importance in clinical practice. Various segmentation algorithms and methods
have been proposed over the years. Detail reviews of previously published methodologies
can be found in [7–10]. Prior methods are fundamentally classified into traditional segmen-
tation methods (active contours, deformable models, registration, atlas-based frameworks)
and CNN-based segmentation methods. For example, Zhuang et al. [11] propose a new
global atlas ranking scheme where both the global and local atlases use the theoretical
measures information for computing similarity between the atlases and target image.
Galisot et al. [12] propose a method that combines topological graphs and local probabilis-
tic atlases for learning priors. At the same time, the hidden Markov field (MF) integrates
the learned information and provides final pixel classification. A significant limitation of
registration-based methods is a requirement for high similarity in volume orientation and
acquisition protocols between target and atlas images. Recent advancements introduce a
simple linear iterative clustering (SLIC) super voxel method for prevention of misregistra-
tion by detecting a bounding box region enclosing the heart, after which heart segmentation
is performed subsequently [13]. Although registration and atlas-based frameworks usually
have high accuracy and precision, algorithms are still not robust enough, which often leads
to unsatisfactory results when the data quality is poor.

Recently, CNN-based methods have shown superior performance in the field of medi-
cal image segmentation and analysis. For example, Payer et al. [14] use two separate CNNs:
first to localize heart and second to segment the fine details of the heart structures within a
small region of interest (ROI). The localization network predicts the approximate center
of ROI using heatmap regression [15] and the U-Net. Final pixel predictions are acquired
using the multi-label segmentation CNN. Wang et al. [16] combine statistical shape priors
with CNNs to extract 3D shape knowledge using the shape context method. They detect
ROI using a random forest landmark detection, after which they generate a probability
map using multi-view slices and three 2D U-Nets. Finally, they apply a hierarchical shape
prior algorithm [17] on the probability map to estimate the shape of each heart structure.
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Sundgaard et al. [18] use 2D CNNs with a multi-planar method to investigate the power of
retaining spatial information across slices, as is the case of 3D networks. Mortazi et al. [19]
present a multi-planar CNN method using an encoder–decoder architecture. After that,
they apply an adaptive fusion [20] to obtain refined segmentation. This method requires
less memory in comparison to the 3D counterpart. Liao et al. [21] propose a multi-modality
transfer learning method that combines spatial attention mechanism for retaining and re-
moving useful and redundant information, respectively. Furthermore, Dou et al. [22] apply
deep supervision during network training to obtain faster convergence and higher distin-
guishing ability, while Tong et al. [23] combine ROI detection and 3D deeply-supervised
U-Net to reduce the computational complexity. Although convolutional neural networks
perform well, the limited amount of annotated data requires the development of efficient
and more complex, deeper network architectures.

2.2. ResNet Variants and Feature Reuse Networks

Deep convolutional neural networks have shown a significant increase in the accu-
racy for various segmentation and classification tasks. However, a common obstacle in
training deep neural network architectures is the appearance of vanishing or exploding
gradients. As the depth of CNN increases, information about the gradient passes through
many layers, and it can vanish or accumulate large errors by the time it reaches the end of
the network. This problem has been largely addressed using activation functions with a
small derivate such as rectified linear unit (ReLU), implementation of gradient clipping,
intermediate normalization layers, or careful weight initialization. Nevertheless, with
the increasing network depth, accuracy gets saturated and then degrades rapidly. The
introduction of skip connections in ResNets [6] allows for copying of the activations from
layer to layer, thus preserving information and significantly increasing the performance.
Nevertheless, when the depth of the network goes very deep, ResNets become challenging
to converge. These difficulties were addressed in Pre-ResNets [24] by introducing forward
and backward signals that directly propagate from one block to any other using identity
mappings after-addition activation and as the skip-connections. This ultimately constructs
a new residual block with the BN-ReLU-Conv order. Zagoruyko [25] introduces level-wise
shortcut connections to alleviate the learning capability and significantly boost network
performance. Moreover, the deep network initialization problem and incompatibility be-
tween ReLU and element-wise summation were addressed in weighted residual networks
(WNR) [26]. Although deeper residual networks showed performance improvement, di-
minishing feature reuse slows down network training. This was addressed by increasing
and decreasing the width and depth, respectively, in improved WNRs [27].

Furthermore, another efficient way to alleviate network performance is by reusing
features. DenseNet [28] introduces connections between all successive layers in a feed-
forward manner where features from each preceding layer are used as inputs to every other
layer. This means that each layer is receiving cumulative knowledge from all prior layers,
i.e., it reuses features. A variety of compelling benefits are obtained with the introduction
of direct connections between layers. First, it allows more depth of the network while
simultaneously alleviating the vanishing and exploding gradient problems. Second, the
use of features from all layers leads to improvements in the performance. Finally, it
efficiently utilizes parameters. This allows for less propensity to overfitting and leads to
a reduction of computational costs. CondenseNet [29] combines dense connectivity with
a group convolution to further facilitate feature reuse through the network. Here, the
group convolutions aim at removing direct connections between layers allowing distinctly
smooth feature reuse.

3. Methodology

In this section, we present a theoretical overview of the proposed encoder–decoder
based architecture. First, we give an overall architecture design and introduce the main
building blocks and their purpose. After that, we give a theoretical background of the main
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components of our method: feature merge residual units (FM-Pre-ResNet) and variational
autoencoder. Finally, we describe the used loss function.

3.1. Architecture Overview

An image segmentation task can be written as mapping:

g(·) : I → O (1)

where i ∈ I denote input images, while o ∈ O denote their corresponding segmentations.
For an encoder–decoder based architecture, the same mapping function can be written as:

g(·) = EΩ(D∆(·)) (2)

where EΩ, D∆ are an encoder and the decoder networks parametrized by Ω and ∆, respec-
tively. Introduction of shared VAE, expressed with VΛ(·), at the encoders’ endpoint allows
mapping of input images to a lower-dimensional latent, i.e., encoded, space. The output
of an encoder EΩ contains the samples from the latent space, which we in detail discuss
in Section 3.3.

Therefore, our proposed architecture consists of three main stages: (1) encoding
stage, (2) reconstruction of the input with variational autoencoder, and (3) decoding stage.
An encoding stage incorporates feature merge residual units by which the network learns a
low-dimensional representation of the input. The variational autoencoder reconstructs the
input image from low-dimensional latent space to regularize all model weights and adds
additional guidance to the encoding stage. Finally, in the decoding stage, the network learns
high-level features and creates the final segmentations. An illustration of the proposed
architecture is shown in Figure 1.

Figure 1. An illustration of proposed network architecture for the 3D whole heart segmentation.
Input is a volumetric CT or MRI image. Each red block is the FM-Pre-ResNet block. The VAE branch
is added at encoders’ output and is used only during training. The decoder stage creates the final
whole heart segmentation.

3.2. Encoding Stage

The ResNets contains multiple stacked residual units. Generally, each residual unit
can be expressed with the following two formulations:

yl = H(xl) + F(xl , Wl), (3)

and
xl+1 = f (yl), (4)
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where F is residual function, xl and xl+1 denote the input and output of the l − th resid-
ual unit in the network, while the output of the l − th residual unit is denoted with yl .
The parameters of the l − th residual unit are denoted as Wl , while the function f refers to
the rectified linear unit (ReLU).

The identity mapping, by which ResNets learn residual function F in regard to H(xl),
can be written as:

H(xl) = xl (5)

Therefore, the identity mapping of original residual block attaches an identity skip
connection allowing information flow within a residual unit as shown in Figure 2a.
As introduced in Pre-ResNets (Figure 2b), if H(xl) and f are both an identity mapping, the
direct propagation of information through the entire network in forward and backward
fashion can be written as:

xl+1 = H(xl + F(xl , Wl)) (6)

Following the concept described in Equation (6), we propose a novel feature merge
residual unit that can be written as follows:

Z(xl) = F(z(xl), Wl) ◦ z(xl)) (7)

and
xl+1 = H(xl + g′(Z(xl), W ′l ) (8)

where ◦ presents the concatenation operation, Z(xl) denotes the concatenated result, while
the functions z and g′ denote the convolution layers, added at the top and at the bottom
of the residual unit, respectively. In this manner, the top convolution layers’ output is
concatenated with the residual signals’ output, which allows the merge of features from
preceding layers. After that, the concatenated result is passed through a bottom convolution
layer to reduce channel dimension, as shown in Figure 2c.

Figure 2. An illustration of different connectivity types of residual units. (a) original residual unit;
(b) pre-ResNet unit; (c) proposed FM-Pre-ResNet unit
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3.3. Variational Autoencoder Stage

Variational autoencoders are able to capture latent representations, which makes them
ideal for use in generative settings [5,30]. The evidence lower bound (ELBO), which is
VAEs optimization objective, can be written as:

LVAE(i, î) = LREC(i, î) +K,L[qΛ(r|i)||p(r)] (9)

where the term LREC(i, î) denotes reconstruction loss, and can be further written as:

LREC(i, î) = −Eqr |i[log(p∆(i|r))] (10)

where î denotes the reconstructed input.
The term K,L[qΛ(r|i)||p(r)] from Equation (9) defines the KL divergence of the ap-

proximating variational density, which can be expressed as:

qΛ(r|i) = N (r; µΛ, σ2
Λ) (11)

The standard prior on the latent variable can be written as:

p(r) = N (r; 0.1) (12)

where the aligned Gaussian (µΛ, σ2
Λ) is expressed by the encoder network VΛ(·).

Following this, the low dimensional representations of the input data i can be obtained
by introducing the latent random variable r. The input images are mapped to a low
dimensional space using VAE encoder VΛ(·). After that, the output of the encoder of the
segmentation network, EΩ(·), takes samples from the latent space as shown in Figure 1. In
this manner, segmentation encoder and VAE jointly share the decoder D∆(·), which can be
also written as:

L(o, ô) = LREC(o, ŝ) +KL[qΛ(r|i)||p(r)] (13)

The final segmentation, ô, is obtained from the decoder using following expression:

ô = D∆[EΩ(i) ◦VΛ(i)] (14)

which can be written as:
ô = D∆[h ◦ r] (15)

where ◦ denotes concatenation, H = EΩ(i) is the output of the segmentation encoder and
r ∼ qΛ(r|i) is a sample from the latent space that is learnt by VAE.

Loss Function

The loss function plays an important role in improving the models’ performance. In
this work, we employ total loss function that is the addition of soft dice loss, L2 loss and
standard VAE penalty term, and can be written as:

L = Ldice + 0.1 · LL2 + 0.1 · LKL (16)

The term that represents the soft dice loss, Ldice [31], can be written as:

Ldice =
2 ·∑ Pgt · Ppred

∑ p2
gt + ∑ p2

pred + ε
(17)

where ε denotes a small constant used for computational stability, i.e., to avoid
zero division.

The loss L2 represents loss on the VAE encoder output and can be written as:

LL2 = ||Iinput − Ipred||22 (18)
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The standard VAE penalty term, LKL, represents KL divergence between a prior distri-
bution N(0, 1) and the estimated normal distribution N(µ, σ2), which can be written as:

LKL =
1
N ∑ µ2 + σ2 − log σ2 − 1 (19)

where N represents the entire set of image voxels. Finally, the hyperparameter weight of
0.1 is empirically found to provide a good balance between VAE loss term and soft dice
loss in Equation (16).

3.4. Decoding Stage

The decoder building blocks highly follows concepts described in Section 3.2,
i.e., it consists of FM-Pre-ResNet units. Every FM-Pre-ResNet unit in decoder doubles the
spatial dimension while reduces the feature numbers by a factor of 2. Each decoder level
is concatenated with the corresponding encoder output. The final layer of the decoder
provides whole heart segmentation and has the same number of features and spatial size
as the original input image.

4. Implementation Details

In this section, we give a dataset description on which we conducted our experiments.
After that, we give details about network training and implementation. Finally, we eval-
uate the proposed method using Multi-Modality Whole Heart Segmentation Challenge
(MM-WHS) dataset and present conducted experiments and results. We investigate and
compare our results to the state-of-the-art research.

4.1. Dataset Description

The network presented in the previous section was applied to the whole heart seg-
mentation task and is evaluated on a dataset provided by Multi-Modality Whole Heart
Segmentation Challenge (MM-WHS) organized by MICCAI [32]. The MM-WHS dataset
consists of 60 cardiac CT/CTA and 60 cardiac MRI volumes, whereas 20 volumetric images
include corresponding ground truths, manually labeled by two clinical experts. In contrast,
the remaining 40 volumetric images are used for testing purposes. Ground truths of the
testing dataset are provided in encrypted form and can be decoded to evaluate algorithms
using the procedure described in [32]. The data were collected on patients from the ev-
eryday clinical environment, and it has a various quality to preserve the robustness of the
developed algorithms when it comes to real clinical usage. The cardiac CT/CTA data are
obtained using 64 slice CT scanners using a standard coronary CT angiography protocol,
and cardiac MRI data were acquired using a navigator-gated 3D balanced steady-state
free precession (b-SSFP) sequence for free-breathing whole heart imaging. The axial slices’
in-plane resolution is 0.78× 0.78 mm, and the average slice thickness is 1.60 mm. The data
include the following seven structures of the heart: (1) the left ventricle blood cavity (LV),
(2) the right ventricle blood cavity (RV), (3) the left atrium blood cavity (LA), (4) the right
atrium blood cavity (RA), (5) the myocardium of the left ventricle (Myo), (6) the ascending
aorta (Ao), which is defined as the aortic trunk from the aortic valve to the superior level of
the atria, and (7) the pulmonary artery (PA). An example of one slice from the used dataset
is shown in Figure 3.
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Figure 3. An example of one slice with corresponding ground truth from 3D volume across axial, coronal, and sagittal
planes. The ground truths include seven heart structures: LV (red), RV (magenta), LA (blue), RA (green), Myo (yellow), Ao
(orange), and PA (cyan).

4.2. Training and Implementation Details

To alleviate the irregularities of variable contrast in some MRI images, we normalize
all input images (both CT and MRI) to have zero mean and unit std. The volumes were
cropped and zero-padded to a fixed size of 176× 224× 144 to provide a fine ROI for the
network input while making sure all heart structures are inside the selected ROI. We apply
three different data augmentation methods on input image channels to increase the sample
size of training data and enhance the robustness and generalization ability, namely random
axis mirror flip, random scaling, and intensity shift. Random axis mirror flip creates a
mirror reflection of an original image along one (or more) selected axis and is commonly
flipped at a rate of 50%. Random scaling operation S scales input image and performs
independently in different directions. Intensity shift performs an element-wise addition
of a scalar to the image and affects the brightness of the original image. Details about
parameters of used data augmentation methods are presented in Table 1 while examples of
input images after applying different data augmentation methods are shown in Figure 4.
Moreover, we empirically found that advanced augmentation techniques, such as random
histogram matching, or random image filtering, do not show any additional improvements
to the final segmentation result.

Figure 4. Examples of different augmentation methods on input CT and MRI images.
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Table 1. Data augmentation parameters.

Method Parameters

Random flip along all axis with probability 0.5
Random scale S ∈ [0.9, 1.1]
Intensity shift between [−0.1, 0.1]

While optimization methods such as stochastic gradient descent (SGD) or gradient
descent with momentum provide a powerful optimization for training CNNs, choosing the
most optimal learning rate α is not a trivial task. If α is chosen to be too large, the training
may not converge, might oscillate, or skip over relevant local minima. On the other hand,
if it is chosen to be too small, it significantly delays the convergence process. Therefore,
in this work, we use adaptive learning rate optimizer Adam with initial learning rate of
α0 = 10−4 and gradually decrease it according to the following expression:

α = α0 ∗
(

1− c
Tc

)0.9

(20)

where Tc is a total number of epochs (200 in our case) and c is an epoch counter. Furthermore, to
ensure our models generalizes well on unseen data, i.e., to reduce the effect of overfitting or
underfitting, we employ L2 norm regularization with a weight of 10−5 and the spatial dropout
with a rate of 0.2 after the initial encoder convolution. Since early stoping aims to regularize
the finding the network parameters at the point of the lowest validation loss, we implement
early stopping with patience set to 50.

In our experiments, we train four encoder–decoder based architectures: (1) 3D Pre-
ResNet without VAE regularization, (2) 3D Pre-ResNet with VAE regularization, (3) FM-
Pre-ResNet without VAE regularization, and (4) FM-Pre-ResNet with VAE regulariza-
tion. All four networks are trained from scratch and separately for CT and MRI im-
ages. The whole experimental procedure is implemented in Pytorch and trained on two
NVIDIA Titan V GPU simultaneously. The source code of our method is available at [33].
Our training and validation dataset consists of 20 CT volumes and 20 MRI volumes, with
80–20% training and validation split, respectively. The trained networks are evaluated
using a testing dataset that includes 40 subjects for both CT and MRI images. The proposed
3D FM-PreResNet + VAE architecture produced the highest validation accuracy of 94.40%
at the end of the 200th epoch. The network is trained for 200 epochs since further training
appears not to decrease validation loss as shown in Figure 5. Moreover, Figure 5 shows
that, with an increase in epochs, the loss value decreases, and the accuracy increases. This
is a clear indication that the network is successfully learning from the input data.
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Figure 5. Training and validation accuracies and losses for 3D FM-Pre-ResNet + VAE network architecture.

4.3. Evaluation Metrics

To evaluate the proposed methodologys’ performance, we compare ground truth
masks with obtained segmentations for each CT and MRI volume. We used four different
metrics to evaluate segmentation accuracy, namely, the Dice similarity coefficient (DSC),
Jaccard Index (JI), surface distance (SD), and Hausdorff distance (HD). DSC and JI measure
the level of overlap between the ground truth and predicted segmentations, while SD and
HD examine boundary distances. The DSC metric measures the degree of overlap between
the ground truth and predicted segmentation. It is a commonly used metric for evaluating
segmentation quality and can be written as:

DSC(G, P) =
2|G ∩ P|
|G|+ |P| (21)

where G is the ground truth, and P is the predicted mask.
Similarly, the Jaccard Index (JI) emphasizes the size of the intersection divided by

the size of the union of the sample sets. The mathematical representation of the JI can be
written as:

J I(G, P) =
|G ∩ P|
|G ∪ P| (22)

where G is the ground truth, and P is the predicted mask.
SD measures an average of the minimum voxel-wise distance between the ground

truth and predicted object boundaries and can be written as:

SD(G, P) =
1

nG + nP

{
∑

xP∈P
d̄(xP, G) + d̄(xG, P)

}
(23)
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where nG and nP denote the number of voxels on the object boundaries in the ground truth
and predicted segmentations, respectively.

Furthermore, HD represents the maximum of the minimum voxel-wise distances
between the ground truth and predicted object boundaries and can be written as:

HD(G, P) = max
g∈G

{
min
p∈P

{√
g2 − p2

}}
(24)

where g is the ground truth, and p is the predicted mask.

5. Experiments and Results

To demonstrate the effectiveness of the proposed approach and our design choice
for the new FM-ResNet unit, we train encoder–decoder based architecture using 3D Pre-
ResNet without and with VAE regularization as well as the proposed FM-Pre-ResNet
without and with VAE regularization.

Table 2 summarizes an average whole heart segmentation results on CT and MRI
images. On CT images, the 3D Pre-ResNet network achieves average WHS segmentation
results for DSC, JI, SD, and HD of 87.11%, 80.16%, 1.71 mm, and 24.44 mm, respectively.
The addition of VAE at Pre-ResNet segmentation encoders’ endpoint improve DSC, JI, SD
and HD values for 2.12%, 1.0%, 0.2039 mm, and 2.704 mm, respectively.

Table 2. Comparison of an average WHS results in terms of DSC, JI, SD, and HD on different architectures for the CT and
MRI testing dataset.

CT MRI
Architecture DSC JI SD HD DSC JI SD HD

3D Pre-ResNet
0.8711 0.8016 1.7110 24.4421 0.8306 0.7554 5.9201 42.5578

± 0.0721 ± 0.0609 ± 0.4991 ± 17.8355 ± 0.9254 ± 0.0581 ± 0.4421 ± 21.6645

3D Pre-ResNet + VAE
0.8923 0.8116 1.5071 21.7381 0.8534 0.7545 3.7701 38.8812

± 0.0209 ± 0.0358 ± 1.407 ± 16.8850 ± 0.0441 ± 0.0583 ± 0.9100 ± 23.5812

3D FM-Pre-ResNet
0.9003 0.8214 1.4321 18.8114 0.8840 0.7855 2.4558 32.0451

± 0.0148 ± 0.0271 ± 0.0518 ± 12.4032 ± 0.0701 ± 0.0455 ± 0.7956 ± 17.5508

3D FM-Pre-ResNet + VAE
0.9039 0.8224 1.1093 1.1093 0.8950 0.8044 1.8599 25.6558

± 0.0517 ± 0.0571 ± 0.0215 ± 12.3737 ± 0.0215 ± 0.0757 ± 0.6740 ± 16.4001

The 3D FM-Pre-ResNet network achieves DSC, JI, SD, and HD values of 90.03%,
82.14%, 1.43 mm, and 18.82 mm, respectively. Compared to the 3D Pre-ResNet, it achieves
improvement in DSC, JI, SD, and HD values of 2.92%, 1.98%, 0.2789 mm, and 56, 307 mm,
which means that the proposed FM-PreResNet unit significantly improves segmentation
accuracy. Moreover, the highest DSC, JI, SD, and HD are achieved using 3D FM-Pre-
ResNet + VAE network and report values of 90.39%, 82.24%, 1.1093 mm, and 15.3621 mm,
respectively.

Similarly, on MRI images, the 3D Pre-ResNet network achieves average WHS seg-
mentation results for DSC, JI, SD, and HD of 83.06%, 75.54%, 5.9201 mm, and 42.5578 mm,
respectively. The addition of VAE at Pre-ResNet segmentation encoders’ endpoint improve
DSC, JI, SD, and HD values for 2.28%, 0.09%, 2.15 mm 3.6766 mm.

The 3D FM-Pre-ResNet network achieves average DSC, JI, SD, and HD values of
88.40%, 78.55%, 2.4558 mm, and 32.0451 mm, respectively. Compared to 3D Pre-ResNet,
it achieves improvement in DSC, JI, SD, and HD values of 5.34%, 3.01%, 3.4643 mm, and
10.5127 mm, which means that the proposed FM-PreResNet unit significantly improves
segmentation accuracy. Moreover, the highest DSC, JI, SD, and HD are achieved using
3D FM-Pre-ResNet + VAE network and report values of 89.50%, 80.44%, 1.8599 mm and



Appl. Sci. 2021, 11, 3912 13 of 21

25.6558 mm, respectively. These results highlight the improvement in segmentation accu-
racy afforded by the introduction of FM-Pre-ResNet units and VAE.

Boxplots showing the distribution of the DSC for WH, LV, Myo, LA, RA, RV, AO,
and PA using different segmentation networks on MMWHS CT and MRI testing datasets
are presented in Figures 6 and 7, respectively. Additional, structure-wise segmentation
accuracies for the LV, RV, LA, RA, Myo, Ao, and PA, for both CT and MRI images, are
summarized in Tables 3 and 4.

Figure 6. Boxplots showing the DSC dispersion for WH, LV, Myo, LA, RA, RV, AO, and PA using different segmentation
networks on the MMWHS CT testing dataset. Boxplot illustrates interquartile range (bounds of box), mean (X inside a box),
median (centerline), maximum and minimum values (whiskers), and outliers (circles outside whiskers).

Figure 7. Boxplots showing the DSC dispersion for WH, LV, Myo, LA, RA, RV, AO, and PA using different segmentation
networks on the MMWHS MRI testing dataset. Boxplot illustrates interquartile range (bounds of box), mean (X inside a
box), median (centerline), maximum and minimum values (whiskers), and outliers (circles outside whiskers).
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Table 3. Structure-wise DSC evaluation of proposed architecture and other 3D based architectures in terms of DSC, JI, HD,
SD on CT testing dataset for LV, RV, LA, RA, Myo, Ao, and PA.

Heart Structure

Metrics Architecture LV Myo RV LA RA AO PA

DSC

3D Pre-ResNet 0.9165 0.8662 0.8709 0.9181 0.8609 0.9251 0.8093
± 0.0512 ± 0.0524 ± 0.0642 ± 0.0417 ± 0.08 ± 0.4404 ± 0.1331

3D Pre-ResNet +VAE 0.9245 0.8762 0.9124 0.9281 0.8709 0.935 0.8311
± 0.0176 ± 0.0212 ± 0.009 ± 0.0392 ± 0.0532 ± 0.0149 ± 0.0199

3D FM-Pre-ResNet 0.9165 0.851 0.9179 0.899 0.8683 0.9326 0.9272
±0.0125 ± 0.015 ± 0.0063 ± 0.0277 ± 0.0376 ± 0.0105 ± 0.0141

3D FM-Pre-ResNet + VAE 0.9177 0.8791 0.8882 0.931 1 0.8617 0.9449 0.8271
± 0.049 ± 0.0504 ± 0.0546 ± 0.0396 ± 0.0802 ± 0.0404 ± 0.1331

JI

3D Pre-ResNet 0.8501 0.7675 0.7764 0.8511 0.7635 0.863 0.6973
± 0.0814 ± 0.0786 ± 0.0914 ± 0.0668 ± 0.1121 ± 0.0666 ± 0.163

3D Pre-ResNet +VAE 0.8601 0.7775 0.7863 0.8611 0.7734 0.873 0.7073
± 0.0762 ± 0.0329 ± 0.0155 ± 0.068 ± 0.089 ± 0.0266 ± 0.0338

3D FM-Pre-ResNet 0.8699 0.7873 0.7961 0.8709 0.7832 0.8828 0.7171
±0.0398 ± 0.0488 ± 0.0338 ± 0.0323 ± 0.0592 ± 0.0601 ± 0.0756

3D FM-Pre-ResNet + VAE 0.8709 0.7883 0.7971 0.8719 0.7842 0.8838 0.7181
± 0.0573 ± 0.0725 ± 0.0834 ± 0.0736 ± 0.1131 ± 0.0568 ± 0.1449

SD

3D Pre-ResNet 0.1078 1.3061 1.4767 1.2568 1.7143 0.8131 1.8828
± 0.5188 ± 0.6522 ± 0.764 ± 0.7873 ± 0.8301 ± 0.4853 ± 2.5626

3D Pre-ResNet +VAE 1.0778 1.2544 1.3574 1.2047 1.6980 0.6251 1.6320
± 0.4210 ± 0.6003 ± 0.5321 ± 0.5504 ± 0.4321 ± 0.7001 ± 1.0848

3D FM-Pre-ResNet 0.9321 1.1178 1.2047 1.0157 1.5534 0.5220 1.5884
±0.7701 ± 0.5987 ± 0.4895 ± 0.7754 ± 0.3305 ± 0.0653 ± 1.0012

3D FM-Pre-ResNet + VAE 0.7455 1.0057 0.9907 1.1775 1.3544 0.4444 1.735
± 0.8905 ± 0.3210 ± 0.2078 ± 0.6055 ± 0.5587 ± 0.3217 ± 1.0997

HD

3D Pre-ResNet 9.5403 13.573 14.3229 10.3919 13.0453 8.0746 10.3851
± 4.8047 ± 4.5287 ± 13.1375 ± 6.7654 ± 6.9765 ± 4.2339 ± 13.1497

3D Pre-ResNet +VAE 7.5402 12.4457 13.5571 9.0781 14.210 9.7758 12.8835
± 4.0019 ± 3.9210 ± 11.2474 ± 5.4880 ± 5.7871 ± 5.4421 ± 15.5432

3D FM-Pre-ResNet 7.0037 10.7785 10.0787 9.4743 11.0375 8.1170 10.5532
±3.5707 ± 3.7500 ± 9.457 ± 4.7171 ± 3.8810 ± 3.5778 ± 3.4210

3D FM-Pre-ResNet + VAE 5.5011 8.3257 7.3854 8.7555 9.5777 6.5781 9.5587
± 2.3088 ± 2.9901 ± 7.7809 ± 3.2089 ± 3.5432 ± 6.5001 ± 8.5578
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Table 4. Structure-wise DSC evaluation of proposed architecture and other 3D based architectures in terms of DSC, JI, HD,
SD on MRI testing dataset for LV, RV, LA, RA, Myo, Ao, and PA.

Heart Structure
Metrics Architecture LV Myo RV LA RA AO PA

DSC

3D Pre-ResNet 0.9014 0.8088 0.8644 0.8751 0.8521 0.8891 0.7945
± 0.0342 ± 0.0178 ± 0.0457 ± 0.0111 ± 0.1089 ± 0.2701 ± 0.3002

3D Pre-ResNet +VAE 0.9121 0.8077 0.8544 0.8810 0.8566 0.8932 0.7763
± 0.0458 ± 0.0388 ± 0.1882 ± 0.0157 ± 0.0501 ± 0.0327 ± 0.0497

3D FM-Pre-ResNet 0.9080 0.8220 0.8632 0.8846 0.8432 0.8755 0.7947
±0.0102 ± 0.0245 ± 0.0233 ± 0.0589 ± 0.0799 ± 0.0301 ± 0.0243

3D FM-Pre-ResNet + VAE 0.9313 0.8147 0.8777 0.9017 0.8702 0.8821 0.8020
± 0.0885 ± 0.0119 ± 0.0154 ± 0.0867 ± 0.0146 ± 0.0137 ± 0.1102

JI

3D Pre-ResNet 0.8005 0.6222 0.7129 0.7419 0.7051 0.7208 0.6076
± 0.1155 ± 0.1235 ± 0.1494 ± 0.1084 ± 0.1453 ± 0.1395 ± 0.1286

3D Pre-ResNet +VAE 0.8344 0.7178 0.7123 0.7942 0.7108 0.8155 0.6328
± 0.0587 ± 0.0441 ± 0.0328 ± 0.0758 ± 0.0107 ± 0.0789 ± 0.0977

3D FM-Pre-ResNet 0.8001 0.7244 0.7732 0.8155 0.7201 0.8053 0.6855
±0.06732 ± 0.0483 ± 0.1652 ± 0.0559 ± 0.1551 ± 0.1344 ± 0.0266

3D FM-Pre-ResNet + VAE 0.8159 0.7388 0.7244 0.8053 0.7221 0.8147 0.7095
± 0.0.0891 ± 0.0552 ± 0.0341 ± 0.0322 ± 0.2175 ± 0.0285 ± 0.1532

SD

3D Pre-ResNet 3.1154 4.1305 3.8078 1.9685 3.1319 1.7262 1.9394
± 4.2951 ± 4.4141 ± 5.6198 ± 1.8108 ± 3.0756 ± 1.8632 ± 0.8231

3D Pre-ResNet +VAE 2.0102 3.7214 2.5699 1.5421 2.6542 1.2201 1.5572
± 3.0051 ± 3.2708 ± 4.3201 ± 1.3037 ± 2.7822 ± 1.2447 ± 0.6241

3D FM-Pre-ResNet 1.4425 2.1778 2.8321 1.7728 2.4880 1.0027 2.3571
±0.6055 ± 4.2871 ± 3.5542 ± 1.4002 ± 2.3551 ± 1.1998 ± 0.7581

3D FM-Pre-ResNet + VAE 0.9789 1.7562 1.2552 1.8853 1.99722 0.6799 2.0774
± 1.7757 ± 1.3321 ± 1.9947 ± 1.5570 ± 1.8771 ± 0.7844 ± 0.8231

HD

3D Pre-ResNet 33.6531 38.8297 31.2102 17.6381 31.2076 9.5942 10.3042
± 23.5248 ± 29.8463 ± 27.1629 ± 15.0182 ± 27.6534 ± 7.5978 ± 4.1532

3D Pre-ResNet +VAE 31.5542 35.5541 28.8105 17.5428 24.7579 8.7709 8.5721
± 18.2863 ± 25.8371 ± 21.4779 ± 11.3571 ± 23.8901 ± 6.3481 ± 2.7799

3D FM-Pre-ResNet 29.8821 36.4528 25.7773 18.5789 26.8832 7.2027 11.2577
±14.5887 ± 27.3378 ± 19.8421 ± 9.2297 ± 25.7892 ± 3.5599 ± 6.7987

3D FM-Pre-ResNet + VAE 26.5428 34.1750 23.5771 19.7750 16.7750 5.5897 9.4477
± 11.4450 ± 18.2889 ± 14.543 ± 9.4798 ± 6.9543 ± 3.4201 ± 3.5947

The p-values have been calculated using a Wilcoxon rank-sum test to show the signifi-
cant difference of used architectures. Bonferroni correction was used for controlling the
family-wise error rate. Figures 8 and 9 show the comparisons and p-values for CT and MRI
testing datasets, respectively.

The visual inspection of the obtained segmentations using each network investigated
in this work is presented in Figure 10 for the CT dataset, and Figure 11 for the MRI
dataset. For example, Figure 11d shows clear improvements regarding LV segmentation
that is obtained using FM-Pre-ResNet compared to missed segmentation of LV parts while
using Pre-ResNet without a proposed feature merge residual unit as shown in Figure 11b.
Moreover, Figure 11f shows a significant reduction in segmentation error compared to all
other presented networks. This further highlights the benefits of the proposed FM-Pre-
ResNet + VAE approach. Nonetheless, in both modalities, PA and Myo’s segmentation
results are significantly lower than other substructures due to high shape variations and
heterogeneous intensity of blood fluctuations. Figure 12 shows 3D visualization of the
best and the worse segmentation cases on the CT and MRI test dataset obtained using the
proposed FM-Pre-ResNet +VAE approach.
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Figure 8. Comparison of Wilcoxon rank sum test of each heart structure for different architectures on
the MMWHS CT testing dataset.

Figure 9. Comparison of Wilcoxon rank sum test of each heart structure for different architectures on
the MMWHS MRI testing dataset.
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Figure 10. Comparison of the results of four different network architectures. (a) the input original CT
image; (b) segmentation results of Pre-ResNet without VAE; (c) segmentation results of Pre-ResNet
with VAE; (d) segmentation results of FM-Pre-ResNet without VAE; (f) segmentation results of
proposed FM-Pre-ResNet with VAE obtains the most accurate results on the testing dataset.

Figure 11. Comparison of the results for four different network architectures. (a) the input original
MRI images; (b) segmentation results of Pre-ResNet without VAE; (c) segmentation results of Pre-
ResNet with VAE; (d) segmentation results of FM-Pre-ResNet without VAE; (f) segmentation results
of the proposed FM-Pre-ResNet with VAE obtains the most accurate results on the testing dataset.
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Figure 12. 3D visualization of the best and worse cases of WHS results in the CT and MRI test datasets.

Furthermore, Pre-ResNet has demonstrated that increasing the depth of the network
improves model performance significantly. The addition of two convolutional layers at
the top and bottom of the pre-activation residual block introduced in our FM-Pre-ResNet
unit allows for the feature fusion block to reach the same depth with fewer parameters
which benefits model performance. Therefore, the proposed type of connectivity of the
FM-Pre-ResNet unit in terms of depth and number of parameters regarding Pre-ResNet
implies no increase in the number of parameters compared to the Pre-ResNet. Time-wise,
each training epoch (200 cases) and prediction times on two GPU-s (NVIDIA Titan V)
are significantly reduced with architectures with VAE. This shows the computational
efficiency of our choice for VAE introduction. Comparison of depth, number of parameters,
training times per epoch, and prediction time of one volume for different architectures is
shown in Table 5.

Table 5. Comparison of depth, number of parameters (×106), training times per epoch (min), and prediction time (s) for one
volume for different architectures: Pre-ResNet, 3D Pre-ResNet + VAE, FM-Pre-ResNet, and FM-Pre-ResNet + VAE.

Architecture Depth Number of Parameters Training Time Prediction Time

3D Pre-ResNet 110 23.48 10 0.7
3D Pre-ResNet + VAE 110 26.18 8 0.6

3D FM-Pre-ResNet 218 22.54 9 0.5
3D FM-Pre-ResNet + VAE 218 25.14 7 0.4

Comparison with State-of-the-Art Methods

The proposed approach was compared with other similar deep learning approaches
in terms of image segmentation accuracy as shown in Tables 6 and 7. An approach that
combines atlas registration with CNNs’ [12] provides an incremental segmentation that
allows user interaction, which can be beneficial in a clinical setting. Nevertheless, the
challenges of accurate atlas registration resulted in low accuracy on MRI images. The
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deep supervision mechanism [23] and use of transfer learning [21] result in an increase
of trainable parameters and overall network complexity. In contrast, we aim to introduce
a light-weight network that results in a significantly deep network without increasing
the parameter number. Moreover, the authors in [21] report an average WHS DSC of
0.914± 0.075 on CT images and 0.890± 0.054 on MRI images using a hold-out set of 10% of
training data and evaluate their method with 10-fold cross-validation. Our results report
0.9039± 0.0517 on CT images and 0.8950± 0.0215 on MRI images and are evaluated on all
unseen 40 subjects, which shows that the VAE stage’s introduction significantly helps in
overcoming overfitting problems. Therefore, these results highlight the advantages of our
proposed method.

Table 6. Comparison of an average DSC, JI, SD, and HD of the state-of-the-art whole heart segmentation methods on
CT images.

Authors Method DSC JI SD (mm) HD (mm)

Galisot et al. [12] Multi Atlas + CNN 0.838± 0.152 0.742± 0.161 4.812± 13.604 34.634± 12.351
Payer et al. [14] Localization + 0.908± 0.086 0.832± 0.037 1.117± 0.250 25.242± 10.813

segmentaiton CNN
Mortazi et al. [19] multi planar CNN 0.879± 0.079 0.792± 0.106 1.538± 1.006 28.481± 11.434
Wang et al. [16] Statistical shape 0.894± 0.030 0.810± 0.048 1.387± 0.516 31.146± 13.203

priors + CNN
Tong et al. [23] Deeply supervised 0.849± 0.061 0.742± 0.086 1.925± 0.924 44.880± 16.084

3D U-Net
Liao et al. [21] multi planar 2D CNN 0.914± 0.075 0.840± 0.075 1.42± 0.46 28.042± 12.142
Proposed method FM-Pre-ResNet + VAE 0.9039± 0.0517 0.8224± 0.0571 1.1093± 0.0215 15.362± 12.3737

Table 7. Comparison of an average DSC, JI, SD, and HD of the state-of-the-art whole heart segmentation methods on
MRI images.

Authors Method DSC JI SD (mm) HD (mm)

Galisot et al. [12] Multi Atlas + CNN 0.817± 0.059 0.695± 0.081 2.420± 0.925 30.938± 12.190
Payer et al. [14] Localization + 0.863± 0.043 0.762± 0.064 1.890± 0.781 30.227± 14.046

segmentaiton CNN
Mortazi et al. [19] multi planar CNN 0.818± 0.096 0.701± 0.118 3.040± 3.097 40.092± 21.119
Wang et al. [16] Statistical shape 0.855± 0.069 0.753± 0.094 1.963± 1.012 30.201± 13.2216

priors + CNN
Tong et al. [23] Deeply supervised 0.674± 0.182 0.532± 0.178 9.776± 0.924 44.880± 16.084

3D U-Net
Liao et al. [21] multi planar 2D CNN 0.89± 0.075 0.840± 0.075 1.42± 0.46 28.042± 12.142
Proposed method FM-Pre-ResNet + VAE 0.8950± 0.0215 0.8044± 0.0757 1.8599± 0.6740 25.6558± 16.4001

6. Conclusions

This paper introduced an efficient encoder–decoder-based architecture for whole heart
segmentation on CT and MRI images. Accurate heart and its substructures segmentation
enable faster visualization of target structures and data navigation, which benefits clinical
practice by reducing diagnosis and prognosis times. Our proposed method introduces
a novel connectivity structure of residual unit that we refer to as feature merge residual
unit (FM-Pre-ResNet). The proposed connectivity allows the creation of distinctly deep
models without an increase in the number of parameters compared to the Pre-ResNet
units. Furthermore, we construct an encoder–decoder-based architecture that incorporates
the VAE encoder at the segmentation encoder output to have a regularizing effect on the
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encoder layers. The segmentation encoder learns a low-dimensional representation of the
input, after which VAE reduces the input to a low-dimensional space of 256 (128 to represent
std, and 128 to represent mean). A sample is then drawn from the Gaussian distribution
with the given std and mean and reconstructed into the input image dimensions following
the same architecture as the decoder but without inter-level skip connections. Therefore,
VAE acts as a regulator of model weights, adds additional guidance, and exploits the
encoder endpoint features. In the end, the segmentation decoder learns high-level features
and creates the final segmentations. We evaluate the proposed approach on MMWHS CT
and MRI testing datasets and obtain average WHS DSC, JI, SD, and HD values of 90.39%,
82.24%, 1.1093, 15.3621 for CT images, and 89.50%, 80.44%, 1.8599, 25.6558 for MRI images,
respectively. Results for both datasets are highly comparable to the state-of-the-art.
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